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Sz Thm implies VDW’s Thm

Assume, Sz true, and VDW’s false. Exists k , c such that
For all W there is a c-coloring COLW of [W ] with no mono k-AP.
We use these colorings to create a coloring of N.

The usual
COL(1) is the color that appears infinitely often. Kill. . .
COL(2) is the color that appears infinitely often. Kill. . .
....
We want to show that some color has positive upper density.
Colors are 1, . . . , k .
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Sz Thm implies VDW’s Thm (cont)

(∀n)

[
Di ,n = |{x :COL(x)=i}∩[n]

n

]
. Note

∑k
i=1Di ,n = 1.

Hence, for all n, there exists i , Di ,n ≥ 1
k .

Let i be the least number that appears infinitely often.

For an infinite number of n, Di ,n ≥ 1
k .

Hence {x : COL(x) = i} has upper positive density.

By Sz Thm there are k-APs {x : COL(x) = i}.

a, a + d , . . . , a + (k − 1)d all be in {x : COL(x) = i}.

By the definition of COL there is an i (actually infinitely many)
such that COL and COLi agree on a, a + d , . . . , a + (k − 1)d .

Hence that COLi has a mono k-AP, which is a contradiction.
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Disjoint k-AP’s

TRUE or FALSE:
For all COL : N→ [c] there exists, for all k, a mono k-AP AND
the 3-AP, the 4-AP, the 5-AP, etc are all disjoint.

TRUE: Divide N into disjoint blocks of size W (3, c), W (4, c), . . ..
In the W (k , c)-sized block will be a mono k-AP.
Key VDW is about coloring [W ] but works just as well coloring

{x , x + 1, . . . , x + W (k , c)− 1}.
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ω-AP’s

TRUE or FALSE:
For all COL : N→ [c] there exists a mono ω-AP

FALSE: Here is a 2-coloring of N with no ω-APs.
If 22i ≤ x ≤ 22i+1 − 1 then COL(x) = R.
If 22i+1 ≤ x ≤ 22i+2 − 1 then COL(x) = B.

Assume, BWOC ∃a, d : a, a + d , . . . all same color.
i : (1) (∃X )[2i ≤ a + Xd ≤ 2i+1 − 1] and (2) d < 2i .

Hence a + Xd and a + (X + 1)d are colored differently.
Contradiction.
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Problem 4

Assume for all V , there is a 4-free set A ⊆ [V ] of size Ve−(logV )f .
A, B, C, D each have a string of length n on their foreheads The
strings are a, b, c , d . Give a protocol for them to used such that

I At the end they all know if a + b + c + d = 2n+1 − 1.

I The number if bits communicated is � n.

I Assume that your reader is a student in this class who
MISSED the lecture on multiparty Communication (but she
saw all of the prior lectures).



Two Solutions

I present:

I The solution I had in mind from the literature.

I A new solution that Rob Brady showed me.

Both begin the same way with material on 4-free sets and 4-AP
free colorings.



Recap

In the 3free slides we showed:
Thm Let V ∈ N and let A ⊆ [V ] be a 3-free set. Let c = V ln(V )

|A| .

Then there is a c-coloring of [V ] with no mono 3-APs. Hence
W (3, c) > V .

But the proof had nothing to do with 3-free sets. If A ⊆ [V ] is
ANY set then there are c shifts of A that cover [V ]. Hence we
have the following:

Thm Let V ∈ N and let A ⊆ [V ] be a 4-free set. Let c = V ln(V )
|A| .

Then there is a c-coloring of [V ] with no mono 4-APs. Hence
W (4, c) > V .
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Definitions and Thms about Γ4AP

Γ4AP(M) is the least c such that there is a c-coloring of [M] with
no mono 4-AP.

We rephrase the last theorem:

Thm If A is a 4-free set then Γ4AP(M) ≤ M ln(M)
|A| .

We are assuming there is a 4-free set of [M] of size ≤ Me−(logM)f

for some constant f .

Hence

Γ4AP(M) ≤ M ln(M)

Me−(ln(M))f
=

ln(M)

e−(ln(M))f
= (ln(M))e(ln(M))f
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Definitions of Γsq and Γlit

I A lit is 4 points in N× N× N of the form
(x , y , z),
(x + λ, y , z),
(x , y + λ, z),
(x , y , z + λ) (λ ∈ Z).

I Γsq(M) is the least c such that there is a c-coloring of
[M]× [M] with no mono square.

I Γlit(M) is the least c such that there is a c-coloring of
[M]× [M]× [M] with no mono lit.



Off By One Notation

Usually [M] = {1, . . . ,M}.

Since we will allow a forehead to have 0 · · · 0, in this talk
[M] = {0, . . . ,M}.

We will still take |[M]| = M since the +1 won’t matter with the
asymptotics.

In fact we will take |[3M]| = M even though this is FALSE since it
won’t matter for the asymptotics.

Working out the real asymptotics is so boring that I WON”T say
might be on the HW or the FINAL.
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Thm about Γsq (For Brady Approach)

Thm Γsq(M) ≤ Γ4AP(3M) ≤ (ln(3M))e(ln(3M))f

Pf
Let c = Γ4AP(3M).
Assume we have a 4-AP free coloring COL : [3M]→ [c].

COL′(x , y) = COL(x + 2y).

If
COL′(x , y) = COL′(x+λ, y) = COL′(x , y+λ) = COL′(x+λ, y+λ)
then
COL(x + 2y) = COL(x + 2y + λ) = COL(x + 2y + 2λ) =
COL(x + 2y + 3λ), a mono 4-AP: λ = 0.



Thm about Γlit (For Lit Approach)

Thm Γlit(M) ≤ Γ4AP(6M) ≤ (ln(6M))e(ln(6M))f

Pf
Let c = Γ4AP(6M).
Assume we have a 4-AP free coloring COL : [6M]→ [c].
We use this to define a lit-free coloring
COL′ : [M]× [M]× [M]→ [c]

COL′(x , y , z) = COL(x + 2y + 3z).

If
COL′(x , y , z) = COL′(x + λ, y , z) = COL′(x , y + λ, z) =
COL′(x , y , z + λ)
then
COL(x + 2y + 3z) = COL(x + 2y + 3z + λ) =
COL(x + 2y + 3z + 2λ) = COL(x + 2y + 3z + 3λ), a mono 4-AP:
λ = 0.
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Brady’s Protocol

M = 2n+1 − 1 throughout.

1. Pre-step: A, B, C, D agree on a Γsq(M)-coloring χ of
[M]× [M] that has no mono square.

2. A: b, c , d , B: a, c , d , C:a, b, d . a, b, c , d ∈ {0, 1}n binary.

3. If A sees b + c + d > M, says NO and protocol stops. B,C,D
sim.

4. A finds a′, s.t. a′ + b + c + d = M and says χ(a′ + b, b + c).

5. B finds b′ s.t. a + b′ + c + d = M and says χ(a + b′, b′ + c).

6. C finds c ′ s.t. a + b + c ′ + d = M and says χ(a + b, b + c ′).

7. D says Y if all the χ’s are χ(a + b, b + c), N otherwise

Numb bits: 3 lg(Γ(M)) + O(1). We show ≤ O(nf ).
But first we show that it works.



Brady’s Protocol

M = 2n+1 − 1 throughout.

1. Pre-step: A, B, C, D agree on a Γsq(M)-coloring χ of
[M]× [M] that has no mono square.

2. A: b, c , d , B: a, c , d , C:a, b, d . a, b, c , d ∈ {0, 1}n binary.

3. If A sees b + c + d > M, says NO and protocol stops. B,C,D
sim.

4. A finds a′, s.t. a′ + b + c + d = M and says χ(a′ + b, b + c).

5. B finds b′ s.t. a + b′ + c + d = M and says χ(a + b′, b′ + c).

6. C finds c ′ s.t. a + b + c ′ + d = M and says χ(a + b, b + c ′).

7. D says Y if all the χ’s are χ(a + b, b + c), N otherwise

Numb bits: 3 lg(Γ(M)) + O(1). We show ≤ O(nf ).

But first we show that it works.



Brady’s Protocol

M = 2n+1 − 1 throughout.

1. Pre-step: A, B, C, D agree on a Γsq(M)-coloring χ of
[M]× [M] that has no mono square.

2. A: b, c , d , B: a, c , d , C:a, b, d . a, b, c , d ∈ {0, 1}n binary.

3. If A sees b + c + d > M, says NO and protocol stops. B,C,D
sim.

4. A finds a′, s.t. a′ + b + c + d = M and says χ(a′ + b, b + c).

5. B finds b′ s.t. a + b′ + c + d = M and says χ(a + b′, b′ + c).

6. C finds c ′ s.t. a + b + c ′ + d = M and says χ(a + b, b + c ′).

7. D says Y if all the χ’s are χ(a + b, b + c), N otherwise
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Brady’s Protocol Works

Assume a + b + c + d = M − λ where ∈ Z.
By Algebra one can show
a′ = a + λ
b′ = b + λ
c ′ = c + λ
Let x = a + b and y = b + c .

(a′ + b, b + c) = (a + b + λ, b + c) = (x + λ, y).

(a + b′, b′ + c) = (a + b + λ, b + c + λ) = (x + λ, y + λ).

(a + b, b + c ′) = (a + b, b + c + λ) = (x , y + λ).

(a + b, b + c) = (a + b, b + c) = (x , y).
Note that these four form a square!

If protocol says YES then all the points of the square have the
same color, so λ = 0 and a + b + c + d = M.

If a + b + c + d = M then λ = 0 and all four points ARE the same
point so protocol says YES.
So Protocol Works!
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Brady’s Protocol’s Complexity

Brady’s protocol takes O(lg(Γsq(M)).

We know

Γsq(M) ≤ (ln(3M))e(ln(3M))f

So

lg(Γsq(M)) ≤ O(log(log(3M)) + (log(3M))f ) = O((log(3M)f )

We could plug in M = 2n+1 − 1 but using 3M = 2n is good
enough since we don’t care about order constants. We get:

O(nf ).
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Protocol in the Literature

M = 2n+1 − 1 throughout.

1. Pre-step: A, B, C, D agree on a Γ(M)-coloring χ of
[M]× [M]× [M] that has no mono lit.

2. A: b, c , d , B: a, c , d , C:a, b, d . a, b, c , d ∈ {0, 1}n binary.

3. If A sees b + c + d > M, says NO and protocol stops. B,C,D
sim.

4. A finds a′, s.t. a′ + b + c + d = M and says χ(a′, b, c).

5. B finds b′ s.t. a + b′ + c + d = M and says χ(a, b′, c).

6. C finds c ′ s.t. a + b + c ′ + d = M and says χ(a, b, c ′).

7. D says Y if all the χ’s are χ(a, b, c), N otherwise.

Numb bits: 3 lg(Γ(M)) + O(1). We show this is ≤ O(nf ).
But first we show that it works.
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Literature Protocol Works

Assume a + b + c + d = M − λ where λ ≥ 0.
By Algebra one can show
a′ = a + λ
b′ = b + λ
c ′ = c + λ

(a′, b, c) = (a + λ, b + c)

(a, b′, c) = (a, b + λ, c)

(a, b, c ′) = (a, b, c + λ).

(a, b, c) = (a, b, c).
Note that these four form a lit!

If protocol says YES then all the points of the lit have the same
color, so λ = 0 and a + b + c + d = M.

If a + b + c + d = M then λ = 0 and all four points ARE the same
point so protocol says YES.
So Protocol Works!



Literature Protocol Works

Assume a + b + c + d = M − λ where λ ≥ 0.
By Algebra one can show
a′ = a + λ
b′ = b + λ
c ′ = c + λ
(a′, b, c) = (a + λ, b + c)

(a, b′, c) = (a, b + λ, c)

(a, b, c ′) = (a, b, c + λ).

(a, b, c) = (a, b, c).
Note that these four form a lit!

If protocol says YES then all the points of the lit have the same
color, so λ = 0 and a + b + c + d = M.

If a + b + c + d = M then λ = 0 and all four points ARE the same
point so protocol says YES.
So Protocol Works!



Literature Protocol Works

Assume a + b + c + d = M − λ where λ ≥ 0.
By Algebra one can show
a′ = a + λ
b′ = b + λ
c ′ = c + λ
(a′, b, c) = (a + λ, b + c)

(a, b′, c) = (a, b + λ, c)

(a, b, c ′) = (a, b, c + λ).

(a, b, c) = (a, b, c).
Note that these four form a lit!

If protocol says YES then all the points of the lit have the same
color, so λ = 0 and a + b + c + d = M.

If a + b + c + d = M then λ = 0 and all four points ARE the same
point so protocol says YES.
So Protocol Works!



Literature Protocol Works

Assume a + b + c + d = M − λ where λ ≥ 0.
By Algebra one can show
a′ = a + λ
b′ = b + λ
c ′ = c + λ
(a′, b, c) = (a + λ, b + c)

(a, b′, c) = (a, b + λ, c)

(a, b, c ′) = (a, b, c + λ).

(a, b, c) = (a, b, c).
Note that these four form a lit!

If protocol says YES then all the points of the lit have the same
color, so λ = 0 and a + b + c + d = M.

If a + b + c + d = M then λ = 0 and all four points ARE the same
point so protocol says YES.
So Protocol Works!



Literature Protocol Works

Assume a + b + c + d = M − λ where λ ≥ 0.
By Algebra one can show
a′ = a + λ
b′ = b + λ
c ′ = c + λ
(a′, b, c) = (a + λ, b + c)

(a, b′, c) = (a, b + λ, c)

(a, b, c ′) = (a, b, c + λ).

(a, b, c) = (a, b, c).
Note that these four form a lit!

If protocol says YES then all the points of the lit have the same
color, so λ = 0 and a + b + c + d = M.

If a + b + c + d = M then λ = 0 and all four points ARE the same
point so protocol says YES.
So Protocol Works!



Literature Protocol Works

Assume a + b + c + d = M − λ where λ ≥ 0.
By Algebra one can show
a′ = a + λ
b′ = b + λ
c ′ = c + λ
(a′, b, c) = (a + λ, b + c)

(a, b′, c) = (a, b + λ, c)

(a, b, c ′) = (a, b, c + λ).

(a, b, c) = (a, b, c).
Note that these four form a lit!

If protocol says YES then all the points of the lit have the same
color, so λ = 0 and a + b + c + d = M.

If a + b + c + d = M then λ = 0 and all four points ARE the same
point so protocol says YES.
So Protocol Works!



Literature Protocol Works

Assume a + b + c + d = M − λ where λ ≥ 0.
By Algebra one can show
a′ = a + λ
b′ = b + λ
c ′ = c + λ
(a′, b, c) = (a + λ, b + c)

(a, b′, c) = (a, b + λ, c)

(a, b, c ′) = (a, b, c + λ).

(a, b, c) = (a, b, c).
Note that these four form a lit!

If protocol says YES then all the points of the lit have the same
color, so λ = 0 and a + b + c + d = M.

If a + b + c + d = M then λ = 0 and all four points ARE the same
point so protocol says YES.
So Protocol Works!



Literature’s Protocol’s Complexity

Lit protocol takes O(lg(Γlit(M)).

We know

Γlit(M) ≤ (ln(6M))e(ln(6M))f

So

lg(Γsq(M)) ≤ O(log(log(6M)) + (log(6M))f ) ≤ O((log(6M)f )

We could plug in M = 2n+1 − 1 but using 6M = 2n is good
enough since we don’t care about order constants. We get

O(nf ).
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