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These Slides Are Not the Complete Story

It is impossible to do the Square Theorem on slides so these slides
ONLY make sense if you’ve seen he recorded talk.

During this talk I will go to Zoom White Board several times.
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The Square Theorem

Definition Let G ∈ N and c ∈ N. Let COL : [G ]× [G ]→ [c].

1. A mono L is 3 points

(x , y), (x + d , y), (x , y + d)

that are all the same color (d ≥ 1). This is an isosceles L.

2. A mono Square is 4 points

(x , y), (x + d , y), (x , y + d), (x + d , y + d)

that are all the same color (d ≥ 1). This is a square.



The Square Theorem

Theorem There exists G such that for all COL : [G ]× [G ]→ [2]
there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds
on G ; however, the answer is known to be 15.

2. We will first prove For all c there exists GG = GG (c) such
that for all COL : [GG ]× [GG ]→ [c] there exists a mono L.

3. To prove The Square Theorem (about 2-coloring) we need
to know that GG (c) exists for a very large c .

4. More Colors: For all c there exists G = G (c) such that for all
COL : [G ]× [G ]→ [c] there exists a mono square. Proof
needs a larger c ′ for GG (c ′).
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The L Theorem for c = 2

Theorem For all c there exists GG = GG (c) such that for all
COL : [GG ]× [GG ]→ [c] there exists a mono L.

Proof We prove this for c = 2. We will set H later. Let
COL : [H]× [H]→ [c].

Take the [H]× [H] grid and tile it with 3× 3 tiles.
View a 2-coloring of [H]× [H] as a 29-coloring of the tiles.

This is very typical of VDW-Ramsey Theory: a 2-coloring of
BLAH is viewed as a X -coloring of a different object where
X is quite large.
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Why This Size Tile?

Any 2-coloring of the 3× 3 tile will have two of the same color in
the first column and hence an almost L

Goto Zoom-White Board.
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Make H Big Enough To Get Two Tiles Same Color

Take H = 3(29 + 1).

View [H]× [H] grid of points as [29 + 1]× [29 + 1] grid of tiles.

Look at the first column of tiles. Two are the same color.

Go to Zoom-White Board.
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The L Theorem for c = 3

First take 4× 4-tiles.

Any 3-coloring of the 4× 4 tile will have two of the same color in
the first column and hence an almost L

Goto Zoom-White Board.
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Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored
almost-L’s converging to the same point.
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Full L Theorem

Theorem For all c there exists GG = GG (c) such that for all
COL : [GG ]× [GG ]→ [c] there exists a mono L.

I We won’t prove this but I am sure any of you could prove it
given what we have done so far. Would be messy.

I Easier to prove it from the Hales-Jewitt Theorem, which we
won’t be doing.
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The Square Theorem

Theorem There exists G such that for all COL : [G ]× [G ]→ [2]
there exists a mono square.

Proof G will be GG (2)GG (2GG(2)2).

Tile the [G ]× [G ] plane with GG (2)× GG (2) Tiles.

View the 2-coloring of [G ]× [G ] as a 2GG(2)2-coloring of the tiles.

For any 2-coloring of [G ]× [G ]:

I Every tile has a mono L

I There is a mono L of tiles.

Go to Zoom Whiteboard for rest of proof.
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