HW 10 Review

Exposition by William Gasarch

May 12, 2020

Sz Thm implies VDW's Thm

Assume, Sz true, and VDW's false. Exists k, c such that For all W there is a c-coloring $C O L_{W}$ of [W] with no mono k-AP. We use these colorings to create a coloring of \mathbb{N}.

Sz Thm implies VDW's Thm

Assume, Sz true, and VDW's false. Exists k, c such that For all W there is a c-coloring $C O L_{W}$ of [W] with no mono k-AP.
We use these colorings to create a coloring of \mathbb{N}.
The usual
$\operatorname{COL}(1)$ is the color that appears infinitely often. Kill. . . $\operatorname{COL}(2)$ is the color that appears infinitely often. Kill. . .

Sz Thm implies VDW's Thm

Assume, Sz true, and VDW's false. Exists k, c such that For all W there is a c-coloring $C O L_{W}$ of [W] with no mono k-AP.
We use these colorings to create a coloring of \mathbb{N}.
The usual
$\operatorname{COL}(1)$ is the color that appears infinitely often. Kill. . . $\operatorname{COL}(2)$ is the color that appears infinitely often. Kill. . . :

We want to show that some color has positive upper density.

Sz Thm implies VDW's Thm

Assume, Sz true, and VDW's false. Exists k, c such that For all W there is a c-coloring $C O L_{W}$ of [W] with no mono k-AP.
We use these colorings to create a coloring of \mathbb{N}.
The usual
$\operatorname{COL}(1)$ is the color that appears infinitely often. Kill. . . $\operatorname{COL}(2)$ is the color that appears infinitely often. Kill. . . \therefore

We want to show that some color has positive upper density.
Colors are $1, \ldots, k$.

Sz Thm implies VDW's Thm (cont)

$$
(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right] . \text { Note } \sum_{i=1}^{k} D_{i, n}=1 \text {. }
$$

Sz Thm implies VDW's Thm (cont)

$(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right]$. Note $\sum_{i=1}^{k} D_{i, n}=1$.
Hence, for all n, there exists $i, D_{i, n} \geq \frac{1}{k}$.

Sz Thm implies VDW's Thm (cont)

$(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right]$. Note $\sum_{i=1}^{k} D_{i, n}=1$.
Hence, for all n, there exists $i, D_{i, n} \geq \frac{1}{k}$.
Let i be the least number that appears infinitely often.

Sz Thm implies VDW's Thm (cont)

$(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right]$. Note $\sum_{i=1}^{k} D_{i, n}=1$.
Hence, for all n, there exists $i, D_{i, n} \geq \frac{1}{k}$.
Let i be the least number that appears infinitely often.
For an infinite number of $n, D_{i, n} \geq \frac{1}{k}$.

Sz Thm implies VDW's Thm (cont)

$(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right]$. Note $\sum_{i=1}^{k} D_{i, n}=1$.
Hence, for all n, there exists $i, D_{i, n} \geq \frac{1}{k}$.
Let i be the least number that appears infinitely often.
For an infinite number of $n, D_{i, n} \geq \frac{1}{k}$.
Hence $\{x: \operatorname{COL}(x)=i\}$ has upper positive density.

Sz Thm implies VDW's Thm (cont)

$(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right]$. Note $\sum_{i=1}^{k} D_{i, n}=1$.
Hence, for all n, there exists $i, D_{i, n} \geq \frac{1}{k}$.
Let i be the least number that appears infinitely often.
For an infinite number of $n, D_{i, n} \geq \frac{1}{k}$.
Hence $\{x: \operatorname{COL}(x)=i\}$ has upper positive density.
By Sz Thm there are k-APs $\{x: \operatorname{COL}(x)=i\}$.

Sz Thm implies VDW's Thm (cont)

$(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right]$. Note $\sum_{i=1}^{k} D_{i, n}=1$.
Hence, for all n, there exists $i, D_{i, n} \geq \frac{1}{k}$.
Let i be the least number that appears infinitely often.
For an infinite number of $n, D_{i, n} \geq \frac{1}{k}$.
Hence $\{x: \operatorname{COL}(x)=i\}$ has upper positive density.
By Sz Thm there are k-APs $\{x: \operatorname{COL}(x)=i\}$.
$a, a+d, \ldots, a+(k-1) d$ all be in $\{x: \operatorname{COL}(x)=i\}$.

Sz Thm implies VDW's Thm (cont)

$(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right]$. Note $\sum_{i=1}^{k} D_{i, n}=1$.
Hence, for all n, there exists $i, D_{i, n} \geq \frac{1}{k}$.
Let i be the least number that appears infinitely often.
For an infinite number of $n, D_{i, n} \geq \frac{1}{k}$.
Hence $\{x: \operatorname{COL}(x)=i\}$ has upper positive density.
By Sz Thm there are k-APs $\{x: \operatorname{COL}(x)=i\}$.
$a, a+d, \ldots, a+(k-1) d$ all be in $\{x: \operatorname{COL}(x)=i\}$.
By the definition of COL there is an i (actually infinitely many) such that $C O L$ and $C O L_{i}$ agree on $a, a+d, \ldots, a+(k-1) d$.

Sz Thm implies VDW's Thm (cont)

$$
(\forall n)\left[D_{i, n}=\frac{\mid\{x: \operatorname{COL}(x)=i\} \cap[n]}{n}\right] . \text { Note } \sum_{i=1}^{k} D_{i, n}=1 \text {. }
$$

Hence, for all n, there exists $i, D_{i, n} \geq \frac{1}{k}$.
Let i be the least number that appears infinitely often.
For an infinite number of $n, D_{i, n} \geq \frac{1}{k}$.
Hence $\{x: \operatorname{COL}(x)=i\}$ has upper positive density.
By Sz Thm there are k-APs $\{x: \operatorname{COL}(x)=i\}$.
$a, a+d, \ldots, a+(k-1) d$ all be in $\{x: \operatorname{COL}(x)=i\}$.
By the definition of COL there is an i (actually infinitely many) such that $C O L$ and $C O L_{i}$ agree on $a, a+d, \ldots, a+(k-1) d$. Hence that $C O L_{i}$ has a mono $k-A P$, which is a contradiction.

HW10, Problem 3

Exposition by William Gasarch

May 12, 2020

Disjoint k-AP's

TRUE or FALSE:
For all $C O L: \mathbb{N} \rightarrow[c]$ there exists, for all k, a mono k-AP AND the $3-A P$, the $4-A P$, the $5-A P$, etc are all disjoint.

Disjoint k-AP's

TRUE or FALSE:
For all $C O L: \mathbb{N} \rightarrow[c]$ there exists, for all k, a mono k-AP AND the $3-A P$, the $4-A P$, the $5-A P$, etc are all disjoint.
TRUE: Divide \mathbb{N} into disjoint blocks of size $W(3, c), W(4, c), \ldots$. In the $W(k, c)$-sized block will be a mono k-AP.
Key VDW is about coloring [W] but works just as well coloring

$$
\{x, x+1, \ldots, x+W(k, c)-1\}
$$

ω-AP's

TRUE or FALSE:
For all $C O L: \mathbb{N} \rightarrow[c]$ there exists a mono ω-AP

ω-AP's

TRUE or FALSE:
For all $C O L: \mathbb{N} \rightarrow[c]$ there exists a mono ω-AP
FALSE: Here is a 2 -coloring of \mathbb{N} with no ω-APs.
If $2^{2 i} \leq x \leq 2^{2 i+1}-1$ then $\operatorname{COL}(x)=R$.
If $2^{2 i+1} \leq x \leq 2^{2 i+2}-1$ then $\operatorname{COL}(x)=B$.

ω-AP's

TRUE or FALSE:
For all $C O L: \mathbb{N} \rightarrow[c]$ there exists a mono ω-AP
FALSE: Here is a 2 -coloring of \mathbb{N} with no ω-APs.
If $2^{2 i} \leq x \leq 2^{2 i+1}-1$ then $\operatorname{COL}(x)=R$.
If $2^{2 i+1} \leq x \leq 2^{2 i+2}-1$ then $\operatorname{COL}(x)=B$.
Assume, BWOC $\exists a, d: a, a+d, \ldots$ all same color.
$i:(1)(\exists X)\left[2^{i} \leq a+X d \leq 2^{i+1}-1\right]$ and (2) $d<2^{i}$.

ω-AP's

TRUE or FALSE:
For all $C O L: \mathbb{N} \rightarrow[c]$ there exists a mono ω-AP
FALSE: Here is a 2 -coloring of \mathbb{N} with no ω-APs.
If $2^{2 i} \leq x \leq 2^{2 i+1}-1$ then $\operatorname{COL}(x)=R$.
If $2^{2 i+1} \leq x \leq 2^{2 i+2}-1$ then $\operatorname{COL}(x)=B$.
Assume, BWOC $\exists a, d: a, a+d, \ldots$ all same color.
$i:(1)(\exists X)\left[2^{i} \leq a+X d \leq 2^{i+1}-1\right]$ and (2) $d<2^{i}$.
Hence $a+X d$ and $a+(X+1) d$ are colored differently. Contradiction.

HW10, Problem 4

Exposition by William Gasarch

May 12, 2020

Problem 4

Assume for all V, there is a 4-free set $A \subseteq[V]$ of size $V e^{-(\log V)^{f}}$. A, B, C, D each have a string of length n on their foreheads The strings are a, b, c, d. Give a protocol for them to used such that

- At the end they all know if $a+b+c+d=2^{n+1}-1$.
- The number if bits communicated is $\ll n$.
- Assume that your reader is a student in this class who MISSED the lecture on multiparty Communication (but she saw all of the prior lectures).

Two Solutions

I present:

- The solution I had in mind from the literature.
- A new solution that Rob Brady showed me.

Both begin the same way with material on 4-free sets and 4-AP free colorings.

Recap

In the 3free slides we showed:
Thm Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3 -free set. Let $c=\frac{V \ln (V)}{|A|}$.
Then there is a c-coloring of $[V]$ with no mono 3-APs. Hence $W(3, c)>V$.

Recap

In the 3free slides we showed:
Thm Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3 -free set. Let $c=\frac{V \ln (V)}{|A|}$.
Then there is a c-coloring of $[V]$ with no mono 3 -APs. Hence $W(3, c)>V$.
But the proof had nothing to do with 3-free sets. If $A \subseteq[V]$ is ANY set then there are c shifts of A that cover [V]. Hence we have the following:

Recap

In the 3free slides we showed:
Thm Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 3 -free set. Let $c=\frac{V \ln (V)}{|A|}$.
Then there is a c-coloring of $[V]$ with no mono 3-APs. Hence $W(3, c)>V$.
But the proof had nothing to do with 3-free sets. If $A \subseteq[V]$ is ANY set then there are c shifts of A that cover [V]. Hence we have the following:
Thm Let $V \in \mathbb{N}$ and let $A \subseteq[V]$ be a 4 -free set. Let $c=\frac{V \ln (V)}{|A|}$.
Then there is a c-coloring of $[V]$ with no mono 4-APs. Hence $W(4, c)>V$.

Definitions and Thms about $\Gamma_{4 A P}$

$\Gamma_{4 A P}(M)$ is the least c such that there is a c-coloring of $[M]$ with no mono 4-AP.

Definitions and Thms about $\Gamma_{4 A P}$

$\Gamma_{4 A P}(M)$ is the least c such that there is a c-coloring of [M] with no mono 4-AP.
We rephrase the last theorem:

Definitions and Thms about $\Gamma_{4 A P}$

$\Gamma_{4 A P}(M)$ is the least c such that there is a c-coloring of [M] with no mono 4-AP.
We rephrase the last theorem:
Thm If A is a 4 -free set then $\Gamma_{4 A P}(M) \leq \frac{M \ln (M)}{|A|}$.

Definitions and Thms about $\Gamma_{4 A P}$

$\Gamma_{4 A P}(M)$ is the least c such that there is a c-coloring of [M] with no mono 4-AP.
We rephrase the last theorem:
Thm If A is a 4 -free set then $\Gamma_{4 A P}(M) \leq \frac{M \ln (M)}{|A|}$.
We are assuming there is a 4-free set of $[M]$ of size $\leq M e^{-(\log M)^{f}}$ for some constant f.

Definitions and Thms about $\Gamma_{4 A P}$

$\Gamma_{4 A P}(M)$ is the least c such that there is a c-coloring of [M] with no mono 4-AP.
We rephrase the last theorem:
Thm If A is a 4-free set then $\Gamma_{4 A P}(M) \leq \frac{M \ln (M)}{|A|}$.
We are assuming there is a 4-free set of $[M]$ of size $\leq M e^{-(\log M)^{f}}$ for some constant f.
Hence

$$
\Gamma_{4 A P}(M) \leq \frac{M \ln (M)}{M e^{-(\ln (M))^{f}}}=\frac{\ln (M)}{e^{-(\ln (M))^{f}}}=(\ln (M)) e^{(\ln (M))^{f}}
$$

Definitions of $\Gamma_{s q}$ and $\Gamma_{\text {lit }}$

- A lit is 4 points in $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ of the form
(x, y, z),
$(x+\lambda, y, z)$,
$(x, y+\lambda, z)$,
$(x, y, z+\lambda)(\lambda \in \mathbb{Z})$.
- $\Gamma_{s q}(M)$ is the least c such that there is a c-coloring of $[M] \times[M]$ with no mono square.
- $\Gamma_{l i t}(M)$ is the least c such that there is a c-coloring of $[M] \times[M] \times[M]$ with no mono lit.

Off By One Notation

Usually $[M]=\{1, \ldots, M\}$.

Off By One Notation

Usually $[M]=\{1, \ldots, M\}$.
Since we will allow a forehead to have $0 \cdots 0$, in this talk $[M]=\{0, \ldots, M\}$.

Off By One Notation

Usually $[M]=\{1, \ldots, M\}$.
Since we will allow a forehead to have $0 \cdots 0$, in this talk $[M]=\{0, \ldots, M\}$.

We will still take $|[M]|=M$ since the +1 won't matter with the asymptotics.

Off By One Notation

Usually $[M]=\{1, \ldots, M\}$.
Since we will allow a forehead to have $0 \cdots 0$, in this talk $[M]=\{0, \ldots, M\}$.
We will still take $|[M]|=M$ since the +1 won't matter with the asymptotics.
In fact we will take $|[3 M]|=M$ even though this is FALSE since it won't matter for the asymptotics.

Off By One Notation

Usually $[M]=\{1, \ldots, M\}$.
Since we will allow a forehead to have $0 \cdots 0$, in this talk $[M]=\{0, \ldots, M\}$.
We will still take $|[M]|=M$ since the +1 won't matter with the asymptotics.
In fact we will take $|[3 M]|=M$ even though this is FALSE since it won't matter for the asymptotics.

Working out the real asymptotics is so boring that I WON" T say might be on the HW or the FINAL.

Thm about $\Gamma_{s q}$ (For Brady Approach)

$\operatorname{Thm} \Gamma_{s q}(M) \leq \Gamma_{4 A P}(3 M) \leq(\ln (3 M)) e^{(\ln (3 M))^{f}}$ Pf
Let $c=\Gamma_{4 A P}(3 M)$.
Assume we have a 4-AP free coloring COL: $[3 M] \rightarrow[c]$.

$$
\operatorname{COL}^{\prime}(x, y)=\operatorname{COL}(x+2 y) .
$$

If
$\operatorname{COL}^{\prime}(x, y)=\operatorname{COL}^{\prime}(x+\lambda, y)=\operatorname{COL}^{\prime}(x, y+\lambda)=\operatorname{COL}^{\prime}(x+\lambda, y+\lambda)$ then
$\operatorname{COL}(x+2 y)=\operatorname{COL}(x+2 y+\lambda)=\operatorname{COL}(x+2 y+2 \lambda)=$ $\operatorname{COL}(x+2 y+3 \lambda)$, a mono 4-AP: $\lambda=0$.

Thm about $\Gamma_{\text {lit }}$ (For Lit Approach)

Thm $\Gamma_{\text {lit }}(M) \leq \Gamma_{4 A P}(6 M) \leq(\ln (6 M)) e^{(\ln (6 M))^{f}}$
Pf
Let $c=\Gamma_{4 A P}(6 M)$.
Assume we have a 4-AP free coloring COL: $[6 M] \rightarrow[c]$.
We use this to define a lit-free coloring
$C O L^{\prime}:[M] \times[M] \times[M] \rightarrow[c]$

$$
\operatorname{COL}^{\prime}(x, y, z)=\operatorname{COL}(x+2 y+3 z)
$$

If
$\operatorname{COL}^{\prime}(x, y, z)=\operatorname{COL}^{\prime}(x+\lambda, y, z)=\operatorname{COL}^{\prime}(x, y+\lambda, z)=$ $\operatorname{COL}^{\prime}(x, y, z+\lambda)$
then
$\operatorname{COL}(x+2 y+3 z)=\operatorname{COL}(x+2 y+3 z+\lambda)=$
$\operatorname{COL}(x+2 y+3 z+2 \lambda)=\operatorname{COL}(x+2 y+3 z+3 \lambda)$, a mono 4-AP:
$\lambda=0$.

Brady’s Protocol

Exposition by William Gasarch

May 12, 2020

Brady's Protocol

$M=2^{n+1}-1$ throughout.

1. Pre-step: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ agree on a $\Gamma_{s q}(M)$-coloring χ of $[M] \times[M]$ that has no mono square.
2. A: $b, c, d, \mathrm{~B}: a, c, d, \mathrm{C}: a, b, d . a, b, c, d \in\{0,1\}^{n}$ binary.
3. If A sees $b+c+d>M$, says $N O$ and protocol stops. B,C,D sim.
4. A finds a^{\prime}, s.t. $a^{\prime}+b+c+d=M$ and says $\chi\left(a^{\prime}+b, b+c\right)$.
5. B finds b^{\prime} s.t. $a+b^{\prime}+c+d=M$ and says $\chi\left(a+b^{\prime}, b^{\prime}+c\right)$.
6. C finds c^{\prime} s.t. $a+b+c^{\prime}+d=M$ and says $\chi\left(a+b, b+c^{\prime}\right)$.
7. D says Y if all the χ 's are $\chi(a+b, b+c)$, N otherwise

Brady's Protocol

$M=2^{n+1}-1$ throughout.

1. Pre-step: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ agree on a $\Gamma_{\text {sq }}(M)$-coloring χ of $[M] \times[M]$ that has no mono square.
2. A: $b, c, d, \mathrm{~B}: a, c, d, \mathrm{C}: a, b, d . a, b, c, d \in\{0,1\}^{n}$ binary.
3. If A sees $b+c+d>M$, says $N O$ and protocol stops. B,C,D sim.
4. A finds a^{\prime}, s.t. $a^{\prime}+b+c+d=M$ and says $\chi\left(a^{\prime}+b, b+c\right)$.
5. B finds b^{\prime} s.t. $a+b^{\prime}+c+d=M$ and says $\chi\left(a+b^{\prime}, b^{\prime}+c\right)$.
6. C finds c^{\prime} s.t. $a+b+c^{\prime}+d=M$ and says $\chi\left(a+b, b+c^{\prime}\right)$.
7. D says Y if all the χ 's are $\chi(a+b, b+c)$, N otherwise

Numb bits: $3 \lg (\Gamma(M))+O(1)$. We show $\leq O\left(n^{f}\right)$.

Brady's Protocol

$M=2^{n+1}-1$ throughout.

1. Pre-step: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ agree on a $\Gamma_{\text {sq }}(M)$-coloring χ of $[M] \times[M]$ that has no mono square.
2. A: $b, c, d, \mathrm{~B}: a, c, d, \mathrm{C}: a, b, d . a, b, c, d \in\{0,1\}^{n}$ binary.
3. If A sees $b+c+d>M$, says $N O$ and protocol stops. B,C,D sim.
4. A finds a^{\prime}, s.t. $a^{\prime}+b+c+d=M$ and says $\chi\left(a^{\prime}+b, b+c\right)$.
5. B finds b^{\prime} s.t. $a+b^{\prime}+c+d=M$ and says $\chi\left(a+b^{\prime}, b^{\prime}+c\right)$.
6. C finds c^{\prime} s.t. $a+b+c^{\prime}+d=M$ and says $\chi\left(a+b, b+c^{\prime}\right)$.
7. D says Y if all the χ 's are $\chi(a+b, b+c)$, N otherwise

Numb bits: $3 \lg (\Gamma(M))+O(1)$. We show $\leq O\left(n^{f}\right)$.
But first we show that it works.

Brady’s Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\in \mathbb{Z}$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
Let $x=a+b$ and $y=b+c$.

Brady’s Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\in \mathbb{Z}$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
Let $x=a+b$ and $y=b+c$.
$\left(a^{\prime}+b, b+c\right)=(a+b+\lambda, b+c)=(x+\lambda, y)$.

Brady’s Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\in \mathbb{Z}$.
By Algebra one can show

$$
a^{\prime}=a+\lambda
$$

$$
b^{\prime}=b+\lambda
$$

$$
c^{\prime}=c+\lambda
$$

Let $x=a+b$ and $y=b+c$.
$\left(a^{\prime}+b, b+c\right)=(a+b+\lambda, b+c)=(x+\lambda, y)$.
$\left(a+b^{\prime}, b^{\prime}+c\right)=(a+b+\lambda, b+c+\lambda)=(x+\lambda, y+\lambda)$.

Brady’s Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\in \mathbb{Z}$.
By Algebra one can show

$$
\begin{aligned}
& a^{\prime}=a+\lambda \\
& b^{\prime}=b+\lambda \\
& c^{\prime}=c+\lambda
\end{aligned}
$$

$$
\text { Let } x=a+b \text { and } y=b+c
$$

$$
\left(a^{\prime}+b, b+c\right)=(a+b+\lambda, b+c)=(x+\lambda, y)
$$

$$
\left(a+b^{\prime}, b^{\prime}+c\right)=(a+b+\lambda, b+c+\lambda)=(x+\lambda, y+\lambda)
$$

$$
\left(a+b, b+c^{\prime}\right)=(a+b, b+c+\lambda)=(x, y+\lambda)
$$

Brady’s Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\in \mathbb{Z}$.
By Algebra one can show

$$
\begin{aligned}
& a^{\prime}=a+\lambda \\
& b^{\prime}=b+\lambda \\
& c^{\prime}=c+\lambda
\end{aligned}
$$

$$
\text { Let } x=a+b \text { and } y=b+c
$$

$$
\left(a^{\prime}+b, b+c\right)=(a+b+\lambda, b+c)=(x+\lambda, y)
$$

$$
\left(a+b^{\prime}, b^{\prime}+c\right)=(a+b+\lambda, b+c+\lambda)=(x+\lambda, y+\lambda)
$$

$$
\left(a+b, b+c^{\prime}\right)=(a+b, b+c+\lambda)=(x, y+\lambda)
$$

$$
(a+b, b+c)=(a+b, b+c)=(x, y)
$$

Note that these four form a square!

Brady's Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\in \mathbb{Z}$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
Let $x=a+b$ and $y=b+c$.
$\left(a^{\prime}+b, b+c\right)=(a+b+\lambda, b+c)=(x+\lambda, y)$.
$\left(a+b^{\prime}, b^{\prime}+c\right)=(a+b+\lambda, b+c+\lambda)=(x+\lambda, y+\lambda)$.
$\left(a+b, b+c^{\prime}\right)=(a+b, b+c+\lambda)=(x, y+\lambda)$.
$(a+b, b+c)=(a+b, b+c)=(x, y)$.
Note that these four form a square!
If protocol says YES then all the points of the square have the same color, so $\lambda=0$ and $a+b+c+d=M$.

Brady’s Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\in \mathbb{Z}$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
Let $x=a+b$ and $y=b+c$.
$\left(a^{\prime}+b, b+c\right)=(a+b+\lambda, b+c)=(x+\lambda, y)$.
$\left(a+b^{\prime}, b^{\prime}+c\right)=(a+b+\lambda, b+c+\lambda)=(x+\lambda, y+\lambda)$.
$\left(a+b, b+c^{\prime}\right)=(a+b, b+c+\lambda)=(x, y+\lambda)$.
$(a+b, b+c)=(a+b, b+c)=(x, y)$.
Note that these four form a square!
If protocol says YES then all the points of the square have the same color, so $\lambda=0$ and $a+b+c+d=M$.
If $a+b+c+d=M$ then $\lambda=0$ and all four points ARE the same point so protocol says YES.
So Protocol Works!

Brady's Protocol's Complexity

Brady's protocol takes $O\left(\lg \left(\Gamma_{s q}(M)\right)\right.$.

Brady's Protocol's Complexity

Brady's protocol takes $O\left(\lg \left(\Gamma_{s q}(M)\right)\right.$.
We know

$$
\Gamma_{s q}(M) \leq(\ln (3 M)) e^{(\ln (3 M))^{f}}
$$

So

Brady's Protocol's Complexity

Brady's protocol takes $O\left(\lg \left(\Gamma_{s q}(M)\right)\right.$.
We know

$$
\Gamma_{s q}(M) \leq(\ln (3 M)) e^{(\ln (3 M))^{f}}
$$

So

$$
\lg \left(\Gamma_{s q}(M)\right) \leq O\left(\log (\log (3 M))+(\log (3 M))^{f}\right)=O\left(\left(\log (3 M)^{f}\right)\right.
$$

We could plug in $M=2^{n+1}-1$ but using $3 M=2^{n}$ is good enough since we don't care about order constants. We get:

$$
O\left(n^{f}\right)
$$

Protocol in the Literature

Exposition by William Gasarch

May 12, 2020

Protocol in the Literature

$M=2^{n+1}-1$ throughout.

1. Pre-step: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ agree on a $\Gamma(M)$-coloring χ of $[M] \times[M] \times[M]$ that has no mono lit.
2. A: $b, c, d, \mathrm{~B}: a, c, d, \mathrm{C}: a, b, d . a, b, c, d \in\{0,1\}^{n}$ binary.
3. If A sees $b+c+d>M$, says $N O$ and protocol stops. B,C,D sim.
4. A finds a^{\prime}, s.t. $a^{\prime}+b+c+d=M$ and says $\chi\left(a^{\prime}, b, c\right)$.
5. B finds b^{\prime} s.t. $a+b^{\prime}+c+d=M$ and says $\chi\left(a, b^{\prime}, c\right)$.
6. C finds c^{\prime} s.t. $a+b+c^{\prime}+d=M$ and says $\chi\left(a, b, c^{\prime}\right)$.
7. D says Y if all the χ 's are $\chi(a, b, c), \mathrm{N}$ otherwise.

Protocol in the Literature

$M=2^{n+1}-1$ throughout.

1. Pre-step: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ agree on a $\Gamma(M)$-coloring χ of $[M] \times[M] \times[M]$ that has no mono lit.
2. A: $b, c, d, \mathrm{~B}: a, c, d, \mathrm{C}: a, b, d . a, b, c, d \in\{0,1\}^{n}$ binary.
3. If A sees $b+c+d>M$, says $N O$ and protocol stops. B,C,D sim.
4. A finds a^{\prime}, s.t. $a^{\prime}+b+c+d=M$ and says $\chi\left(a^{\prime}, b, c\right)$.
5. B finds b^{\prime} s.t. $a+b^{\prime}+c+d=M$ and says $\chi\left(a, b^{\prime}, c\right)$.
6. C finds c^{\prime} s.t. $a+b+c^{\prime}+d=M$ and says $\chi\left(a, b, c^{\prime}\right)$.
7. D says Y if all the χ 's are $\chi(a, b, c), \mathrm{N}$ otherwise.

Numb bits: $3 \lg (\Gamma(M))+O(1)$. We show this is $\leq O\left(n^{f}\right)$.

Protocol in the Literature

$M=2^{n+1}-1$ throughout.

1. Pre-step: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ agree on a $\Gamma(M)$-coloring χ of $[M] \times[M] \times[M]$ that has no mono lit.
2. A: $b, c, d, \mathrm{~B}: a, c, d, \mathrm{C}: a, b, d . a, b, c, d \in\{0,1\}^{n}$ binary.
3. If A sees $b+c+d>M$, says $N O$ and protocol stops. B,C,D sim.
4. A finds a^{\prime}, s.t. $a^{\prime}+b+c+d=M$ and says $\chi\left(a^{\prime}, b, c\right)$.
5. B finds b^{\prime} s.t. $a+b^{\prime}+c+d=M$ and says $\chi\left(a, b^{\prime}, c\right)$.
6. C finds c^{\prime} s.t. $a+b+c^{\prime}+d=M$ and says $\chi\left(a, b, c^{\prime}\right)$.
7. D says Y if all the χ 's are $\chi(a, b, c), \mathrm{N}$ otherwise.

Numb bits: $3 \lg (\Gamma(M))+O(1)$. We show this is $\leq O\left(n^{f}\right)$.
But first we show that it works.

Literature Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\lambda \geq 0$. By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$

Literature Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\lambda \geq 0$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
$\left(a^{\prime}, b, c\right)=(a+\lambda, b+c)$

Literature Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\lambda \geq 0$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
$\left(a^{\prime}, b, c\right)=(a+\lambda, b+c)$
$\left(a, b^{\prime}, c\right)=(a, b+\lambda, c)$

Literature Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\lambda \geq 0$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
$\left(a^{\prime}, b, c\right)=(a+\lambda, b+c)$
$\left(a, b^{\prime}, c\right)=(a, b+\lambda, c)$
$\left(a, b, c^{\prime}\right)=(a, b, c+\lambda)$.

Literature Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\lambda \geq 0$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
$\left(a^{\prime}, b, c\right)=(a+\lambda, b+c)$
$\left(a, b^{\prime}, c\right)=(a, b+\lambda, c)$
$\left(a, b, c^{\prime}\right)=(a, b, c+\lambda)$.
$(a, b, c)=(a, b, c)$.
Note that these four form a lit!

Literature Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\lambda \geq 0$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
$\left(a^{\prime}, b, c\right)=(a+\lambda, b+c)$
$\left(a, b^{\prime}, c\right)=(a, b+\lambda, c)$
$\left(a, b, c^{\prime}\right)=(a, b, c+\lambda)$.
$(a, b, c)=(a, b, c)$.
Note that these four form a lit!
If protocol says YES then all the points of the lit have the same color, so $\lambda=0$ and $a+b+c+d=M$.

Literature Protocol Works

Assume $a+b+c+d=M-\lambda$ where $\lambda \geq 0$.
By Algebra one can show
$a^{\prime}=a+\lambda$
$b^{\prime}=b+\lambda$
$c^{\prime}=c+\lambda$
$\left(a^{\prime}, b, c\right)=(a+\lambda, b+c)$
$\left(a, b^{\prime}, c\right)=(a, b+\lambda, c)$
$\left(a, b, c^{\prime}\right)=(a, b, c+\lambda)$.
$(a, b, c)=(a, b, c)$.
Note that these four form a lit!
If protocol says YES then all the points of the lit have the same color, so $\lambda=0$ and $a+b+c+d=M$.
If $a+b+c+d=M$ then $\lambda=0$ and all four points ARE the same point so protocol says YES.
So Protocol Works!

Literature's Protocol's Complexity

Lit protocol takes $O\left(\lg \left(\Gamma_{l i t}(M)\right)\right.$.

Literature's Protocol's Complexity

Lit protocol takes $O\left(\lg \left(\Gamma_{\text {lit }}(M)\right)\right.$.
We know

$$
\Gamma_{l i t}(M) \leq(\ln (6 M)) e^{(\ln (6 M))^{f}}
$$

So

Literature's Protocol's Complexity

Lit protocol takes $O\left(\lg \left(\Gamma_{l i t}(M)\right)\right.$.
We know

$$
\Gamma_{l i t}(M) \leq(\ln (6 M)) e^{(\ln (6 M))^{f}}
$$

So

$$
\lg \left(\Gamma_{s q}(M)\right) \leq O\left(\log (\log (6 M))+(\log (6 M))^{f}\right) \leq O\left(\left(\log (6 M)^{f}\right)\right.
$$

We could plug in $M=2^{n+1}-1$ but using $6 M=2^{n}$ is good enough since we don't care about order constants. We get

$$
O\left(n^{f}\right)
$$

