One Triangle, Two Triangles

William Gasarch

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The following is the first theorem in Ramsey Theory: If there are 6 people at a party, either 3 know each other or 3 do not know each other.

The following is the first theorem in Ramsey Theory: If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs. For all 2-coloring of the edges of K_6 there is a mono K_3 .

ション ふゆ アメビア メロア しょうくしゃ

Proof of First Theorem: Whiteboard

Let COL be a 2-coloring of the edges of K_6 .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Proof of First Theorem: Whiteboard

Let *COL* be a 2-coloring of the edges of K_6 .

Let $\deg_{R}(v)$ be the **red degree** of v. Let $\deg_{B}(v)$ be the **blue degree** of v.

Proof of First Theorem: Whiteboard

Let *COL* be a 2-coloring of the edges of K_6 .

Let $\deg_R(v)$ be the **red degree** of v. Let $\deg_B(v)$ be the **blue degree** of v.

Now goto White Board.

Claim For all v either $\deg_R(v) \ge 3$ OR $\deg_B(v) \ge 3$.

Claim For all v either $\deg_R(v) \ge 3$ OR $\deg_B(v) \ge 3$. **Proof** If not then $\deg_R(v) \le 2$ AND $\deg_B(v) \le 2$, so $\deg(v) \le 4$. But all vertices have degree 5.

Claim For all v either $\deg_R(v) \ge 3$ OR $\deg_B(v) \ge 3$. **Proof** If not then $\deg_R(v) \le 2$ AND $\deg_B(v) \le 2$, so $\deg(v) \le 4$. But all vertices have degree 5.

Assume $\exists v, x, y, z \ COL(v, x) = COL(v, y) = COL(v, z) = \mathsf{RED}$.

ション ふゆ アメビア メロア しょうくしゃ

Claim For all v either deg_R $(v) \ge 3$ OR deg_B $(v) \ge 3$. **Proof** If not then deg_R $(v) \le 2$ AND deg_B $(v) \le 2$, so deg $(v) \le 4$. But all vertices have degree 5.

Assume $\exists v, x, y, z \ COL(v, x) = COL(v, y) = COL(v, z) = \mathsf{RED}$.

If COL(x, y) = RED OR COL(x, z) = RED OR COL(y, z) = REDthen we have a RED K_3 .

Claim For all v either deg_R $(v) \ge 3$ OR deg_B $(v) \ge 3$. **Proof** If not then deg_R $(v) \le 2$ AND deg_B $(v) \le 2$, so deg $(v) \le 4$. But all vertices have degree 5.

Assume $\exists v, x, y, z \ COL(v, x) = COL(v, y) = COL(v, z) = \mathsf{RED}$.

If COL(x, y) = RED OR COL(x, z) = RED OR COL(y, z) = REDthen we have a RED K_3 .

If COL(x, y) = **BLUE** AND COL(x, z) = **BLUE** AND COL(y, z) = **BLUE** then we have a **BLUE** K_3 .

Claim For all v either deg_R $(v) \ge 3$ OR deg_B $(v) \ge 3$. **Proof** If not then deg_R $(v) \le 2$ AND deg_B $(v) \le 2$, so deg $(v) \le 4$. But all vertices have degree 5.

Assume $\exists v, x, y, z \ COL(v, x) = COL(v, y) = COL(v, z) = \mathsf{RED}$.

If COL(x, y) = RED OR COL(x, z) = RED OR COL(y, z) = REDthen we have a RED K_3 .

If COL(x, y) = **BLUE** AND COL(x, z) = **BLUE** AND COL(y, z) = **BLUE** then we have a **BLUE** K_3 .

I either case we get a mono K_3 's.

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find *n* such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find *n* such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12,

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find *n* such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

ション ふゆ アメビア メロア しょうくしゃ

VOTE (1) n = 12, (2) $9 \le n \le 10$,

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find *n* such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12, (2) $9 \le n \le 10$, (3) $6 \le n \le 8$.

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find *n* such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12, (2) $9 \le n \le 10$, (3) $6 \le n \le 8$. n = 6.

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find *n* such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1)
$$n = 12$$
, (2) $9 \le n \le 10$, (3) $6 \le n \le 8$.
 $n = 6$.

1. For all 2-coloring of the edges of K_6 there are 2 mono K_3 's

ション ふゆ アメビア メロア しょうくしゃ

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find *n* such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

VOTE (1) n = 12, (2) $9 \le n \le 10$, (3) $6 \le n \le 8$. n = 6.

- 1. For all 2-coloring of the edges of K_6 there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_5 that does not have 2 mono K_3 's.

Theorem For all 2-cols of edges of K_6 there are 2 mono K_3 's **Proof** Let *COL* be a 2-coloring of the edges of K_6 . Let *R*, *B*, *M*, be the SET of **RED**, **BLUE**, and **MIXED** triangles.

$$|R| + |B| + |M| = \binom{6}{3} = 20.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We show that $|M| \le 18$, so $|R| + |B| \ge 2$.

A Mixed Triangle Has a Vertex Such That

(v₂, v₁) is red, (v₂, v₃) is blue. View this as (v₂, {v₁, v₃}).
(v₃, v₁) is red, (v₃, v₂) is blue. View this as (v₃, {v₁, v₂}).

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {\binom{V}{2}}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {\binom{V}{2}}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's. Map ZAN to *M* by mapping $(v, \{u, w\})$ to triangle $\{v, u, w\}$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition A Zan is an element $(v, \{u, w\}) \in V \times {\binom{V}{2}}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

ション ふぼう メリン メリン しょうくしゃ

Map ZAN to *M* by mapping $(v, \{u, w\})$ to triangle $\{v, u, w\}$. Claim This mapping is exactly 2-to-1.

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {\binom{V}{2}}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

Map ZAN to *M* by mapping $(v, \{u, w\})$ to triangle $\{v, u, w\}$. Claim This mapping is exactly 2-to-1. What Zan's map to the triangle:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {\binom{V}{2}}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

Map ZAN to *M* by mapping $(v, \{u, w\})$ to triangle $\{v, u, w\}$. Claim This mapping is exactly 2-to-1. What Zan's map to the triangle:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $(v_2, \{v_1, v_3\})$ and $(v_3, \{v_1, v_2\})$.

There is a 2-to-1 map from ZAN to M. Hence

 $|M| \leq |ZAN|/2$

・ロト・日本・ヨト・ヨト・日・ つへぐ

There is a 2-to-1 map from ZAN to M. Hence

 $|M| \leq |ZAN|/2$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Now we want to bound |ZAN|.

There is a 2-to-1 map from ZAN to M. Hence

 $|M| \leq |ZAN|/2$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point?

There is a 2-to-1 map from ZAN to M. Hence

 $|M| \leq |ZAN|/2$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

There is a 2-to-1 map from ZAN to M. Hence

 $|M| \le |ZAN|/2$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

Thought experiment If $\deg_R(v) = 3$ and $\deg_B(v) = 2$ then how many ZAN's are of the form

 $\{v, \{x, y\}\}$

There is a 2-to-1 map from ZAN to M. Hence

 $|M| \le |ZAN|/2$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

Thought experiment If $\deg_R(v) = 3$ and $\deg_B(v) = 2$ then how many ZAN's are of the form

 $\{v, \{x, y\}\}$

x: COL(v, x) = RED. There are $\deg_R(v)$ of them.

There is a 2-to-1 map from ZAN to M. Hence

 $|M| \le |ZAN|/2$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

Thought experiment If $\deg_R(v) = 3$ and $\deg_B(v) = 2$ then how many ZAN's are of the form

 $\{v, \{x, y\}\}$

x: COL(v, x) = RED. There are $\deg_{R}(v)$ of them. y: COL(v, y) = BLUE. There are $\deg_{B}(v)$ of them.

There is a 2-to-1 map from ZAN to M. Hence

 $|M| \le |ZAN|/2$

Now we want to bound |ZAN|.

Look at vertex v. How many ZAN's use v as their base point? Depends on $\deg_{R}(v)$ and $\deg_{B}(v)$.

Thought experiment If $\deg_R(v) = 3$ and $\deg_B(v) = 2$ then how many ZAN's are of the form

$$\{v, \{x, y\}\}$$

x: COL(v, x) = RED. There are $\deg_R(v)$ of them. y: COL(v, y) = BLUE. There are $\deg_B(v)$ of them. So v contributes $\deg_R(v) \times \deg_B(v)$.

Cases

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Cases

1. v has $\deg_{R}(v) = 5$ or $\deg_{B}(v) = 0$: v contributes 0.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has $\deg_{R}(v) = 4$ or $\deg_{B}(v) = 1$: v contributes 4.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has deg_R(v) = 4 or deg_B(v) = 1: v contributes 4.
- 3. v has deg_R(v) = 3 or deg_B(v) = 2: v contributes 6. Max.

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has deg_R(v) = 4 or deg_B(v) = 1: v contributes 4.
- 3. v has deg_R(v) = 3 or deg_B(v) = 2: v contributes 6. Max.

6 vertices, each contribute \leq 6,

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has deg_R(v) = 4 or deg_B(v) = 1: v contributes 4.
- 3. v has deg_R(v) = 3 or deg_B(v) = 2: v contributes 6. Max.

6 vertices, each contribute \leq 6, so

$$|\textit{M}| \leq |\textit{ZAN}|/2 \leq 6 imes 6/2 = 18, \text{ so}$$

Cases

- 1. v has deg_R(v) = 5 or deg_B(v) = 0: v contributes 0.
- 2. v has deg_R(v) = 4 or deg_B(v) = 1: v contributes 4.
- 3. v has deg_R(v) = 3 or deg_B(v) = 2: v contributes 6. Max.

6 vertices, each contribute \leq 6, so

$$|\textit{M}| \leq |\textit{ZAN}|/2 \leq 6 imes 6/2 = 18, \; ext{so}$$

$$|R| + |B| \ge 20 - |M| \ge 2$$

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Map ZAN to *M*. Map is 2-to-1, so $|M| \leq |ZAN|/2$.

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

Map ZAN to *M*. Map is 2-to-1, so $|M| \leq |ZAN|/2$.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

Map ZAN to *M*. Map is 2-to-1, so $|M| \le |ZAN|/2$.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $|M| \leq |ZAN|/2 = 18.$

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq |ZAN|/2$.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $|M| \leq |ZAN|/2 = 18.$

 $|R| + |B| \ge 20 - |M| \ge 2.$

$$|R| + |B| + |M| = \binom{6}{3} = 20$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq |ZAN|/2$.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $|M| \le |ZAN|/2 = 18.$

 $|R| + |B| \ge 20 - |M| \ge 2.$

So there are at least 2 Mono Triangles.

If we 2-color the edges of K_n how many mono K_3 's do we have?

If we 2-color the edges of K_n how many mono K_3 's do we have? VOTE: (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

If we 2-color the edges of K_n how many mono K_3 's do we have? VOTE: (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . ~ n^3 . Actually $\frac{n^3}{24} + \Theta(n^2)$.

If we 2-color the edges of K_n how many mono K_3 's do we have? VOTE: (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . ~ n^3 . Actually $\frac{n^3}{24} + \Theta(n^2)$.

We do one case: $n \equiv 1 \pmod{2}$.

If we 2-color the edges of K_n how many mono K_3 's do we have? VOTE: (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . ~ n^3 . Actually $\frac{n^3}{24} + \Theta(n^2)$.

ション ふゆ アメビア メロア しょうくしゃ

We do one case: $n \equiv 1 \pmod{2}$. Let *COL* be a coloring of the edges of K_n .

If we 2-color the edges of K_n how many mono K_3 's do we have? VOTE: (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . ~ n^3 . Actually $\frac{n^3}{24} + \Theta(n^2)$.

We do one case: $n \equiv 1 \pmod{2}$. Let *COL* be a coloring of the edges of K_n . Then degree of each vertex is $n - 1 \equiv 0 \pmod{2}$.

If we 2-color the edges of K_n how many mono K_3 's do we have? VOTE: (1) ~ n^c for some c < 1, (2) ~ n (3) ~ n^2 , (4) ~ n^3 . ~ n^3 . Actually $\frac{n^3}{24} + \Theta(n^2)$.

We do one case: $n \equiv 1 \pmod{2}$. Let *COL* be a coloring of the edges of K_n . Then degree of each vertex is $n - 1 \equiv 0 \pmod{2}$.

We find an upper bound on |ZAN|.

Maximize |ZAN|

To maximize |ZAN| we would, at each vertex, color half of the edges RED and half BLUE.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

To maximize |ZAN| we would, at each vertex, color half of the edges RED and half BLUE. Each vertex contributes $\left(\frac{n-1}{2}\right)^2$ (this is in \mathbb{N} since $n-1 \equiv 0 \pmod{2}$).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Maximize |ZAN|

To maximize |ZAN| we would, at each vertex, color half of the edges RED and half BLUE. Each vertex contributes $\left(\frac{n-1}{2}\right)^2$ (this is in \mathbb{N} since $n-1 \equiv 0 \pmod{2}$).

$$|ZAN| \le n \frac{(n-1)^2}{4} = \frac{(n-1)^2 n}{4}$$
 so

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Maximize |ZAN|

To maximize |ZAN| we would, at each vertex, color half of the edges RED and half BLUE. Each vertex contributes $\left(\frac{n-1}{2}\right)^2$ (this is in \mathbb{N} since $n-1 \equiv 0 \pmod{2}$).

$$|ZAN| \le n \frac{(n-1)^2}{4} = \frac{(n-1)^2 n}{4}$$
 so $|M| = |ZAN|/2 \le \frac{(n-1)^2 n}{8}$

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recap

$$|M| \le \frac{(n-1)^2 n}{8}$$

Recall

$$|R| + |B| + |M| = \binom{n}{3} = \frac{n(n-1)(n-2)}{6}$$
 hence

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recall

$$|R| + |B| + |M| = {n \choose 3} = \frac{n(n-1)(n-2)}{6}$$
 hence
 $|R| + |B| = {n \choose 3} = \frac{n(n-1)(n-2)}{6} - |M|$ hence

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recall

$$|R| + |B| + |M| = \binom{n}{3} = \frac{n(n-1)(n-2)}{6} \text{ hence}$$
$$|R| + |B| = \binom{n}{3} = \frac{n(n-1)(n-2)}{6} - |M| \text{ hence}$$
$$|R| + |B| \ge \frac{n(n-1)(n-2)}{6} - \frac{(n-1)^2n}{8}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Recap

$$|M| \leq \frac{(n-1)^2 n}{8}$$

Recall

$$|R| + |B| + |M| = \binom{n}{3} = \frac{n(n-1)(n-2)}{6} \text{ hence}$$
$$|R| + |B| = \binom{n}{3} = \frac{n(n-1)(n-2)}{6} - |M| \text{ hence}$$
$$|R| + |B| \ge \frac{n(n-1)(n-2)}{6} - \frac{(n-1)^2n}{8}$$
$$= \frac{n^3}{24} - \frac{n^2}{4} + \frac{5n}{24}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Can This Be Improved?

The bound is known to be tight.

An Example of a Ramsey Game

- 1. The board is a graph on 9 vertices. Known that in any 2-coloring there will be at least 72 mono triangles.
- 2. Alice and Bob alternate coloring edges. Alice uses **RED**, Bob uses **BLUE**.
- 3. Whoever gets the most K_3 in their color wins. Could be a tie.

An Example of a Ramsey Game

- 1. The board is a graph on 9 vertices. Known that in any 2-coloring there will be at least 72 mono triangles.
- 2. Alice and Bob alternate coloring edges. Alice uses **RED**, Bob uses **BLUE**.
- 3. Whoever gets the most K_3 in their color wins. Could be a tie. Variants:
 - 1. Whoever gets the most K_3 in their color wins. Could be a tie.
 - 2. Alice wants to get 37 RED, Bob just wants to stop her.
 - 3. Either player can use either color and whoever completes the xth mono K_3 wins.

ション ふゆ アメビア メロア しょうくしゃ

4. There are other variants.

People in Math have called finding winnings strategies for such games hopeless.

- The are probably right.
- But ML can help us find good strategies.
- Next week Josh will give an ML talk.