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Sz Thm implies VDW’s Thm

Assume, Sz true, and VDW's false. Exists k, ¢ such that

For all W there is a c-coloring COLyy of [W] with no mono k-AP.
We use these colorings to create a coloring of N.

The usual

COL(1) is the color that appears infinitely often. Kill...

COL(2) is the color that appears infinitely often. Kill. ..

We want to show that some color has positive upper density.
Colors are 1,..., k.



Sz Thm implies VDW’s Thm (cont)

(Vn) | Dy, = HCOLI=NTI | Note 6 Dy, = 1.
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Sz Thm implies VDW’s Thm (cont)

x:COL(x)=i k
(Vn) | D; , = WeCOLI=NAML | Note SO | Dy, = 1.

Hence, for all n, there exists i, D; , > %

Let i/ be the least number that appears infinitely often.
For an infinite number of n, D; , > %

Hence {x : COL(x) = i} has upper positive density.
By Sz Thm there are k-APs {x : COL(x) = i}.
a,a+d,...,a+ (k—1)d all bein {x: COL(x) = i}.

By the definition of COL there is an i (actually infinitely many)
such that COL and COL; agree on a,a+d,...,a+ (k—1)d.

Hence that COL; has a mono k-AP, which is a contradiction.
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Disjoint k-AP’s

TRUE or FALSE:
For all COL : N — [c] there exists, for all k, a mono k-AP AND
the 3-AP, the 4-AP, the 5-AP, etc are all disjoint.

TRUE: Divide N into disjoint blocks of size W(3,¢c), W(4,c¢), ....
In the W (k, c)-sized block will be a mono k-AP.
Key VDW is about coloring [W] but works just as well coloring

{ox+1,..0,x+ W(k,c) — 1}
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w-AP’s

TRUE or FALSE:
For all COL : N — [c] there exists a mono w-AP

FALSE: Here is a 2-coloring of N with no w-APs.
If 227 < x < 22*1 1 then COL(x) = R.
If 22+ < x < 222 _ 1 then COL(x) = B.

Assume, BWOC da, d: a,a+d,... all same color.
it (1) (3X)[2' < a+ Xd <2+ —1] and (2) d < 2.

Hence a + Xd and a + (X + 1)d are colored differently.
Contradiction.
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Problem 4

Assume for all V, there is a 4-free set A C [V] of size Ve~ (log V)",
A, B, C, D each have a string of length n on their foreheads The
strings are a, b, ¢, d. Give a protocol for them to used such that

» At the end they all know if a+ b+ c+d =2" — 1.

» The number if bits communicated is < n.

> Assume that your reader is a student in this class who

MISSED the lecture on multiparty Communication (but she
saw all of the prior lectures).



Two Solutions

| present:
» The solution | had in mind from the literature.
» A new solution that Rob Brady showed me.

Both begin the same way with material on 4-free sets and 4-AP
free colorings.



Recap

In the 3free slides we showed:
Thm Let V € N and let A C [V] be a 3-free set. Let ¢ = XIn(V),

|A]
Then there is a c-coloring of [V] with no mono 3-APs. Hence
W(3,c) > V.
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ANY set then there are c shifts of A that cover [V]. Hence we

have the following:



Recap

In the 3free slides we showed:
Thm Let V € N and let A C [V] be a 3-free set. Let c = VI‘Z\('V)

Then there is a c-coloring of [V] with no mono 3-APs. Hence
W(3,c) > V.

But the proof had nothing to do with 3-free sets. If AC [V] is
ANY set then there are c shifts of A that cover [V]. Hence we
have the following:

Thm Let V € N and let A C [V] be a 4-free set. Let ¢ = VI‘Z\('V)

Then there is a c-coloring of [V] with no mono 4-APs. Hence
W(4,c) > V.
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Definitions and Thms about I';4p

F4ap(M) is the least ¢ such that there is a c-coloring of [M] with
no mono 4-AP.

We rephrase the last theorem:

Thm If Ais a 4-free set then [4ap(M) < MIQ‘(‘M).

We are assuming there is a 4-free set of [M] of size < Me—(le M)’

for some constant f.

Hence

I\/Iln(l\/l) - In(M) - (In(M))f
Fanp(M) < e=tni)y = g=tnginyy — (N(M))e




Definitions of I's; and I'j;

> Alit is 4 points in N x N x N of the form
(x,y,2),

(x+Ay,2),

(x,y + A, 2),
(x,y,z+ X)) (A€ Z).

» [4(M) is the least ¢ such that there is a c-coloring of
[M] x [M] with no mono square.

» [i:(M) is the least ¢ such that there is a c-coloring of
[M] x [M] x [M] with no mono lit.



Off By One Notation

Usually [M] ={1,..., M}.
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Off By One Notation

Usually [M] = {1,..., M}.

Since we will allow a forehead to have 0---0, in this talk

[M] ={0,...,M}.

We will still take [[M]| = M since the +1 won't matter with the
asymptotics.

In fact we will take [[3M]| = M even though this is FALSE since it
won't matter for the asymptotics.

Working out the real asymptotics is so boring that | WON"T say
might be on the HW or the FINAL.



Thm about I'y; (For Brady Approach)

Thm Teg(M) < Taap(3M) < (In(3M))e("GM)’

Pf

Let c = F4Ap(3M)_

Assume we have a 4-AP free coloring COL: [3M] — [c].

COL'(x,y) = COL(x + 2y).
If
COL'(x,y) = COL'(x+ A, y) = COL'(x,y+A) = COL'(x+ X, y+ )
then
COL(x +2y) = COL(x +2y + A\) = COL(x 4 2y +2)) =
COL(x + 2y 4+ 3)\), a mono 4-AP: A = 0.



Thm about I'j;; (For Lit Approach)

Thm [jie(M) < T4ap(6M) < (In(6M))e(n(EM)’

Pf

Let c = r4Ap(6M).

Assume we have a 4-AP free coloring COL: [6M] — [c].
We use this to define a lit-free coloring

COL": [M] x [M] x [M] = [c]

COL'(x,y,z) = COL(x + 2y + 3z).

If

COL'(x,y,z) = COL'(x+ A\, y,z) = COL'(x,y + A\, z) =
COL'(x,y,z+ )

then

COL(x 4+ 2y +3z) = COL(x+2y +3z+ \) =

COL(X +2y +3z+2X) = COL(x + 2y + 3z + 3X), a mono 4-AP:
A=
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Brady’s Protocol

M = 2"+1 _ 1 throughout.

1.

w N

N o o s

Pre-step: A, B, C, D agree on a Isg(M)-coloring x of
[M] x [M] that has no mono square.

. A:b,c,d, B:a,c,d, Ca,b,d. a,b,c,d € {0,1}" binary.

If A sees b+ c+ d > M, says NO and protocol stops. B,C,D
sim.

A finds &, s.t. @ + b+ c+d =M and says x(a’ + b, b+ ¢).
B finds b’ s.t. a+ b +c+d =M and says x(a+ b, b + ¢).
Cfinds ¢’ st. a+ b+ ¢’ +d= M and says x(a+ b, b+ ¢').
D says Y if all the x's are x(a+ b, b+ c), N otherwise
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Brady’s Protocol

M = 2"+1 _ 1 throughout.

1.

w N

o o &

7.

Pre-step: A, B, C, D agree on a Isg(M)-coloring x of
[M] x [M] that has no mono square.

. A:b,c,d, B:a,c,d, Ca,b,d. a,b,c,d € {0,1}" binary.

If A sees b+ c+ d > M, says NO and protocol stops. B,C,D
sim.

A finds &, s.t. @ + b+ c+d =M and says x(a’ + b, b+ ¢).
B finds b’ s.t. a+ b +c+d =M and says x(a+ b, b + ¢).
Cfinds ¢’ st. a+ b+ ¢’ +d= M and says x(a+ b, b+ ¢').
D says Y if all the x's are x(a+ b, b+ c), N otherwise

Numb bits: 31g(F(M)) + O(1). We show < O(nf).
But first we show that it works.
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Assume a+ b+ c+d =M — X where € Z.
By Algebra one can show

a=a+ A
b =b+ )\
d=c+A

Let x=a+bandy=b+c.
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Brady’s Protocol Works

Assume a+ b+ c+d =M — X where € Z.
By Algebra one can show

a=a+ A
b =b+ X
d=c+A

Let x=a+bandy=>b+c.
(@+bb+c)=(a+b+XN\b+c)=(x+Ay).
(a+b,b+c)=(a+b+ANb+c+A)=(x+Ay+N).
(a+bb+c)=(a+bb+c+)=(x,y+N).
(a+b,b+c)=(a+b,b+c)=(x,y).

Note that these four form a square!

If protocol says YES then all the points of the square have the
same color,so A=0and a+ b+c+d =M.

Ifa+b+c+d= M then A =0 and all four points ARE the same
point so protocol says YES.

So Protocol Works!
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Brady’s Protocol’s Complexity

Brady's protocol takes O(lg(lsq(M)).
We know

Msq(M) < (In(3/\/]))e(ln(3/\//))f
So

lg(Fsq(M)) < O(log(log(3M)) + (log(3M))") = O((log(3M)")

We could plug in M = 2"t1 — 1 but using 3M = 2" is good
enough since we don't care about order constants. We get:

o(n").



Protocol in the Literature

Exposition by William Gasarch

May 12, 2020



Protocol in the Literature

M = 2"+1 _ 1 throughout.

1.

w N

N o o s

Pre-step: A, B, C, D agree on a I'(M)-coloring x of
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Assumea+b+c+d =M — X where A > 0.
By Algebra one can show

ad=a+\
b =b+ )\
c=c+ A

(a',b,c)=(a+ N\, b+c)
(a,b',c)=(a,b+ \ )
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So
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We could plug in M = 2"t1 — 1 but using 6M = 2" is good
enough since we don't care about order constants. We get
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