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VDW and Extended VDW

Recall VDW’s Theorem
VDW’s Theorem For all k , c there exists W = W (k , c) such that
for every c-coloring of [W ] there exists a, d such that

a, a + d , a + 2d , . . . , a + (k − 1)d

are all the same color.

What about d itself? Can it be the same colors as
a, a + d , . . . , a + (k − 1)d?

Extended VDW’s Theorem
EVDW Theorem For all k, c there exists E = E (k , c) such that
for every c-coloring of [E ] there exists a, d such that

a, a + d , a + 2d , . . . , a + (k − 1)d , d

are all the same color.
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Proof of Extended VDW Theorem

EVDW Theorem For all k, c there exists E = E (k , c) such that
for every c-coloring of [E ] there exists a, d such that

a, a + d , a + 2d , . . . , a + (k − 1)d , d

are all the same color.

Pf. Induction on c . E (k, 1) = k . We show E (k, c) ≤W (X + 1, c),
X LARGE. COL : [W (X + 1, c)]→[c]. By VDW there exists A,D

A,A + D, . . . ,A + XD is color CCC .
A,A + D, . . . ,A + (k − 1)D are color CCC . So COL(D) 6= CCC .
A,A + 2D, . . . ,A + 2(k − 1)D are CCC . So COL(2D) 6= CCC .
...
A,A + XD

k−1 ,A + 2XD
k−1 , . . . ,A + (k−1)XD

k−1 . So COL( XD
k−1) 6= CCC .

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.
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Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).

Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.

a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Proof of Extended VDW Theorem, II

D, 2D, . . . , X
k−1D not colored CCC , only use c − 1 colors.

Set X = E (k , c − 1)(k − 1). This is where we use Ind. Hyp.

D, 2D, . . . ,E (k , c − 1)D only use c − 1 colors (not CCC).
Define COL′(i) = COL(iD), a (c − 1)-coloring, so there exists a′, d ′

a′, a′ + d ′, . . . , a′ + (k − 1)d ′, d ′ same COL′ color.

a′D, (a′ + d ′)D, . . . , (a′ + (k − 1)d ′)D, d ′D same COL color.

a′D, a′D + d ′D, . . . , a′D + (k − 1)d ′D, d ′D same COL color.
a = a′D, d = d ′D

a, a + d , . . . , a + (k − 1)d , d same COL color.



Real EVDW

What I presented above is NOT the EVDW. This is:
EVDW Theorem For all k, c, e there exists E = E (k , e, c) such
that for every c-coloring of [E ] there exists a, d such that

a, a + d , a + 2d , . . . , a + (k − 1)d , de

are all the same color.

This is an exercise. It might be on a HW or the Final.
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Notation

For this talk

N = {1, 2, 3, . . . , }



Mono Solutions To x + y = z

Thm For all c there exists S such that for all COL : [S ]→[c]
(∃x , y , z mono) with x + y = z .

Pf S = EVDW (2, 1, c). By EVDW, for COL : [S ]→[c] (∃a, d)
a, a + d , d the same color.

Take x = a, y = d , z = a + d .
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Mono Solutions To w + 2x + 3y = 5z
Thm For all c there exists S such that for all COL : [S ]→[c]
(∃w , x , y , z mono) with w + 2x + 3y = 5z .
Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS

w = a1 + k1d
x = a2 + k2d
y = a3 + k3d
z = a4 + k4d
a1, a2, a3, a4 ∈ {0, a}. Can’t have ai = ki = 0.

a1 + 2a2 + 3a3 + k1d + 2k2d + 3k3d = 5a4 + 5k4d

For d : k1 + 2k2 + 3k3 = 5k4. Take k1 = 5, k2 = k3 = 1, k4 = 2.
For a: a1 + 2a2 + 3a3 = 5a4. Take a1 = 0, a2 = a3 = a4 = a.
w = 5d
x = a + d
y = a + d
z = a + 2d
So E = EVDW (3, 5, c).
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Mono Distinct Solution to w + 2x + 3y = 5z

Thm For all c there exists S such that for all COL : [S ]→[c]
(∃w , x , y , z mono and distinct) with w + 2x + 3y = 5z .

For d : k1 + 2k2 + 3k3 = 5k4. Take k1 = 1, k2 = 3, k3 = 6, k4 = 5
For a: a1 + 2a2 + 3a3 = 5a4. Take a1 = 0, a2 = a3 = a4 = a.

w = d
x = a + 3d
y = a + 6d
z = a + 5d

So E = EVDW (6, 1, c).
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Does This work for All Equation?

Def Zd [x1, . . . , xn] is the set of degree-d polynomials with
coefficients in Z and variables x1, . . . , xn.

Thm Let E (x1, . . . , xn) ∈ Z1[x1, . . . , xn]. For all c there exists S
such that for all COL : [S ]→[c] (∃a1, . . . , an mono) with
E (a1, . . . , an) = 0.

Vote TRUE or FALSE (this is known to science)

FALSE but for a dumb reason.

x + y + z = 0 has no solution

Thm Let E (x1, . . . , xn) ∈ Z1[x1, . . . , xn] have a solution in N. For
all c there exists S such that for all COL : [S ]→[c]
(∃a1, . . . , an mono) with E (a1, . . . , an) = 0.

Vote TRUE or FALSE (this is known to science)

FALSE but for an interesting reason.
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No Mono Solution For x + 2y = 4z

We define COL : N→{1, 2, 3, 4} such that

x + 2y = 4z has no mono solution.

COL(5ab) = b mod 5

If a1, a2, a3 is a mono solution, say color is b.

a1 = 5e1b1 a2 = 5e2b2 a3 = 5e3b3

b1 ≡ b2 ≡ b3 ≡ b (mod 5)
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Case e1 < e2, e3

a1 = 5e1b1 a2 = 5e2b2 a3 = 5e3b3

b1 ≡ b2 ≡ b3 ≡ b (mod 5)

a1 + 2a2 = 4a3

5e1b1 + 2× 5e2b2 = 4× 5e3b3

b1 + 2× 5e2−e1b2 = 4× 5e3−e1b3

Take this mod 5

b ≡ 0 (mod 5) contradiction



Case e2 < e1, e3, Case e3 < e1, e2

Both cases similar to e1 < e2, e3 case.

e2 < e1, e3: 5e1−e2b1 + 2b2 = 4× 5e3−e2 , so 2b2 ≡ 0 (mod 5).

e3 < e1, e2: 5e1−e3b1 + 2× 5e2=e3b2 = 4b3, so 4b3 ≡ 0 (mod 5).

I 5 primes, so can go from 2b2 ≡ 0 (mod 5) to b2 ≡ 0
(mod 5).

I For e1 < e2, e3 used that coeff of b1 was 1 6= 0.

I For e2 < e1, e3 used that coeff of b2 was 2 6= 0.

I For e3 < e1, e2 used that coeff of b3 was 4 6= 0.
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Then mod 5

b + 2b ≡ 0 (mod 5)

3b ≡ 0 (mod 5)

b ≡ 0 (mod 5)

I Could not have used the prime 3 instead of 5.

I Used that sum of coeff of b1 and b2 was 3 6= 0.
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Rado’s Theorem

Thm Let a1, . . . , ak ∈ Z. TFAE

I Some subset of the ai ’s sums to 0.

I For all c , for all COL : N→[c] there exists mono solution to

a1x1 + · · ·+ akxk = 0.

We will not prove this.

From what I did above:

I Given any particular (a1, . . . , ak) ∈ Z with some subset
summing to 0 you should be able to show that any finite
coloring of N has a mono solution.

I Given any particular (a1, . . . , ak) ∈ Z with NO subset sums to
0 you should be able to define a finite coloring of N with no
mono solution.
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Other Equations

1. There is a matrix form of Rado that I don’t care about.

2. Folkman’s Thm For all k, c there exists N = N(k , c) such
that for all COL : [N]→[c] there exists a1, . . . , ak such that
ALL non-empty sums of the ai ’s are the same color.

3. For all c there exists N = N(c) such that for any
COL : [N]→[c] there is a mono solution to 16x2 + 9y2 = z2.
(This equation has certain properties that make it work, so
there is really a more general theorem here.) http:

//fourier.math.uoc.gr/~ergodic/Slides/Host.pdf

http://fourier.math.uoc.gr/~ergodic/Slides/Host.pdf
http://fourier.math.uoc.gr/~ergodic/Slides/Host.pdf


x2 + y2 = z2 Result by Heule&Kullmann

Theorem There exists N such that for any COL : [N]→[2] there is
a mono solution to x2 + y2 = z2.

Do we know what N is? We actually do!

I ∃ 2-col of [7824] w/o mono sol to x2 + y2 = z2.

I ∀ 2-col of [7825] ∃ mono sol to x2 + y2 = z2.

(1) We actually know N. What else is unusual?
(2) we only proved it for 2 colors. For 3 it is unknown.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

Research Obtain a human-readable proof with perhaps a much
bigger N, but which can be generalized to c = 3 and beyond.
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