The Forehead Game

Exposition by William Gasarch

July 18, 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Alice is A, Bob is B, Carol is C.

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

2. A's forehead has a, B's has b, C's has c.

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

- 2. A's forehead has a, B's has b, C's has c.
- 3. They want to know if $a + b + c = 2^{n+1} 1$.

Alice is A, Bob is B, Carol is C.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. A's forehead has a, B's has b, C's has c.
- 3. They want to know if $a + b + c = 2^{n+1} 1$.
- 4. Solution A says b, B then computes a + b + c and then says YES if $a + b + c = 2^{n+1} 1$, NO if not.

Alice is A, Bob is B, Carol is C.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. A's forehead has a, B's has b, C's has c.
- 3. They want to know if $a + b + c = 2^{n+1} 1$.
- 4. Solution A says b, B then computes a + b + c and then says YES if $a + b + c = 2^{n+1} 1$, NO if not.

5. Solution uses n + 1 bits of comm. Can do better?

<ロト < 畳 > < 三 > < 三 > のへの

1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do.
- There is a protocol that takes αn bits for some α < 1 but any protocol requires Ω(n) bits.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do.
- There is a protocol that takes αn bits for some α < 1 but any protocol requires Ω(n) bits.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

3. There is a protocol that takes $\ll n$ bits.

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do.
- There is a protocol that takes αn bits for some α < 1 but any protocol requires Ω(n) bits.

3. There is a protocol that takes $\ll n$ bits.

STUDENTS WORK IN GROUPS TO BEAT n + 1 OR SHOW YOU CAN" T

▲□▶▲圖▶▲圖▶▲圖▶ 圖 - 約९.0

1. A:
$$a_0 \cdots a_{n-1}$$
, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 - 約९.0

1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$. 2. A says: $c_0 \oplus b_{n/2}$, \cdots , $c_{n/2-1} \oplus b_{n-1}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$.

- 2. A says: $c_0 \oplus b_{n/2}, \ \cdots, \ c_{n/2-1} \oplus b_{n-1}$.
- 3. Bob knows c_i 's so he now knows $b_{n/2}, \ldots, b_{n-1}$.

1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$. 2. A says: $c_0 \oplus b_{n/2}$, \cdots , $c_{n/2-1} \oplus b_{n-1}$. 3. Bob knows c_i 's so he now knows $b_{n/2}$, \ldots , b_{n-1} . Bob knows a_i 's and c_i 's so he can compute $a_{n/2} \cdots a_{n-1} + b_{n/2} \cdots b_{n-1} + c_{n/2} \cdots c_{n-1} = s + \text{carry } z$

1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$. 2. A says: $c_0 \oplus b_{n/2}$, \cdots , $c_{n/2-1} \oplus b_{n-1}$. 3. Bob knows c_i 's so he now knows $b_{n/2}$, \ldots , b_{n-1} . Bob knows a_i 's and c_i 's so he can compute $a_{n/2} \cdots a_{n-1} + b_{n/2} \cdots b_{n-1} + c_{n/2} \cdots c_{n-1} = s + \text{carry } z$ $s = 1^{n/2}$: Bob says (MAYBE,z). $s \neq 1^{n/2}$: Bob says NO.

1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$. 2. A says: $c_0 \oplus b_{n/2}$, \cdots , $c_{n/2-1} \oplus b_{n-1}$. 3. Bob knows c_i 's so he now knows $b_{n/2}$, \ldots , b_{n-1} . Bob knows a_i 's and c_i 's so he can compute $a_{n/2} \cdots a_{n-1} + b_{n/2} \cdots b_{n-1} + c_{n/2} \cdots c_{n-1} = s + \text{carry } z$ $s = 1^{n/2}$: Bob says (MAYBE, z). $s \neq 1^{n/2}$: Bob says NO.

4. Carol knows b_i 's so she now knows $c_0, \ldots, c_{n/2-1}$.

1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$. 2. A says: $c_0 \oplus b_{n/2}$, \cdots , $c_{n/2-1} \oplus b_{n-1}$. 3. Bob knows c_i 's so he now knows $b_{n/2}$, \ldots , b_{n-1} . Bob knows a_i 's and c_i 's so he can compute $a_{n/2} \cdots a_{n-1} + b_{n/2} \cdots b_{n-1} + c_{n/2} \cdots c_{n-1} = s + \text{carry } z$ $s = 1^{n/2}$: Bob says (MAYBE, z). $s \neq 1^{n/2}$: Bob says NO.

4. Carol knows b_i 's so she now knows $c_0, \ldots, c_{n/2-1}$. Carol knows the carry bit z so she can compute $a_0 \cdots a_{n/2} + b_0 \cdots b_{n/2} + c_0 \cdots c_{n/2} + z = t$

- A:a₀ ··· a_{n-1}, B:b₀ ··· b_{n-1}, C:c₀ ··· c_{n-1}.
 A says: c₀ ⊕ b_{n/2}, ··· , c_{n/2-1} ⊕ b_{n-1}.
 Bob knows c_i's so he now knows b_{n/2}, ..., b_{n-1}. Bob knows a_i's and c_i's so he can compute a_{n/2} ··· a_{n-1} + b_{n/2} ··· b_{n-1} + c_{n/2} ··· c_{n-1} = s + carry z s = 1^{n/2}: Bob says (MAYBE,z). s ≠ 1^{n/2}: Bob says NO.
 Carol knows b_i's so she now knows c₀, ..., c_{n/2-1}. Carol knows the carry bit z so she can compute
 - $a_0 \cdots a_{n/2} + b_0 \cdots b_{n/2} + c_0 \cdots c_{n/2} + z = t$ $t = 1^{n/2}$: Carol says YES. $t \neq 1^{n/2}$: Carol says NO.

Alice is A, Bob is B, Carol is C, Donna is D.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length *n* on their foreheads.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length *n* on their foreheads.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. A's forehead has a, B's forehead has b,

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length *n* on their foreheads.

- 2. A's forehead has a, B's forehead has b,
- 3. They want to know if $a + b + c + d = 2^{n+1} 1$.

Alice is A, Bob is B, Carol is C, Donna is D.

- 1. A, B, C, D have a string of length *n* on their foreheads.
- 2. A's forehead has a, B's forehead has b,
- 3. They want to know if $a + b + c + d = 2^{n+1} 1$.
- 4. **Obvious Solution** uses n + 1 bits of comm. Can do better?

ション ふゆ アメビア メロア しょうくしゃ

Alice is A, Bob is B, Carol is C, Donna is D.

- 1. A, B, C, D have a string of length *n* on their foreheads.
- 2. A's forehead has a, B's forehead has b,
- 3. They want to know if $a + b + c + d = 2^{n+1} 1$.

4. Obvious Solution uses n + 1 bits of comm. Can do better? STUDENTS WORK IN GROUPS TO EITHER DO BETTER THAN n + 1 OR SHOW YOU CAN"T

ション ふゆ アメビア メロア しょうくしゃ

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

1. A:
$$a_0 \cdots a_{n-1}$$
, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 - 約९.0

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/3-1} \oplus a_{2n/3-1}, \ \cdots, \ c_{n/3-1} \oplus b_{2n/3-1} \oplus c_{n-1}$.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/3-1} \oplus a_{2n/3-1}, \dots, c_{n/3-1} \oplus b_{2n/3-1} \oplus c_{n-1}$.

 Carol can add first 1/3 of the bits, sees if its 1^{n/3}, if its not say NO, if it is say MAYBE and the carry bit.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/3-1} \oplus a_{2n/3-1}, \cdots, c_{n/3-1} \oplus b_{2n/3-1} \oplus c_{n-1}$.
- Carol can add first 1/3 of the bits, sees if its 1^{n/3}, if its not say NO, if it is say MAYBE and the carry bit.
- Bob can add second 1/3 of the bits along with the carry bit, sees if its 1^{n/3}, if its not say NO, if it is say MAYBE and the carry bit.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/3-1} \oplus a_{2n/3-1}, \cdots, c_{n/3-1} \oplus b_{2n/3-1} \oplus c_{n-1}$.
- Carol can add first 1/3 of the bits, sees if its 1^{n/3}, if its not say NO, if it is say MAYBE and the carry bit.
- 4. Bob can add second 1/3 of the bits along with the carry bit, sees if its $1^{n/3}$, if its not say NO, if it is say MAYBE and the carry bit.
- 5. Bob can add third 1/3 of the bits along with the carry bit, sees if its $1^{n/3}$, if its not say NO, if it is say YES.

People are A_1, \ldots, A_k .

People are A_1, \ldots, A_k .

1. A_i has a string of length n on their foreheads.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

People are A_1, \ldots, A_k .

1. A_i has a string of length n on their foreheads.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

2. A_i 's forehead has a_i

People are A_1, \ldots, A_k .

- 1. A_i has a string of length n on their foreheads.
- 2. A_i 's forehead has a_i
- 3. They want to know if $a_1 + \cdots + a_k = 2^{n+1} 1$.

People are A_1, \ldots, A_k .

- 1. A_i has a string of length n on their foreheads.
- 2. A_i 's forehead has a_i
- 3. They want to know if $a_1 + \cdots + a_k = 2^{n+1} 1$.
- 4. Can do in $\frac{n}{k-1} + O(1)$ bits, similar to the k = 3, 4 cases.

People are A_1, \ldots, A_k .

- 1. A_i has a string of length n on their foreheads.
- 2. A_i 's forehead has a_i
- 3. They want to know if $a_1 + \cdots + a_k = 2^{n+1} 1$.
- 4. Can do in $\frac{n}{k-1} + O(1)$ bits, similar to the k = 3, 4 cases.
- 5. Caveat: The O(1) term is really O(k) which matters if k is a function of n.

Lets go back to 3 people. We know we can do $\frac{n}{2} + O(1)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Lets go back to 3 people. We know we can do $\frac{n}{2} + O(1)$. 1. $\frac{n}{2} + O(1)$ is roughly optimal.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lets go back to 3 people. We know we can do $\frac{n}{2} + O(1)$.

- 1. $\frac{n}{2} + O(1)$ is roughly optimal.
- 2. There is an $O(\frac{n}{\log n})$ protocol and it is roughly optimal.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lets go back to 3 people. We know we can do $\frac{n}{2} + O(1)$.

- 1. $\frac{n}{2} + O(1)$ is roughly optimal.
- 2. There is an $O(\frac{n}{\log n})$ protocol and it is roughly optimal.

3. There is an $O(\frac{n}{\log n})$ protocol, optimal UNKNOWN.

Lets go back to 3 people. We know we can do $\frac{n}{2} + O(1)$.

- 1. $\frac{n}{2} + O(1)$ is roughly optimal.
- 2. There is an $O(\frac{n}{\log n})$ protocol and it is roughly optimal.
- 3. There is an $O(\frac{n}{\log n})$ protocol, optimal UNKNOWN.
- 4. There exists an $O(n^{1-\delta})$ protocol and it is roughly optimal.

5. There exists an $O(n^{1-\delta})$ protocol, optimal UNKNOWN.

VOTE!

The Answer

3 people:

Chandra-Furst-Lipton (1983): there is an O(n^{1/2}) protocol; lower bound Ω(1).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Answer

3 people:

- Chandra-Furst-Lipton (1983): there is an O(n^{1/2}) protocol; lower bound Ω(1).
- Gasarch (2006): Lower Bound $\Omega(\log \log n)$.
- Nothing else is known.
- k people:
 - ► Gasarch 2006: there is an O(n^{1/(log₂(k-1))}) protocol. (A more careful analysis of Chandra-Furst-Lipton protocol.)

- Chandra-Furst-Lipton, lower bound $\Omega(1)$.
- Nothing else is known.

For 3 people we have:

For 3 people we have:

1. Elementary proof: Protocol $\frac{n}{2} + O(1)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

For 3 people we have:

1. Elementary proof: Protocol $\frac{n}{2} + O(1)$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

2. Hard proof: Protocol $O(n^{1/2})$.

For 3 people we have:

- 1. Elementary proof: Protocol $\frac{n}{2} + O(1)$.
- 2. Hard proof: Protocol $O(n^{1/2})$.

Open Find an elementary proof for a protocol, $< \frac{n}{2} + O(1)$.

For 3 people we have:

- 1. Elementary proof: Protocol $\frac{n}{2} + O(1)$.
- 2. Hard proof: Protocol $O(n^{1/2})$.

Open Find an elementary proof for a protocol, $< \frac{n}{2} + O(1)$.

Open Similar questions for 4 people, 5 people, etc.