An Application of Ramsey's Theorem to Logic

William Gasarch

April 21, 2020

The Language of Graphs

Our logic has only one predicate: E for edge.
We will assume E is symmetric and not reflexive.

The Language of Graphs

Our logic has only one predicate: E for edge.
We will assume E is symmetric and not reflexive.
Example

$$
(\exists x)(\forall y)[x \neq y \Longrightarrow E(x, y)]
$$

The Language of Graphs

Our logic has only one predicate: E for edge.
We will assume E is symmetric and not reflexive.
Example

$$
(\exists x)(\forall y)[x \neq y \Longrightarrow E(x, y)]
$$

There is a vertex x that has an edge to EVERY other vertex.

The Language of Graphs

Our logic has only one predicate: E for edge.
We will assume E is symmetric and not reflexive.
Example

$$
(\exists x)(\forall y)[x \neq y \Longrightarrow E(x, y)]
$$

There is a vertex x that has an edge to EVERY other vertex.
For all $n \geq 1$ there is G with n vertex that satisfies this sentence.

The Language of Graphs

Our logic has only one predicate: E for edge.
We will assume E is symmetric and not reflexive.
Example

$$
(\exists x)(\forall y)[x \neq y \Longrightarrow E(x, y)]
$$

There is a vertex x that has an edge to EVERY other vertex.
For all $n \geq 1$ there is G with n vertex that satisfies this sentence.
Example

$$
\left(\exists x_{1}, x_{2}\right)(\forall y)\left[\left(y \neq x_{1} \wedge y \neq x_{2}\right) \Longrightarrow\left(E\left(x_{1}, y\right) \wedge \neg E\left(x_{2}, y\right)\right]\right.
$$

The Language of Graphs

Our logic has only one predicate: E for edge.
We will assume E is symmetric and not reflexive.
Example

$$
(\exists x)(\forall y)[x \neq y \Longrightarrow E(x, y)]
$$

There is a vertex x that has an edge to EVERY other vertex.
For all $n \geq 1$ there is G with n vertex that satisfies this sentence.

Example

$$
\left(\exists x_{1}, x_{2}\right)(\forall y)\left[\left(y \neq x_{1} \wedge y \neq x_{2}\right) \Longrightarrow\left(E\left(x_{1}, y\right) \wedge \neg E\left(x_{2}, y\right)\right]\right.
$$

There are x_{1}, x_{2} such that x_{1} connects to EVERY other vertex, and x_{2} connects to NO other vertex.

The Language of Graphs

Our logic has only one predicate: E for edge.
We will assume E is symmetric and not reflexive.
Example

$$
(\exists x)(\forall y)[x \neq y \Longrightarrow E(x, y)]
$$

There is a vertex x that has an edge to EVERY other vertex.
For all $n \geq 1$ there is G with n vertex that satisfies this sentence.

Example

$$
\left(\exists x_{1}, x_{2}\right)(\forall y)\left[\left(y \neq x_{1} \wedge y \neq x_{2}\right) \Longrightarrow\left(E\left(x_{1}, y\right) \wedge \neg E\left(x_{2}, y\right)\right]\right.
$$

There are x_{1}, x_{2} such that x_{1} connects to EVERY other vertex, and x_{2} connects to NO other vertex.
For all $n \geq 2$ there is G with n vertex that satisfies this sentence.

Conventions

1. The graphs are symmetric. So $E(x, y)$ really means $E(x, y) \wedge E(y, x)$.
2. No self loops, so $E(x, x)$ is always false.
3. $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)$ means they are DISTINCT.
4. $\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right)$ means they are DISTINCT.

Spectrum: Examples

Notation If G is a graph and ϕ is a sentence then $G \models \phi$ means that ϕ is TRUE of G.
Definition If ϕ is a sentence in the language of graphs then $\operatorname{spec}(\phi)$ is the set of all n such that there is G on n vertices such that $G \models \phi$.

Spectrum: Examples

$$
\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]
$$

Spectrum: Examples

$$
\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right] \text { Discuss }
$$

Spectrum: Examples

$$
\begin{aligned}
& \phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right] \quad \text { Discuss } \\
& \operatorname{spec}(\phi)=\{3,4,5, \ldots\}
\end{aligned}
$$

Spectrum: Examples

$$
\begin{aligned}
& \phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right] \text { Discuss } \\
& \operatorname{spec}(\phi)=\{3,4,5, \ldots\} \\
& \phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]
\end{aligned}
$$

Spectrum: Examples

$$
\begin{aligned}
& \phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right] \quad \text { Discuss } \\
& \operatorname{spec}(\phi)=\{3,4,5, \ldots\} \\
& \phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]] \text { Discuss }
\end{aligned}
$$

Spectrum: Examples

$$
\begin{aligned}
& \phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right] \quad \text { Discuss } \\
& \operatorname{spec}(\phi)=\{3,4,5, \ldots\} \\
& \phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]] \text { Discuss }
\end{aligned}
$$

Is there a graph where ϕ on 0 vertex?

Spectrum: Examples

$$
\begin{aligned}
& \phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right] \text { Discuss } \\
& \operatorname{spec}(\phi)=\{3,4,5, \ldots\} \\
& \phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]] \text { Discuss } \\
& \text { Is there a graph where } \phi \text { on } 0 \text { vertex? YES. }
\end{aligned}
$$

Spectrum: Examples

$$
\begin{aligned}
& \phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right] \text { Discuss } \\
& \operatorname{spec}(\phi)=\{3,4,5, \ldots\} \\
& \phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]] \text { Discuss } \\
& \text { Is there a graph where } \phi \text { on } 0 \text { vertex? YES. Vacuously }
\end{aligned}
$$

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously Is there a graph where ϕ on 1 vertex?

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss Is there a graph where ϕ on 0 vertex? YES. Vacuously Is there a graph where ϕ on 1 vertex? NO.

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously Is there a graph where ϕ on 1 vertex? NO.Discuss

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously
Is there a graph where ϕ on 1 vertex? NO.Discuss Is there a graph where ϕ on 2 vertex?

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously
Is there a graph where ϕ on 1 vertex? NO.Discuss Is there a graph where ϕ on 2 vertex? YES.

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously
Is there a graph where ϕ on 1 vertex? NO.Discuss
Is there a graph where ϕ on 2 vertex? YES.Discuss

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously Is there a graph where ϕ on 1 vertex? NO.Discuss Is there a graph where ϕ on 2 vertex? YES.Discuss
Is there a graph where ϕ on 3 vertex?

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously Is there a graph where ϕ on 1 vertex? NO.Discuss Is there a graph where ϕ on 2 vertex? YES.Discuss
Is there a graph where ϕ on 3 vertex? NO.

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously
Is there a graph where ϕ on 1 vertex? NO.Discuss
Is there a graph where ϕ on 2 vertex? YES.Discuss
Is there a graph where ϕ on 3 vertex? NO. Discuss

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously
Is there a graph where ϕ on 1 vertex? NO.Discuss
Is there a graph where ϕ on 2 vertex? YES.Discuss
Is there a graph where ϕ on 3 vertex? NO. Discuss

Spectrum: Examples

$\phi=\left(\exists x_{1}, x_{2}, x_{3}\right)\left[E\left(x_{1}, x_{2}\right) \wedge E\left(x_{1}, x_{3}\right)\right]$ Discuss $\operatorname{spec}(\phi)=\{3,4,5, \ldots\}$
$\phi=(\forall x)(\exists y \neq x)[E(x, y) \wedge(\forall z \neq y)[\neg E(x, z)]]$ Discuss
Is there a graph where ϕ on 0 vertex? YES. Vacuously
Is there a graph where ϕ on 1 vertex? NO.Discuss Is there a graph where ϕ on 2 vertex? YES.Discuss
Is there a graph where ϕ on 3 vertex? NO. Discuss $\operatorname{spec}(\phi)=\{0,2,4,6, \ldots$,

Spectrum: Another Example

```
(}\forall\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}
[
\neg(E(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\wedgeE(\mp@subsup{x}{1}{},\mp@subsup{x}{3}{})\wedgeE(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}))
\wedge
\neg(\negE(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\wedge\negE(\mp@subsup{x}{1}{},\mp@subsup{x}{3}{})\wedge\negE(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}))
]
Discuss
```


Spectrum: Another Example

```
(}\forall\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}
[
\neg(E(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\wedgeE(\mp@subsup{x}{1}{},\mp@subsup{x}{3}{})\wedgeE(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}))
\neg(\negE(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\wedge\negE(\mp@subsup{x}{1}{},\mp@subsup{x}{3}{})\wedge\negE(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}))
]
Discuss
This is asking for a graph without a 3 -clique or 3 -ind set. By Ramsey's Theorem we know that all graphs of size \(\geq 6\) have a 3 -clique or 3 -ind set. \(\operatorname{spec}(\phi)=\{0,1,2,3,4,5\}\).
```


Spectrum: Another Example

```
(}\forall\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}
[
\neg(E(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\wedgeE(\mp@subsup{x}{1}{},\mp@subsup{x}{3}{})\wedgeE(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}))
\neg(\negE(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\wedge\negE(\mp@subsup{x}{1}{},\mp@subsup{x}{3}{})\wedge\negE(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{}))
]
Discuss
```

This is asking for a graph without a 3 -clique or 3 -ind set. By Ramsey's Theorem we know that all graphs of size ≥ 6 have a 3 -clique or 3 -ind set.
$\operatorname{spec}(\phi)=\{0,1,2,3,4,5\}$.
This is NOT the application of Ramsey Theory that this lecture is leading up to.

Spectrum: More Examples

$$
\phi=(\forall x)(\forall y)[E(x, y)] .
$$

Spectrum: More Examples

$$
\phi=(\forall x)(\forall y)[E(x, y)] . \text { Discuss. }
$$

Spectrum: More Examples

$\phi=(\forall x)(\forall y)[E(x, y)]$. Discuss.
For all $n, K_{n}=\phi$. Hence, $\operatorname{spec}(\phi)=\mathbb{N}$.

Spectrum: More Examples

$\phi=(\forall x)(\forall y)[E(x, y)]$. Discuss.
For all $n, K_{n}=\phi$. Hence, $\operatorname{spec}(\phi)=\mathbb{N}$.

$$
\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)] .
$$

Spectrum: More Examples

$\phi=(\forall x)(\forall y)[E(x, y)]$. Discuss.
For all $n, K_{n}=\phi$. Hence, $\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. Discuss.

Spectrum: More Examples

$\phi=(\forall x)(\forall y)[E(x, y)]$. Discuss.
For all $n, K_{n}=\phi$. Hence, $\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. Discuss.
For all $n \geq 0 K_{n, 3} \neq \phi$. If G has 0,1 , or 2 vertices, $G \not \vDash \phi$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$

Spectrum: More Examples

$\phi=(\forall x)(\forall y)[E(x, y)]$. Discuss.
For all $n, K_{n}=\phi$. Hence, $\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. Discuss.
For all $n \geq 0 K_{n, 3} \models \phi$. If G has 0,1 , or 2 vertices, $G \not \vDash \phi$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$
$\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right]$.

Spectrum: More Examples

$\phi=(\forall x)(\forall y)[E(x, y)]$. Discuss.
For all $n, K_{n}=\phi$. Hence, $\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. Discuss.
For all $n \geq 0 K_{n, 3} \models \phi$. If G has 0,1 , or 2 vertices, $G \not \vDash \phi$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$
$\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right]$.Discuss

Spectrum: More Examples

$\phi=(\forall x)(\forall y)[E(x, y)]$. Discuss.
For all $n, K_{n}=\phi$. Hence, $\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. Discuss.
For all $n \geq 0 K_{n, 3} \vDash \phi$. If G has 0,1 , or 2 vertices, $G \not \vDash \phi$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$
$\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right]$.Discuss
If G has 2 vertices then $G \models \phi$.
If $n \in\{0,1,3,4,5, \ldots\}$ and G has n vertices then $G \not \vDash \phi$. $\operatorname{spec}(\phi)=\{2\}$.

Note how Simple Those Spectrum's Were

$$
\begin{aligned}
& \phi=(\forall x)(\forall y)[E(x, y)] \\
& \operatorname{spec}(\phi)=\mathbb{N} .
\end{aligned}
$$

$$
\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)] .
$$

$$
\operatorname{spec}(\phi)=\{3,4,5, \ldots,\}
$$

$$
\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right] .
$$

$$
\operatorname{spec}(\phi)=\{2\}
$$

Note how Simple Those Spectrum's Were

$\phi=(\forall x)(\forall y)[E(x, y)]$.
$\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$
$\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right]$.
$\operatorname{spec}(\phi)=\{2\}$.
All of these sentence were of the form ($E^{*} A^{*}$-sentences). $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, y \ldots, y_{m}\right)\right]$

Note how Simple Those Spectrum's Were

$\phi=(\forall x)(\forall y)[E(x, y)]$.
$\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$
$\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right]$.
$\operatorname{spec}(\phi)=\{2\}$.
All of these sentence were of the form ($E^{*} A^{*}$-sentences). $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, y \ldots, y_{m}\right)\right]$
All of these sentence spec was finite or cofinite.

Note how Simple Those Spectrum's Were

$\phi=(\forall x)(\forall y)[E(x, y)]$.
$\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$
$\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right]$.
$\operatorname{spec}(\phi)=\{2\}$.
All of these sentence were of the form ($E^{*} A^{*}$-sentences). $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, y \ldots, y_{m}\right)\right]$
All of these sentence spec was finite or cofinite. Coincidence?

Note how Simple Those Spectrum's Were

$\phi=(\forall x)(\forall y)[E(x, y)]$.
$\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$
$\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right]$.
$\operatorname{spec}(\phi)=\{2\}$.
All of these sentence were of the form ($E^{*} A^{*}$-sentences). $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, y \ldots, y_{m}\right)\right]$
All of these sentence spec was finite or cofinite. Coincidence?
Or is there a Theorem? Will Erika say Use Ramsey Theory?

Note how Simple Those Spectrum's Were

$\phi=(\forall x)(\forall y)[E(x, y)]$.
$\operatorname{spec}(\phi)=\mathbb{N}$.
$\phi=(\exists x, y, z)(\forall w \notin\{x, y, z\})[E(w, x) \wedge E(w, y) \wedge E(w, z)]$. $\operatorname{spec}(\phi)=\{3,4,5, \ldots$,$\} .$
$\phi=\left(\exists x_{1}\right)\left(\exists x_{2}\right)(\forall y)\left[x_{1}=y \vee x_{2}=y\right]$.
$\operatorname{spec}(\phi)=\{2\}$.
All of these sentence were of the form ($E^{*} A^{*}$-sentences). $\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, y \ldots, y_{m}\right)\right]$
All of these sentence spec was finite or cofinite. Coincidence?
Or is there a Theorem? Will Erika say Use Ramsey Theory?
Not going to bother with a vote-Always bet on Erika.

Lemma About Decidable We Need

Lemma

1. The following is decidable: Given a sentence ϕ and a graph G, determine if $G \models \phi$.
2. The following is decidable: Given a sentence ϕ and a number n, determine if $n \in \operatorname{spec}(\phi)$.
Proof Use brute force.
We will use Lemma without comment.
Note For many (ϕ, G) can do much better than brute force.

Main Theorem

Theorem The following function is computable: Given ϕ, an $E^{*} A^{*}$ sentence in the theory of graphs, output $\operatorname{spec}(\phi)$. ($\operatorname{spec}(\phi)$ will be a finite or cofinite set; hence it will have an easy description.)

Main Theorem

Theorem The following function is computable: Given ϕ, an $E^{*} A^{*}$ sentence in the theory of graphs, output $\operatorname{spec}(\phi)$. ($\operatorname{spec}(\phi)$ will be a finite or cofinite set; hence it will have an easy description.)
We will take ϕ to be

$$
\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right]
$$

Claim 1

Let $G \models \phi$ with witnesses v_{1}, \ldots, v_{n}. Let H be an induced subgraph of G that contains v_{1}, \ldots, v_{n}. Then $H \models \phi$.

Claim 1

Let $G \models \phi$ with witnesses v_{1}, \ldots, v_{n}. Let H be an induced subgraph of G that contains v_{1}, \ldots, v_{n}. Then $H \models \phi$.

Proof of Claim 1 Let $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime} \subseteq V$. Since $G \models \phi$

$$
G \vDash\left(\forall y_{1} \in V\right) \cdots\left(\forall y_{m} \in V\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right]
$$

Claim 1

Let $G \models \phi$ with witnesses v_{1}, \ldots, v_{n}. Let H be an induced subgraph of G that contains v_{1}, \ldots, v_{n}. Then $H \models \phi$.

Proof of Claim 1 Let $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime} \subseteq V$. Since $G \models \phi$

$$
G \models\left(\forall y_{1} \in V\right) \cdots\left(\forall y_{m} \in V\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right]
$$

H is just G with less vertices, and the vertices that remain have the same edges. And v_{1}, \ldots, v_{n} are in H. Hence we DO have

Claim 1

Let $G \models \phi$ with witnesses v_{1}, \ldots, v_{n}. Let H be an induced subgraph of G that contains v_{1}, \ldots, v_{n}. Then $H \models \phi$.

Proof of Claim 1 Let $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime} \subseteq V$. Since $G \models \phi$

$$
G \models\left(\forall y_{1} \in V\right) \cdots\left(\forall y_{m} \in V\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right]
$$

H is just G with less vertices, and the vertices that remain have the same edges. And v_{1}, \ldots, v_{n} are in H. Hence we DO have
$\left(\forall y_{1} \in V^{\prime}\right) \cdots\left(\forall y_{m} \in V^{\prime}\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right]$, SO $H \equiv\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right]$
End of Proof of Claim 1

Claim 2, The Main Claim

If $\left(\exists N \geq n+2^{n} R(m)\right)[N \in \operatorname{spec}(\phi)]$ then

$$
\left\{n+m, \ldots, n+2^{n} R(m), \ldots\right\} \subseteq \operatorname{spec}(\phi)
$$

Proof of Claim 2
Since $N \in \operatorname{spec}(\phi)$ there exists $G=(V, E)$, a graph on N vertices such that $G \models \phi$. Let v_{1}, \ldots, v_{n} be such that:

$$
\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right] .
$$

(Proof continued on next slide)

Proof of Claim 2 Continued

$$
\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{m}\right)\right]
$$

Let $X=\left\{v_{1}, \ldots, v_{n}\right\}$ and $U=V-X$. Note that $|U| \geq 2^{n} R(m)$. We define a 2^{n}-Coloring of $U . u \in U$ maps to $\left(b_{1}, \ldots, b_{n}\right)$:

$$
b_{i}=\left\{\begin{array}{l}
0 \text { if }\left(u, v_{i}\right) \notin E \tag{1}\\
1 \text { if }\left(u, v_{i}\right) \in E
\end{array}\right.
$$

Hence every $u \in U$ is mapped to a description of how it relates to every element in X. Since $|U| \geq 2^{n} R(m)$ there exists $R(m)$ vertices that map to the same vector. Apply Ramsey's Theorem to these $R(m)$ vertices to obtain homog set u_{1}, \ldots, u_{m}.
(Proof continued on next slide)

Proof of Claim 2 Continued

- Either the u_{i} 's form a clique or the u_{i} 's form an ind. set. We will assume the u_{i} 's form a clique (the other case is similar).
- All of the u_{i} 's map to the same vector. Hence they all look the same to v_{1}, \ldots, v_{n}.

Example All u_{i} have edge to $\left\{v_{1}, v_{3}, v_{17}\right\}$ but no other v_{j}. Let H_{0} be G restricted to $X \cup\left\{u_{1}, \ldots, u_{m}\right\}$. By Claim $1 H_{0} \models \phi$. For every $p \geq 1$ we form a graph $H_{p}=\left(V_{p}, E_{p}\right)$ on $n+m+p$ vertices such that $H_{p} \models \phi$:
Informally add $m+p$ vertices that are just like the u_{i} 's.
Formally Next Slide.

Proof of Claim 2 Continued, Formal $H_{p}=\left(V_{p}, E_{p}\right)$

- $V_{p}=X \cup\left\{u_{1}, \ldots, u_{m}, u_{m+1}, \ldots, u_{m+p}\right\}$ where u_{m+1}, \ldots, u_{m+p} are new vertices.
- E_{p} is the union of the following edges.
- The edges in H_{0},
- Make $\left\{u_{1}, \ldots, u_{m+p}\right\}$ form a clique.
- Let $\left(b_{1}, \ldots, b_{n}\right)$ be the vector that all of the elements of $\left\{u_{1}, \ldots, u_{m}\right\}$ mapped to. For $m+1 \leq j \leq m+p$, for $1 \leq i \leq m$ such that $b_{i}=1$, put an edge between u_{j} and v_{i}. Example All of the u_{j} 's have a edge to $\left\{v_{1}, v_{3}, v_{17}\right\}$ but nothing else.
X sees all of the u_{1}, \ldots, u_{m+p} as the same. Hence any subset of the $\left\{u_{1}, \ldots, u_{m+p}\right\}$ of size m looks the same to X and to the other u_{i} 's. Hence $H_{p} \models \phi$, so $n+m+p \in \operatorname{spec}(\phi)$.
End of Proof of Claim 2

Claim 3

$$
\begin{aligned}
& \phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right] \\
& N_{0}=n+2^{n} R(m) . \\
& N_{0} \notin \operatorname{spec}(\phi) \Longrightarrow \operatorname{spec}(\phi) \subseteq\left\{0, \ldots, N_{0}-1\right\} . \\
& \text { Proof of Claim 3 } \\
& \text { By Claim 2 } \\
& \left\{N_{0}, \ldots\right\} \cap \operatorname{spec}(\phi) \neq \emptyset \Longrightarrow\left\{n+m, \ldots, N_{0}, \ldots\right\} \subseteq \operatorname{spec}(\phi) .
\end{aligned}
$$

We take the contrapositive with a weaker premise.

$$
\begin{aligned}
& N_{0} \notin \operatorname{spec}(\phi) \Longrightarrow\left\{N_{0}, \ldots\right\} \cap \operatorname{spec}(\phi)=\emptyset \\
& \Longrightarrow \operatorname{spec}(\phi) \subseteq\left\{0, \ldots, N_{0}-1\right\}
\end{aligned}
$$

End of Proof of Claim 3

Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to recap what we know.
Let $N_{0}=n+2^{n} R(m)$.

Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to recap what we know.
Let $N_{0}=n+2^{n} R(m)$.
Claim 2
If $N_{0} \in \operatorname{spec}(\phi)$ then $\{n+m, \ldots,\} \subseteq \operatorname{spec}(\phi)$.

Recap Both Claims

We put a subcase of Claim 2, and Claim 3, next to each other to recap what we know.
Let $N_{0}=n+2^{n} R(m)$.
Claim 2
If $N_{0} \in \operatorname{spec}(\phi)$ then $\{n+m, \ldots,\} \subseteq \operatorname{spec}(\phi)$.
Claim 3
If $N_{0} \notin \operatorname{spec}(\phi)$ then $\operatorname{spec}(\phi) \subseteq\left\{0, \ldots, N_{0}-1\right\}$.

Algorithm for Finding spec (ϕ)

1. Input

$$
\phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right] .
$$

2. Let $N_{0}=n+2^{n} R(m)$. Determine if $N_{0} \in \operatorname{spec}(\phi)$.

Algorithm for Finding spec (ϕ)

1. Input

$$
\phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right] .
$$

2. Let $N_{0}=n+2^{n} R(m)$. Determine if $N_{0} \in \operatorname{spec}(\phi)$.
2.1 If YES then by Claim $2\{n+m, \ldots\} \subseteq \operatorname{spec}(\phi)$. For $0 \leq i \leq n+m-1$ test if $i \in \operatorname{spec}(\phi)$. You now know $\operatorname{spec}(\phi)$ which is co-finite. Output it.

Algorithm for Finding spec (ϕ)

1. Input

$$
\phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right] .
$$

2. Let $N_{0}=n+2^{n} R(m)$. Determine if $N_{0} \in \operatorname{spec}(\phi)$.
2.1 If YES then by Claim $2\{n+m, \ldots\} \subseteq \operatorname{spec}(\phi)$. For $0 \leq i \leq n+m-1$ test if $i \in \operatorname{spec}(\phi)$. You now know $\operatorname{spec}(\phi)$ which is co-finite. Output it.
2.2 If NO then, by Claim $3 \operatorname{spec}(\phi) \subseteq\left\{0, \ldots, N_{0}-1\right\}$. For $0 \leq i \leq N_{0}-1$ test if $i \in \operatorname{spec}(\phi)$. You now know $\operatorname{spec}(\phi)$ which is finite set. Output it.
End of Proof of Main Theorem

Other Sentences. Part I

What other Sentences could we look at?
$E^{*} A^{*}$ sentences with more complicated objects than graphs.

1. Colored Graphs c kinds of edges.
2. a-ary Hypergraphs a-ary Hyperedges.
3. Colored a-ary Hypergraphs c kinds of a-ary Hyperedges.
4. $\leq a$-ary Hypergraphs all arities $\leq a$ allowed.
5. Colored $\leq a$-ary Hypergraphs c_{i} colors for the i-arity sets.

Discuss for which of these is spec decidable.

Other Sentences. Part I

What other Sentences could we look at?
$E^{*} A^{*}$ sentences with more complicated objects than graphs.

1. Colored Graphs c kinds of edges.
2. a-ary Hypergraphs a-ary Hyperedges.
3. Colored a-ary Hypergraphs c kinds of a-ary Hyperedges.
4. $\leq a$-ary Hypergraphs all arities $\leq a$ allowed.
5. Colored $\leq a$-ary Hypergraphs c_{i} colors for the i-arity sets.

Discuss for which of these is spec decidable.
Is spec for colored \leq a-hypergraphs decidable? Vote.
YES-and will be on HW, YES-but hard, NO, Unknown to Science.

Other Sentences. Part I

What other Sentences could we look at?
$E^{*} A^{*}$ sentences with more complicated objects than graphs.

1. Colored Graphs c kinds of edges.
2. a-ary Hypergraphs a-ary Hyperedges.
3. Colored a-ary Hypergraphs c kinds of a-ary Hyperedges.
4. $\leq a$-ary Hypergraphs all arities $\leq a$ allowed.
5. Colored \leq a-ary Hypergraphs c_{i} colors for the i-arity sets.

Discuss for which of these is spec decidable.
Is spec for colored $\leq a$-hypergraphs decidable? Vote.
YES-and will be on HW, YES-but hard, NO, Unknown to Science.
YES-and will be on HW or Final.
Key ingredient already was on the midterm: Ramsey theory on
\leq a-hypergraphs.

Other Sentences. Part II

$\left(E^{*} A^{*}\right)^{*}$-sentences, only predicate $E(x, y)$. Nick sentences.

Other Sentences. Part II

$\left(E^{*} A^{*}\right)^{*}$-sentences, only predicate $E(x, y)$. Nick sentences.
Is spec for Nick Sentences decidable? Vote
YES, NO, Unknown to Science.

Other Sentences. Part II

$\left(E^{*} A^{*}\right)^{*}$-sentences, only predicate $E(x, y)$. Nick sentences.
Is spec for Nick Sentences decidable? Vote YES, NO, Unknown to Science. YES
Known If ϕ is a Nick sentence then $\operatorname{spec}(\phi)$ is a union of AP's (called a semi-linear ser) OR the complement of such (proof is hard). So for example

$$
\{4,7,10, \ldots\} \cup\{11,22,33, \ldots\} \text { is a Semi-linear Set }
$$

Known If A is semi-linear then there exists ϕ with $\operatorname{spec}(\phi)=A$.
Will be on HW or final.

Other Sentences. Part III

$\left(E^{*} A^{*}\right)^{*}$-sentences, predicates of arity $\leq a$-ary. McKenzie sentences.
Is spec for McKenzie Sentences decidable? Vote.
YES, NO, Unknown to Science.

Other Sentences. Part III

$\left(E^{*} A^{*}\right)^{*}$-sentences, predicates of arity $\leq a$-ary. McKenzie sentences.
Is spec for McKenzie Sentences decidable? Vote.
YES, NO, Unknown to Science.YES.

Other Sentences. Part III

$\left(E^{*} A^{*}\right)^{*}$-sentences, predicates of arity $\leq a$-ary. McKenzie sentences.
Is spec for McKenzie Sentences decidable? Vote.
YES, NO, Unknown to Science.YES.
Known If ϕ is a Mackenzie sentence then $\operatorname{spec}(\phi) \in \operatorname{EXPTIME}$.

Other Sentences. Part III

$\left(E^{*} A^{*}\right)^{*}$-sentences, predicates of arity $\leq a$-ary. McKenzie sentences.
Is spec for McKenzie Sentences decidable? Vote.
YES, NO, Unknown to Science.YES.
Known If ϕ is a Mackenzie sentence then $\operatorname{spec}(\phi) \in \operatorname{EXPTIME}$. Also Known If $A \in E X P T I M E$ then there exists Mackenzie ϕ such that $\operatorname{spec}(\phi)=A$.

App, "App", or ""App""

App This was not a problem people came up with to find an app of Ramsey's Theorem. Ramsey was working on this problem in logic and proved Ramsey's Theorem to help him solve it. So the question in Logic is legit.

App, "App", or ""App""

App This was not a problem people came up with to find an app of Ramsey's Theorem. Ramsey was working on this problem in logic and proved Ramsey's Theorem to help him solve it. So the question in Logic is legit.
"App" While origin is legit, do we care now? I do, and my advisor Harry Lewis does (I have been in email contact with him about this lecture and he gave me several pointers and facts) but do YOU care?

App, "App", or ""App""

App This was not a problem people came up with to find an app of Ramsey's Theorem. Ramsey was working on this problem in logic and proved Ramsey's Theorem to help him solve it. So the question in Logic is legit.
"App" While origin is legit, do we care now? I do, and my advisor Harry Lewis does (I have been in email contact with him about this lecture and he gave me several pointers and facts) but do YOU care?
""App"" This would be unfair. I reserve the 4-quotes if either NOBODY cares or ONLY I care. (When I prove primes are infinite FROM van Der Waerden's Theorem, feel free to use 4 quotes. I am not kidding.)

Vote App OR "App" OR ""App""

