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Real EVDW

What | presented above is NOT the EVDW. This is:
EVDW Theorem For all k, c, e there exists E = E(k, e, c) such
that for every c-coloring of [E] there exists a, d such that

a,a+d,a+2d,...,a+ (k—1)d,de

are all the same color.
This is an exercise. It might be on a HW or the Final.



Notation

For this talk

N=1{1,2,3,...
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Thm For all ¢ there exists S such that for all COL: [S]—|c]
(3w, x, y, z mono) with w + 2x + 3y = 5z.

Pf We plan to use the EVDW. CLASS WORK ON IT IN GROUPS
w = aj; + kid

X = a» + kod
y = a3 + ksd
Z = ag + kad

a1, a2, as,as € {0,a}. Can't have a; = k; = 0.
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For d: ki 4+ 2ko + 3ks = 5ky. Take k1 =5, ko = ks =1, kg = 2.
For a: a1 +2a, +3as3 =5a4. Take a1 =0, ap = a3 = a4 = a.
w = 5d
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y=a+d
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So E = EVDW(3,5, c).
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Mono Distinct Solution to w + 2x + 3y = 5z

Thm For all ¢ there exists S such that for all COL: [S]—]c]
(3w, x, y, z mono and distinct) with w + 2x + 3y = 5z.

For d: ki 4+ 2kyo + 3ks =5ky4. Take k1 =1, ko =3, k3 =6, ks =5
For a: a1 +2ay +3as3 =5a4. Take a1 =0, ap = a3 = a4 = a.

w=d

x=a+3d
y=a+6d
z=a+bd

So E = EVDW(6,1, c).
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Def Zg[x1, ..., xn] is the set of degree-d polynomials with
coefficients in Z and variables x1, ..., x,.

Thm Let E(x1,...,%,) € Z1[x1, ..., xn|. For all c there exists S
such that for all COL: [S]—[c] (Ja1, ..., a, mono) with
E(a1,...,an) =0.

Vote TRUE or FALSE (this is known to science)
FALSE but for a dumb reason.

x + y + z = 0 has no solution

Thm Let E(xy,...,xn) € Z1[x1, ..., Xxn| have a solution in N. For
all ¢ there exists S such that for all COL: [S]—[c]
(Ja1,...,an mono) with E(ay,...,an) = 0.

Vote TRUE or FALSE (this is known to science)

FALSE but for an interesting reason.
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No Mono Solution For x + 2y = 4z

We define COL: N—{1,2, 3,4} such that

X + 2y = 4z has no mono solution.

COL(5%b) = b mod 5
If a1, a», a3 is a mono solution, say color is b.
a) = 5el b1 dy = 5e2b2 a3z = 5 b3

by = by = b3 = b (mod 5)



Case e; < e, €3

a) = 5el b1 dy = 5e2b2 a3z = 5 b3
blEb2Eb3Eb (mod5)

a + 2ap = 4a3
5b; +2 x 5%2by =4 x 5%b3

by +2 x 5% €hy =4 x 58 Cp,
Take this mod 5

b=0 (mod 5) contradiction
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Case e; < e1,e3, Case e3 < €1,

Both cases similar to e; < ey, e3 case.

ey < e1,e3: 517 92h; +2by =4 x 5572, 50 2b, =0 (mod 5).
e3 < e1,€: 5917 Shy + 2 x 5%2=%Shy, = 4b3, so 4b3 =0 (mod 5).
» 5 primes, so can go from 2b, =0 (mod 5) to b, =0
(mod 5).
» For e; < ey, e3 used that coeff of by was 1 # 0.
» For ex < e1, e3 used that coeff of by was 2 # 0.
> For e3 < e1, e used that coeff of by was 4 # 0.
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Case e = e, < e3

51b; +2 x 5%2py = 4 x 5e3b3
517€h +2 x 5279R2py, = 4 x 5B,

b1 +2by =4 x 587 Lpg
Then mod 5

b+2b=0 (mod 5)

3b=0 (mod 5)



Case e = e, < e3

5%h; +2 x 5%by, = 4 x 5% b3
59176 +2x 527 %Rp, =4 x 58,
b1 +2by =4 x 587 Lpg
Then mod 5
b+2b=0 (mod 5)
3b=0 (mod 5)
b=0 (mod 5)

» Could not have used the prime 3 instead of 5.
» Used that sum of coeff of b; and by was 3 # 0.
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Case e =e3< e, =5 < @

51bh; +2 x 5%2py = 4 x 5e3b3

e1 = e3< e: by +2x5%27€p, = 4p;
b=4b (mod 5), b=0.



Case e =e3< e, =5 < @

5elb1+2><562b2:4><5e3b3
e1 = e3< e: by +2x5%27€p, = 4p;
b=4b (mod 5), b=0.

€ = e3 < e1: 561—92b1 + 2b2 = 4b3
2b=4b=5, b=0.



Case e = ey = e3

51 +2 x 5%2py =4 x 5e3b3
b1 + 2by = 4b3
b+2b=4b (mod5)

b=0 (mod)5)
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Rado’s Theorem

Thm Let a1,...,a, € Z. TFAE
» Some subset of the a;'s sums to 0.

» For all ¢, for all COL: N—|c]| there exists mono solution to

ax1+ -+ akxx = 0.

We will not prove this.

From what | did above:

» Given any particular (ai,...,ax) € Z with some subset
summing to 0 you should be able to show that any finite
coloring of N has a mono solution.

» Given any particular (ai,...,ax) € Z with NO subset sums to

0 you should be able to define a finite coloring of N with no
mono solution.



Other Equations

1. There is a matrix form of Rado that | don't care about.

2. Folkman's Thm For all k, ¢ there exists N = N(k, ¢) such
that for all COL: [N]—[c] there exists ay, ..., ax such that
ALL non-empty sums of the a;'s are the same color.

3. For all ¢ there exists N = N(c) such that for any
COL: [N]—[c] there is a mono solution to 16x2 + 9y? = z2,
(This equation has certain properties that make it work, so
there is really a more general theorem here.) http:
//fourier.math.uoc.gr/~ergodic/Slides/Host.pdf


http://fourier.math.uoc.gr/~ergodic/Slides/Host.pdf
http://fourier.math.uoc.gr/~ergodic/Slides/Host.pdf
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Theorem There exists N such that for any COL: [N]—[2] there is

a mono solution to x? + y? = z2.

Do we know what N is? We actually do!

» 3 2-col of [7824] w/o mono sol to x? + y? = 72,
» V 2-col of [7825] 3 mono sol to x? + y? = z2.

(1) We actually know N. What else is unusual?
(2) we only proved it for 2 colors. For 3 it is unknown.

Thm proven by SAT-Solver. 200 terabytes: longest proof ever.

Research Obtain a human-readable proof with perhaps a much
bigger N, but which can be generalized to ¢ = 3 and beyond.



