
Short Notes March 31st Lecture

1 Introduction

These notes are helpful if you both watched the recording and attended class
(by zoom). Otherwise I doubt they are helpful.

Convention 1.1 Every time we mention a set of points in R2 they have no
three colinear

2 Happy Ending Theorem

Def 2.1 Let A ⊆ R2 of size k. The points in A form a convex k-gon if for
every x, y, z ∈ A, there is no point of A in the triangle formed by x, y, z.
Henceforth we just say k-gon.

Theorem 2.2 (Esther Klein) For every 5 points in R2 there exists a 4-gon.

Theorem 2.3 (Erdös and Szekeres) For all k ≥ 3 there exists n such that
for every set of n points in R2 there exists k of them that form a k-gon.

Sketch:
k = 3: Take n = 3.
k = 4: Take n = 5 and use Klein’s Theorem.
We assume k ≥ 5.
We went over three proofs that used the following three colorings.
The points are p1, . . . , pn. The ordering on the points is arbitrary; how-

ever, for the third proof we need the ordering.
Proof 1: n = R4(k). We have any n points in R2

COL(w, x, y, z) is RED if the for points form a 4-gon, and BLUE if they
do not.

The homog set can’t be BLUE since if was then there would be k ≥ 5
points such that NO 4-subset was a 4-gon, which contradicts Klein’s Theo-
rem.

Hence there are k points so that every set of 4 of them forms a 4-gon.
One can show that the entire set is a k-gon.
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Proof 1’: We can use n = R4(k, 5) which is the smallest n such that any
2-coloring of

(
[n]
4

)
has either a RED Homog set of size k or a BLUE homog

set of size 5.

Proof 2: n = R3(k). We have any n points in R2

COL(w, x, y) is RED if their is an EVEN number of points inside the
x, y, z triangle, BLUE otherwise.

Both cases are possible. One can show that in either case the set is a
k-gon using a parity argument.

Proof 3: n = R3(k). We have any n points in R2

COL(pi, pj, pk) where i < j < k is RED if pi, pj, pk is clockwise, and
BLUE if counterclockwise.

Some cases, finishing the proof will be on the HW I give out next Tuesday.

These bounds are quite large. The following upper and lower bounds are
known.

Theorem 2.4

1. (Erdös and Szekeres) For all k ≥ 3 there exists n ≤
(
2n−4
n−2

)
+1 = 4n+o(n)

such that for every set of n points in R2 there exists k of them that form
a k-gon.

2. (Andrew Suk) For all k ≥ 3 there exists n ≤ 2n+o(n) such that for every
set of n points in R2 there exists k of them that form a k-gon.

3. (a) For all sets of 3 points in R2 there exists a subset of 3 that form
a 3-gon (this is trivial). This is tight.

(b) For all sets of 5 points in R2 there exists a subset of 4 that form
a 4-gon. This is tight.

(c) For all sets of 9 points in R2 there exists a subset of 5 that form
a 5-gon. This is tight.

(d) For all sets of 17 points in R2 there exists a subset of 6 that form
a 6-gon. This is tight.

4. For all k ≥ 3 there exists a set of 2k−2 points such that there is NO
subset of size k that form a k-gon.
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The lower bound in the last part of the last theorem is the conjecture.

Conjecture 2.5 For all k ≥ 3 for every set of 2k−2 + 1 points in R2 there
exists k of them that form a k-gon.

3 Extends to Higher Dimensions

This was also on the Wikipedia Page of The Happy Ending Problem, so even
though I just thought of it on the morning of March 31, it was somewhat
studied. I am not surprised. But its gotten A LOT less attention than the
planar case. In fact, I could not find it anywhere else on the web. If you can
then let me know.

Convention 3.1 Every time we mention a set of points in R3 they have no
four coplanar.

Def 3.2 Let A ⊆ R3 of size k. The points in A form a convex k-gon if for
every w, x, y, z ∈ A, there is no point of A is in the tetrahedron formed by
w, x, y, z. Henceforth we just say k-gon.

Theorem 3.3 (Gasarch the Morning of March 31, but others many years
ago) For all k ≥ 3 there exists n such that for every set of n points in R3

there exists k of them that form a k-gon.

Sketch:
k = 3: Take n = 3.
k = 4: Take n = 5 and use Klein’s Theorem.
We assume k ≥ 5.
We went over three proofs that used the following three colorings.
The points are p1, . . . , pn. The ordering on the points is arbitrary; how-

ever, for the third proof we need the ordering.
Proof 1: n = Ra(k). We have any n points in R3

I DO NOT KNOW HOW TO FINISH THIS PROOF. Need an analog
of Klein’s theorem in R3. I am sure that some such theorem is true. Thats
why I don’t know what a is.
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Proof 1’: We can use n = Ra(k, b) which is the smallest n such that any
2-coloring of

(
[n]
a

)
has either a RED Homog set of size k or a BLUE homog

set of size b. Don’t know what a or b are.

Proof 2: n = R4(k). We have any n points in R3

COL(w, x, y, z) =


RED if numb of pts in tetra formed by w, x, y, z is ≡ 0 (mod 3)

BLUE if numb of pts in tetra formed by w, x, y, z is ≡ 1 (mod 3)

GREEN if numb of pts in tetra formed by w, x, y, z is ≡ 2 (mod 3)

(1)
A mod-3 argument works here.

Proof 3: n = Ra(k). We have any n points in R3

Color sets of a-points based on orientation. I do not know what that
means or how to finish this proof.

There is a generalization to Rd. There was a debate about if you need to
increase the colors or if you use 2 colors for d ≡ 0 (mod 2) and 3 colors for
d ≡ 1 (mod 2). I leave you to figure all of that out.

4 Large Ramsey, Those φ-functions, and the

Busy Beaver Function

Recall the following

Def 4.1 Let H ⊆ N. H is large if |H| > min(H).

Theorem 4.2 (a-ary Large Ramsey) For every a, c ∈ N, for every k there
exists n such that for every coloring COL :

({k,...,n}
a

)
→ [c] there exists a

homog H that is large. We denote n by LR(a, k, c).

The function LR(a, k, c) grows very fast. How fast? First we put it in
terms of one variable: LR(x, x, x).

We define a sequence of functions to demonstrate.

Def 4.3
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1. Φ0(x) = x+ 1

2. Φ1(x) = Φ
(x)
0 (x). This means we do Φ0(Φ0(· · · )) x times. (· · · (x+ 1) +

1) · · · ) = 2x.

3. Φ2(x) = Φ
(x)
1 (x). This is x2x.

4. Φn+1(x) = Φ
(x)
n (x).

These functions are all Primitive Recursive. The function Φn is at the
nth level of the Primitive Rec Hierarchy. All primitive recursive functions
are bounded by some Φn. We now define a function that is NOT Primitive
Recursive

Φω(x) = Φx(x).

This function eventually grows faster than any Φi and hence is not Prim-
itive Recursive. This function is close to Ackermann’s function, the standard
example of a non-prim-rec function.

So does LR(x, x, x) grow about as fast as Φω(x)? No. LR(x, x, x) grows
much faster.

We can define

Φω+1(x) = Φ(x)
ω (x)

We can keep defining Φω+2, Φω+3, and so on- until

Φ2ω(x) = Φω+x(x).

More generally:

Def 4.4 Let α be a countable ordinal.

1. If α = β + 1 then

Φα(x) = Φ
(x)
β (x).

2. If α is NOT one more than some other ordinal (like ω and 2ω) then
there is a sequence that converges to them α1, α2, . . .. Now define

Φα(x) = Φαx(x).
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Let α be the limit of ω, ωω, ωω
ω
, . . ..

LR(x, x, x) grows at around the same rate as Φα.

5 Are There Faster Functions Than LR(x, x, x)?

The function LR(x, x, x) certainly grows faster. Are there functions that
grow faster? The obnoxious answer is

LR(x, x, x) + 1.

One can also construct contrived functions that grow faster. Are there
natural functions that grow faster (I will not define natural).

Note that LR(x, x, x) is computable. One could write a program that will,
on input x, computer LR(x, x, x). One would not want to and one would not
want to run such a program. We define a non-computable function that NO
computable function can bound.

Def 5.1 Let M1,M2, . . . , be a list of all Turing Machines (if you do not know
what Turing Machines are than it can be a list of all Java Programs).

We give a procedure to compute BB(x), though one of the steps one
could not really do.

Run M1(0), . . . ,Mx(0) until those that are going to halt, halt (we do not
know which ones will halt, so this really could not be done). Let t be the
max time taken by all those that halt, to halt.

If f is ANY computable function then there exists an x0 such that

(∀x ≥ x0)[f(x) < BB(x)].

Since LR(x, x, x) is computable, BB(x) dominates it.
Is BB(x) natural? Perhaps not since it involves Turing Machines. In that

light, LR(x, x, x) may be the fastest growing natural function, or perhaps the
fastest growing natural computable function.
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