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Lets Party Like Its 2019

The following is the first theorem in Ramsey Theory:
If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K6 there is a mono K3.
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Proof of First Theorem: Whiteboard

Let COL be a 2-coloring of the edges of K6.

Let degR(v) be the red degree of v .
Let degB(v) be the blue degree of v .
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Proof of First Theorem: In Text

Claim For all v either degR(v) ≥ 3 OR degB(v) ≥ 3.

Proof If not then degR(v) ≤ 2 AND degB(v) ≤ 2, so deg(v) ≤ 4.
But all vertices have degree 5.

Assume ∃v , x , y , z COL(v , x) = COL(v , y) = COL(v , z) = RED.

If COL(x , y) = RED OR COL(x , z) = RED OR COL(y , z) = RED
then we have a RED K3.

If COL(x , y) = BLUE AND COL(x , z) = BLUE AND
COL(y , z) = BLUE then we have a BLUE K3.

I either case we get a mono K3’s.
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Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K12 there are 2 mono K3’s

Question Find n such that

1. For all 2-coloring of the edges of Kn there are 2 mono K3’s

2. There exists a 2-coloring of the edges of Kn−1 that does not
have 2 mono K3’s.

VOTE (1) n = 12, (2) 9 ≤ n ≤ 10, (3) 6 ≤ n ≤ 8.
n = 6.

1. For all 2-coloring of the edges of K6 there are 2 mono K3’s

2. There exists a 2-coloring of the edges of K5 that does not
have 2 mono K3’s.
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Proof of K6 Two Triangles Theorem

Theorem For all 2-cols of edges of K6 there are 2 mono K3’s
Proof Let COL be a 2-coloring of the edges of K6.
Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

|R|+ |B|+ |M| =

(
6

3

)
= 20.

We show that |M| ≤ 18, so |R|+ |B| ≥ 2.



A Mixed Triangle Has a Vertex Such That

v1

v2 v3

I (v2, v1) is red, (v2, v3) is blue. View this as (v2, {v1, v3}).

I (v3, v1) is red, (v3, v2) is blue. View this as (v3, {v1, v2}).



Map ZAN to M

Definition A Zan is an element (v , {u,w}) ∈ V ×
(V
2

)
such that

v /∈ {u,w} and COL(v , u) 6= COL(v ,w). ZAN is the set of Zan’s.

Map ZAN to M by mapping (v , {u,w}) to triangle {v , u,w}.
Claim This mapping is exactly 2-to-1.
What Zan’s map to the triangle:

v1

v2 v3

(v2, {v1, v3}) and (v3, {v1, v2}).
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Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

|M| ≤ |ZAN|/2

Now we want to bound |ZAN|.
Look at vertex v . How many ZAN’s use v as their base point?
Depends on degR(v) and degB(v).
Thought experiment If degR(v) = 3 and degB(v) = 2 then how
many ZAN’s are of the form

{v , {x , y}}

x : COL(v , x) = RED. There are degR(v) of them.
y : COL(v , y) = BLUE. There are degB(v) of them.
So v contributes degR(v)× degB(v).
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Contributions!

Cases

1. v has degR(v) = 5 or degB(v) = 0: v contributes 0.

2. v has degR(v) = 4 or degB(v) = 1: v contributes 4.

3. v has degR(v) = 3 or degB(v) = 2: v contributes 6. Max.

6 vertices, each contribute ≤ 6, so

|M| ≤ |ZAN|/2 ≤ 6× 6/2 = 18, so

|R|+ |B| ≥ 20− |M| ≥ 2
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Summary

|R|+ |B|+ |M| =

(
6

3

)
= 20

Map ZAN to M. Map is 2-to-1, so |M| ≤ |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B).
|ZAN| ≤ 6× 6 = 36.

|M| ≤ |ZAN|/2 = 18.

|R|+ |B| ≥ 20− |M| ≥ 2.

So there are at least 2 Mono Triangles.
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Generalization

If we 2-color the edges of Kn how many mono K3’s do we have?

VOTE: (1) ∼ nc for some c < 1, (2) ∼ n (3) ∼ n2, (4) ∼ n3.

∼ n3. Actually n3

24 + Θ(n2).

We do one case: n ≡ 1 (mod 2).
Let COL be a coloring of the edges of Kn.
Then degree of each vertex is n − 1 ≡ 0 (mod 2).

We find an upper bound on |ZAN|.
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We find an upper bound on |ZAN|.



Maximize |ZAN |

To maximize |ZAN| we would, at each vertex, color half of the
edges RED and half BLUE.

Each vertex contributes (n−1
2 )2 (this is in N since n − 1 ≡ 0

(mod 2)).

|ZAN| ≤ n
(n − 1)2

4
=

(n − 1)2n

4
so

|M| = |ZAN|/2 ≤ (n − 1)2n

8
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Finishing Up The Proof

Recap

|M| ≤ (n − 1)2n

8

Recall

|R|+ |B|+ |M| =

(
n

3

)
=

n(n − 1)(n − 2)

6
hence

|R|+ |B| =

(
n

3

)
=

n(n − 1)(n − 2)

6
− |M| hence

|R|+ |B| ≥ n(n − 1)(n − 2)

6
− (n − 1)2n

8

=
n3

24
− n2

4
+

5n

24
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Can This Be Improved?

The bound is known to be tight.



An Example of a Ramsey Game

1. The board is a graph on 9 vertices. Known that in any
2-coloring there will be at least 72 mono triangles.

2. Alice and Bob alternate coloring edges. Alice uses RED, Bob
uses BLUE.

3. Whoever gets the most K3 in their color wins. Could be a tie.

Variants:

1. Whoever gets the most K3 in their color wins. Could be a tie.

2. Alice wants to get 37 RED, Bob just wants to stop her.

3. Either player can use either color and whoever completes the
xth mono K3 wins.

4. There are other variants.
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ML

I People in Math have called finding winnings strategies for
such games hopeless.

I The are probably right.

I But ML can help us find good strategies.

I Next week Josh will give an ML talk.


