One Triangle, Two Triangles

William Gasarch

Lets Party Like Its 2019

The following is the first theorem in Ramsey Theory:
If there are 6 people at a party, either 3 know each other or 3 do not know each other.

Lets Party Like Its 2019

The following is the first theorem in Ramsey Theory:
If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K_{6} there is a mono K_{3}.

Proof of First Theorem: Whiteboard

Let $C O L$ be a 2 -coloring of the edges of K_{6}.

Proof of First Theorem: Whiteboard

Let $C O L$ be a 2-coloring of the edges of K_{6}.
Let $\operatorname{deg}_{R}(v)$ be the red degree of v.
Let $\operatorname{deg}_{B}(v)$ be the blue degree of v.

Proof of First Theorem: Whiteboard

Let $C O L$ be a 2-coloring of the edges of K_{6}.
Let $\operatorname{deg}_{R}(v)$ be the red degree of v.
Let $\operatorname{deg}_{B}(v)$ be the blue degree of v.
Now goto White Board.

Proof of First Theorem: In Text

Claim For all v either $\operatorname{deg}_{R}(v) \geq 3$ OR $\operatorname{deg}_{B}(v) \geq 3$.

Proof of First Theorem: In Text

Claim For all v either $\operatorname{deg}_{R}(v) \geq 3$ OR $\operatorname{deg}_{B}(v) \geq 3$. Proof If not then $\operatorname{deg}_{R}(v) \leq 2$ AND $\operatorname{deg}_{B}(v) \leq 2$, so $\operatorname{deg}(v) \leq 4$. But all vertices have degree 5 .

Proof of First Theorem: In Text

Claim For all v either $\operatorname{deg}_{R}(v) \geq 3$ OR $\operatorname{deg}_{B}(v) \geq 3$. Proof If not then $\operatorname{deg}_{R}(v) \leq 2$ AND $\operatorname{deg}_{B}(v) \leq 2$, so $\operatorname{deg}(v) \leq 4$. But all vertices have degree 5 .
Assume $\exists v, x, y, z \operatorname{COL}(v, x)=\operatorname{COL}(v, y)=\operatorname{COL}(v, z)=$ RED.

Proof of First Theorem: In Text

Claim For all v either $\operatorname{deg}_{R}(v) \geq 3$ OR $\operatorname{deg}_{B}(v) \geq 3$. Proof If not then $\operatorname{deg}_{R}(v) \leq 2$ AND $\operatorname{deg}_{B}(v) \leq 2$, so $\operatorname{deg}(v) \leq 4$. But all vertices have degree 5 .

Assume $\exists v, x, y, z \operatorname{COL}(v, x)=\operatorname{COL}(v, y)=\operatorname{COL}(v, z)=$ RED.
If $\operatorname{COL}(x, y)=\operatorname{RED} \operatorname{OR} \operatorname{COL}(x, z)=\operatorname{RED} \operatorname{OR} \operatorname{COL}(y, z)=\operatorname{RED}$ then we have a RED K_{3}.

Proof of First Theorem: In Text

Claim For all v either $\operatorname{deg}_{R}(v) \geq 3$ OR $\operatorname{deg}_{B}(v) \geq 3$. Proof If not then $\operatorname{deg}_{R}(v) \leq 2$ AND $\operatorname{deg}_{B}(v) \leq 2$, so $\operatorname{deg}(v) \leq 4$. But all vertices have degree 5 .
Assume $\exists v, x, y, z \operatorname{COL}(v, x)=\operatorname{COL}(v, y)=\operatorname{COL}(v, z)=$ RED.
If $\operatorname{COL}(x, y)=\operatorname{RED} \operatorname{OR} \operatorname{COL}(x, z)=\operatorname{RED} \operatorname{OR} \operatorname{COL}(y, z)=\operatorname{RED}$ then we have a RED K_{3}.
If $\operatorname{COL}(x, y)=\operatorname{BLUE}$ AND $\operatorname{COL}(x, z)=\operatorname{BLUE}$ AND
$\operatorname{COL}(y, z)=$ BLUE then we have a BLUE K_{3}.

Proof of First Theorem: In Text

Claim For all v either $\operatorname{deg}_{R}(v) \geq 3$ OR $\operatorname{deg}_{B}(v) \geq 3$. Proof If not then $\operatorname{deg}_{R}(v) \leq 2$ AND $\operatorname{deg}_{B}(v) \leq 2$, so $\operatorname{deg}(v) \leq 4$. But all vertices have degree 5 .
Assume $\exists v, x, y, z \operatorname{COL}(v, x)=\operatorname{COL}(v, y)=\operatorname{COL}(v, z)=$ RED.
If $\operatorname{COL}(x, y)=\operatorname{RED} \operatorname{OR} \operatorname{COL}(x, z)=\operatorname{RED} \operatorname{OR} \operatorname{COL}(y, z)=\operatorname{RED}$ then we have a RED K_{3}.
If $\operatorname{COL}(x, y)=\operatorname{BLUE}$ AND $\operatorname{COL}(x, z)=\operatorname{BLUE}$ AND $\operatorname{COL}(y, z)=$ BLUE then we have a BLUE K_{3}.
I either case we get a mono K_{3} 's.

Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.

Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.
VOTE (1) $n=12$,

Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.
VOTE (1) $n=12$, (2) $9 \leq n \leq 10$,

Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.
VOTE (1) $n=12$, (2) $9 \leq n \leq 10$, (3) $6 \leq n \leq 8$.

Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.
VOTE (1) $n=12$, (2) $9 \leq n \leq 10$, (3) $6 \leq n \leq 8$.
$n=6$.

Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.
VOTE (1) $n=12$, (2) $9 \leq n \leq 10$, (3) $6 \leq n \leq 8$.
$n=6$.
3. For all 2-coloring of the edges of K_{6} there are 2 mono K_{3} 's

Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.
VOTE (1) $n=12$, (2) $9 \leq n \leq 10$, (3) $6 \leq n \leq 8$.
$n=6$.
3. For all 2-coloring of the edges of K_{6} there are 2 mono K_{3} 's
4. There exists a 2-coloring of the edges of K_{5} that does not have 2 mono K_{3} 's.

Proof of K_{6} Two Triangles Theorem

Theorem For all 2-cols of edges of K_{6} there are 2 mono K_{3} 's Proof Let COL be a 2 -coloring of the edges of K_{6}. Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

We show that $|M| \leq 18$, so $|R|+|B| \geq 2$.

A Mixed Triangle Has a Vertex Such That

- $\left(v_{2}, v_{1}\right)$ is red, $\left(v_{2}, v_{3}\right)$ is blue. View this as $\left(v_{2},\left\{v_{1}, v_{3}\right\}\right)$.
- $\left(v_{3}, v_{1}\right)$ is red, $\left(v_{3}, v_{2}\right)$ is blue. View this as $\left(v_{3},\left\{v_{1}, v_{2}\right\}\right)$.

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.
Map ZAN to M by mapping $(v,\{u, w\})$ to triangle $\{v, u, w\}$.

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.
Map ZAN to M by mapping $(v,\{u, w\})$ to triangle $\{v, u, w\}$.
Claim This mapping is exactly 2 -to- 1 .

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.
Map ZAN to M by mapping $(v,\{u, w\})$ to triangle $\{v, u, w\}$.
Claim This mapping is exactly 2 -to- 1 .
What Zan's map to the triangle:

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.
Map ZAN to M by mapping $(v,\{u, w\})$ to triangle $\{v, u, w\}$.
Claim This mapping is exactly 2 -to- 1 .
What Zan's map to the triangle:

$\left(v_{2},\left\{v_{1}, v_{3}\right\}\right)$ and $\left(v_{3},\left\{v_{1}, v_{2}\right\}\right)$.

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.

Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at vertex v. How many ZAN's use v as their base point?

Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at vertex v. How many ZAN's use v as their base point?
Depends on $\operatorname{deg}_{R}(v)$ and $\operatorname{deg}_{B}(v)$.

Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at vertex v. How many ZAN's use v as their base point?
Depends on $\operatorname{deg}_{R}(v)$ and $\operatorname{deg}_{B}(v)$.
Thought experiment If $\operatorname{deg}_{R}(v)=3$ and $\operatorname{deg}_{B}(v)=2$ then how many ZAN's are of the form

$$
\{v,\{x, y\}\}
$$

Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at vertex v. How many ZAN's use v as their base point?
Depends on $\operatorname{deg}_{R}(v)$ and $\operatorname{deg}_{B}(v)$.
Thought experiment If $\operatorname{deg}_{R}(v)=3$ and $\operatorname{deg}_{B}(v)=2$ then how many ZAN's are of the form

$$
\{v,\{x, y\}\}
$$

$x: \operatorname{COL}(v, x)=$ RED. There are $\operatorname{deg}_{R}(v)$ of them.

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at vertex v. How many ZAN's use v as their base point?
Depends on $\operatorname{deg}_{R}(v)$ and $\operatorname{deg}_{B}(v)$.
Thought experiment If $\operatorname{deg}_{R}(v)=3$ and $\operatorname{deg}_{B}(v)=2$ then how many ZAN's are of the form

$$
\{v,\{x, y\}\}
$$

$x: \operatorname{COL}(v, x)=$ RED. There are $\operatorname{deg}_{R}(v)$ of them.
$y: \operatorname{COL}(v, y)=$ BLUE. There are $\operatorname{deg}_{B}(v)$ of them.

Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at vertex v. How many ZAN's use v as their base point?
Depends on $\operatorname{deg}_{R}(v)$ and $\operatorname{deg}_{B}(v)$.
Thought experiment If $\operatorname{deg}_{R}(v)=3$ and $\operatorname{deg}_{B}(v)=2$ then how many ZAN's are of the form

$$
\{v,\{x, y\}\}
$$

$x: \operatorname{COL}(v, x)=$ RED. There are $\operatorname{deg}_{R}(v)$ of them.
$y: \operatorname{COL}(v, y)=$ BLUE. There are $\operatorname{deg}_{B}(v)$ of them.
So v contributes $\operatorname{deg}_{R}(v) \times \operatorname{deg}_{B}(v)$.

Contributions!

Cases

Contributions!

Cases

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0: v$ contributes 0 .

Contributions!

Cases

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1: v$ contributes 4 .

Contributions!

Cases

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0: v$ contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1$: v contributes 4 .
3. v has $\operatorname{deg}_{R}(v)=3$ or $\operatorname{deg}_{B}(v)=2$: v contributes 6 . Max.

Contributions!

Cases

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1$: v contributes 4 .
3. v has $\operatorname{deg}_{R}(v)=3$ or $\operatorname{deg}_{B}(v)=2$: v contributes 6 . Max.

6 vertices, each contribute ≤ 6,

Contributions!

Cases

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1$: v contributes 4 .
3. v has $\operatorname{deg}_{R}(v)=3$ or $\operatorname{deg}_{B}(v)=2$: v contributes 6 . Max. 6 vertices, each contribute ≤ 6, so

$$
|M| \leq|Z A N| / 2 \leq 6 \times 6 / 2=18, \text { so }
$$

Contributions!

Cases

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1$: v contributes 4 .
3. v has $\operatorname{deg}_{R}(v)=3$ or $\operatorname{deg}_{B}(v)=2$: v contributes 6 . Max. 6 vertices, each contribute ≤ 6, so

$$
\begin{gathered}
|M| \leq|Z A N| / 2 \leq 6 \times 6 / 2=18, \text { so } \\
|R|+|B| \geq 20-|M| \geq 2
\end{gathered}
$$

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.
ZAN is max when each vertex: $3 R$ and $2 B$ (or $2 R$ and $3 B$).
$|Z A N| \leq 6 \times 6=36$.

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.
ZAN is max when each vertex: $3 R$ and $2 B$ (or $2 R$ and $3 B$).
$|Z A N| \leq 6 \times 6=36$.
$|M| \leq|Z A N| / 2=18$.

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.
ZAN is max when each vertex: $3 R$ and $2 B$ (or $2 R$ and $3 B$).
$|Z A N| \leq 6 \times 6=36$.
$|M| \leq|Z A N| / 2=18$.
$|R|+|B| \geq 20-|M| \geq 2$.

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.
ZAN is max when each vertex: $3 R$ and $2 B$ (or $2 R$ and $3 B$).
$|Z A N| \leq 6 \times 6=36$.
$|M| \leq|Z A N| / 2=18$.
$|R|+|B| \geq 20-|M| \geq 2$.
So there are at least 2 Mono Triangles.

Generalization

If we 2-color the edges of K_{n} how many mono K_{3} 's do we have?

Generalization

If we 2-color the edges of K_{n} how many mono K_{3} 's do we have?
VOTE: $(1) \sim n^{c}$ for some $c<1$, (2) $\sim n(3) \sim n^{2},(4) \sim n^{3}$.

Generalization

If we 2-color the edges of K_{n} how many mono K_{3} 's do we have?
VOTE: $(1) \sim n^{c}$ for some $c<1$, (2) $\sim n(3) \sim n^{2},(4) \sim n^{3}$.
$\sim n^{3}$. Actually $\frac{n^{3}}{24}+\Theta\left(n^{2}\right)$.

Generalization

If we 2-color the edges of K_{n} how many mono K_{3} 's do we have?
VOTE: $(1) \sim n^{c}$ for some $c<1$, (2) $\sim n(3) \sim n^{2},(4) \sim n^{3}$.
$\sim n^{3}$. Actually $\frac{n^{3}}{24}+\Theta\left(n^{2}\right)$.
We do one case: $n \equiv 1(\bmod 2)$.

Generalization

If we 2-color the edges of K_{n} how many mono K_{3} 's do we have?
VOTE: $(1) \sim n^{c}$ for some $c<1$, (2) $\sim n(3) \sim n^{2},(4) \sim n^{3}$.
$\sim n^{3}$. Actually $\frac{n^{3}}{24}+\Theta\left(n^{2}\right)$.
We do one case: $n \equiv 1(\bmod 2)$.
Let COL be a coloring of the edges of K_{n}.

Generalization

If we 2-color the edges of K_{n} how many mono K_{3} 's do we have?
VOTE: $(1) \sim n^{c}$ for some $c<1$, (2) $\sim n(3) \sim n^{2},(4) \sim n^{3}$.
$\sim n^{3}$. Actually $\frac{n^{3}}{24}+\Theta\left(n^{2}\right)$.
We do one case: $n \equiv 1(\bmod 2)$.
Let COL be a coloring of the edges of K_{n}.
Then degree of each vertex is $n-1 \equiv 0(\bmod 2)$.

Generalization

If we 2-color the edges of K_{n} how many mono K_{3} 's do we have?
VOTE: $(1) \sim n^{c}$ for some $c<1$, (2) $\sim n(3) \sim n^{2},(4) \sim n^{3}$.
$\sim n^{3}$. Actually $\frac{n^{3}}{24}+\Theta\left(n^{2}\right)$.
We do one case: $n \equiv 1(\bmod 2)$.
Let COL be a coloring of the edges of K_{n}.
Then degree of each vertex is $n-1 \equiv 0(\bmod 2)$.
We find an upper bound on $|Z A N|$.

Maximize $|Z A N|$

To maximize $|Z A N|$ we would, at each vertex, color half of the edges RED and half BLUE.

Maximize $|Z A N|$

To maximize $|Z A N|$ we would, at each vertex, color half of the edges RED and half BLUE.
Each vertex contributes $\left(\frac{n-1}{2}\right)^{2}$ (this is in \mathbb{N} since $n-1 \equiv 0$ $(\bmod 2))$.

Maximize $|Z A N|$

To maximize $|Z A N|$ we would, at each vertex, color half of the edges RED and half BLUE.
Each vertex contributes $\left(\frac{n-1}{2}\right)^{2}$ (this is in \mathbb{N} since $n-1 \equiv 0$ $(\bmod 2))$.

$$
|Z A N| \leq n \frac{(n-1)^{2}}{4}=\frac{(n-1)^{2} n}{4} \text { so }
$$

Maximize $|Z A N|$

To maximize $|Z A N|$ we would, at each vertex, color half of the edges RED and half BLUE.
Each vertex contributes $\left(\frac{n-1}{2}\right)^{2}$ (this is in \mathbb{N} since $n-1 \equiv 0$ $(\bmod 2))$.

$$
\begin{aligned}
|Z A N| & \leq n \frac{(n-1)^{2}}{4}=\frac{(n-1)^{2} n}{4} \text { so } \\
|M| & =|Z A N| / 2 \leq \frac{(n-1)^{2} n}{8}
\end{aligned}
$$

Finishing Up The Proof

Recap

$$
|M| \leq \frac{(n-1)^{2} n}{8}
$$

Finishing Up The Proof

Recap

$$
|M| \leq \frac{(n-1)^{2} n}{8}
$$

Recall

$$
|R|+|B|+|M|=\binom{n}{3}=\frac{n(n-1)(n-2)}{6} \text { hence }
$$

Finishing Up The Proof

Recap

$$
|M| \leq \frac{(n-1)^{2} n}{8}
$$

Recall

$$
\begin{aligned}
& |R|+|B|+|M|=\binom{n}{3}=\frac{n(n-1)(n-2)}{6} \text { hence } \\
& |R|+|B|=\binom{n}{3}=\frac{n(n-1)(n-2)}{6}-|M| \text { hence }
\end{aligned}
$$

Finishing Up The Proof

Recap

$$
|M| \leq \frac{(n-1)^{2} n}{8}
$$

Recall

$$
\begin{gathered}
|R|+|B|+|M|=\binom{n}{3}=\frac{n(n-1)(n-2)}{6} \text { hence } \\
|R|+|B|=\binom{n}{3}=\frac{n(n-1)(n-2)}{6}-|M| \text { hence } \\
|R|+|B| \geq \frac{n(n-1)(n-2)}{6}-\frac{(n-1)^{2} n}{8}
\end{gathered}
$$

Finishing Up The Proof

Recap

$$
|M| \leq \frac{(n-1)^{2} n}{8}
$$

Recall

$$
\begin{aligned}
& |R|+|B|+|M|=\binom{n}{3}=\frac{n(n-1)(n-2)}{6} \text { hence } \\
& \begin{aligned}
|R|+|B|=\binom{n}{3} & =\frac{n(n-1)(n-2)}{6}-|M| \text { hence } \\
|R|+|B| \geq & \frac{n(n-1)(n-2)}{6}-\frac{(n-1)^{2} n}{8} \\
& =\frac{n^{3}}{24}-\frac{n^{2}}{4}+\frac{5 n}{24}
\end{aligned}
\end{aligned}
$$

Can This Be Improved?

The bound is known to be tight.

An Example of a Ramsey Game

1. The board is a graph on 9 vertices. Known that in any 2-coloring there will be at least 72 mono triangles.
2. Alice and Bob alternate coloring edges. Alice uses RED, Bob uses BLUE.
3. Whoever gets the most K_{3} in their color wins. Could be a tie.

An Example of a Ramsey Game

1. The board is a graph on 9 vertices. Known that in any 2-coloring there will be at least 72 mono triangles.
2. Alice and Bob alternate coloring edges. Alice uses RED, Bob uses BLUE.
3. Whoever gets the most K_{3} in their color wins. Could be a tie.

Variants:

1. Whoever gets the most K_{3} in their color wins. Could be a tie.
2. Alice wants to get 37 RED, Bob just wants to stop her.
3. Either player can use either color and whoever completes the x th mono K_{3} wins.
4. There are other variants.

ML

- People in Math have called finding winnings strategies for such games hopeless.
- The are probably right.
- But ML can help us find good strategies.
- Next week Josh will give an ML talk.

