The Square Theorem

Exposition by William Gasarch

April 23, 2020
It is impossible to do the Square Theorem on slides so these slides ONLY make sense if you’ve seen he recorded talk.
These Slides Are Not the Complete Story

It is impossible to do the Square Theorem on slides so these slides ONLY make sense if you’ve seen he recorded talk.

During this talk I will go to Zoom White Board several times.
The Square Theorem

Definition Let $G \in \mathbb{N}$ and $c \in \mathbb{N}$. Let $\text{COL}: [G] \times [G] \rightarrow [c]$.

1. A *mono L* is 3 points

 $$(x, y), (x + d, y), (x, y + d)$$

 that are all the same color ($d \geq 1$). This is an isosceles L.

2. A *mono Square* is 4 points

 $$(x, y), (x + d, y), (x, y + d), (x + d, y + d)$$

 that are all the same color ($d \geq 1$). This is a square.
The Square Theorem

Theorem There exists G such that for all $\text{COL} : [G] \times [G] \rightarrow [2]$ there exists a mono square.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \to [2]$ there exists a mono square.

1. The proof of **The Square Theorem** gives enormous bounds on G; however, the answer is known to be 15.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds on G; however, the answer is known to be 15.
2. We will first prove *For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.*
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \to [2]$ there exists a mono square.

1. The proof of **The Square Theorem** gives enormous bounds on G; however, the answer is known to be 15.
2. We will first prove *For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \to [c]$ there exists a mono L.*
3. To prove **The Square Theorem** (about 2-coloring) we need to know that $GG(c)$ exists for a very large c.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

1. The proof of **The Square Theorem** gives enormous bounds on G; however, the answer is known to be 15.

2. We will first prove *For all c there exists $GG = GG(c)$ such that for all $\text{COL}: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.*

3. To prove **The Square Theorem** (about 2-coloring) we need to know that $GG(c)$ exists for a very large c.

4. More Colors: *For all c there exists $G = G(c)$ such that for all $\text{COL}: [G] \times [G] \rightarrow [c]$ there exists a mono square.* Proof needs a larger c' for $GG(c')$.
Theorem For all c there exists $GG = GG(c)$ such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.
The L Theorem for $c = 2$

Theorem For all c there exists $GG = GG(c)$ such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Proof We prove this for $c = 2$. We will set H later. Let $COL: [H] \times [H] \rightarrow [c]$.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles.

View a 2-coloring of $[H] \times [H]$ as a 2^9-coloring of the tiles. This is very typical of VDW-Ramsey Theory: a 2-coloring of BLAH is viewed as a X-coloring of a different object where X is quite large.
The L Theorem for $c = 2$

Theorem For all c there exists $GG = GG(c)$ such that for all $COL: [GG] \times [GG] \to [c]$ there exists a mono L.

Proof We prove this for $c = 2$. We will set H later. Let $COL: [H] \times [H] \to [c]$.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times [H]$ as a 2^9-coloring of the tiles.
Theorem For all c there exists $GG = GG(c)$ such that for all $COL : [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Proof We prove this for $c = 2$. We will set H later. Let $COL : [H] \times [H] \rightarrow [c]$.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times [H]$ as a 2^9-coloring of the tiles.

This is very typical of VDW-Ramsey Theory: a 2-coloring of BLAH is viewed as a \times-coloring of a different object where \times is quite large.
Why This Size Tile?

Any 2-coloring of the 3×3 tile will have two of the same color in the first column and hence an almost L
Why This Size Tile?

Any 2-coloring of the 3×3 tile will have two of the same color in the first column and hence an almost L

Goto Zoom-White Board.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 3(2^9 + 1)$.
Take $H = 3(2^9 + 1)$.

Make H Big Enough To Get Two Tiles Same Color

Take $H = 3(2^9 + 1)$.

View $[H] \times [H]$ grid of points as $[2^9 + 1] \times [2^9 + 1]$ grid of tiles. Look at the first column of tiles. Two are the same color.
Take $H = 3(2^9 + 1)$.

Look at the first column of tiles. Two are the same color.

Go to Zoom-White Board.
The L Theorem for $c = 3$

First take 4×4-tiles.
The \(L \) Theorem for \(c = 3 \)

First take \(4 \times 4 \)-tiles.

Any 3-coloring of the \(4 \times 4 \) tile will have two of the same color in the first column and hence an \textbf{almost} \(L \)
The L Theorem for $c = 3$

First take 4×4-tiles.
Any 3-coloring of the 4×4 tile will have two of the same color in the first column and hence an almost L

Goto Zoom-White Board.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 4(3^{16} + 1)$.

View $[H] \times [H]$ grid of points as $[3^{16} + 1] \times [3^{16} + 1]$ grid of tiles.
Take $H = 4(3^{16} + 1)$.

View $[H] \times [H]$ grid of **points** as $[3^{16} + 1] \times [3^{16} + 1]$ grid of **tiles**.
Make H Big Enough To Get Two Tiles Same Color

Take $H = 4(3^{16} + 1)$.

View $[H] \times [H]$ grid of points as $[3^{16} + 1] \times [3^{16} + 1]$ grid of tiles.

Look at the first column of tiles. Two are the same color.
Take $H = 4(3^{16} + 1)$.

View $[H] \times [H]$ grid of points as $[3^{16} + 1] \times [3^{16} + 1]$ grid of tiles. Look at the first column of tiles. Two are the same color.

Go to Zoom-White Board.
Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L’s converging to the same point.
Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L’s converging to the same point.

Go to Zoom-White Board.
Theorem For all c there exists $GG = GG(c)$ such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

We won’t prove this but I am sure any of you could prove it given what we have done so far. Would be messy. Easier to prove it from the Hales-Jewitt Theorem, which we won’t be doing.
Full L Theorem

Theorem For all c there exists $GG = GG(c)$ such that for all $COL: [GG] \times [GG] \to [c]$ there exists a mono L.

▶ We won’t prove this but I am sure any of you could prove it given what we have done so far. Would be messy.
Theorem For all \(c \) there exists \(GG = GG(c) \) such that for all \(\text{COL}: [GG] \times [GG] \rightarrow [c] \) there exists a mono \(L \).

- We won’t prove this but I am sure any of you could prove it given what we have done so far. Would be messy.
- Easier to prove it from the Hales-Jewitt Theorem, which we won’t be doing.
The Square Theorem

Theorem There exists G such that for all $\text{COL} : [G] \times [G] \rightarrow [2]$ there exists a mono square.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Go to Zoom Whiteboard for rest of proof.
Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.
Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.
The Square Theorem

Theorem There exists \(G \) such that for all \(\text{COL}: [G] \times [G] \rightarrow [2] \) there exists a mono square.

Proof \(G \) will be \(GG(2) GG(2^{GG(2)^2}) \).

Tile the \([G] \times [G] \) plane with \(GG(2) \times GG(2) \) Tiles.

View the 2-coloring of \([G] \times [G]\) as a \(2^{GG(2)^2}\) -coloring of the tiles.
The Square Theorem

Theorem There exists G such that for all $\text{COL} : [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$-coloring of the tiles.

For any 2-coloring of $[G] \times [G]$:

- Every tile has a mono L
- There is a mono L of tiles.
The Square Theorem

Theorem There exists G such that for all $\text{COL}: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$-coloring of the tiles.

For any 2-coloring of $[G] \times [G]$:

- Every tile has a mono L
- There is a mono L of tiles.

Go to Zoom Whiteboard for rest of proof.