Should Tables be Sorted: Cheat Sheet

William Gasarch
Clyde Kruskal

April 19, 2020
The Cell Probe Model

Definition The *Cell Probe Model* for search is as follows:

1. The size of the universe is U. The universe is $\{1, \ldots, U\}$.
2. The number of elements from the universe that we will store is n.
3. The function PUT takes $A \in \binom{[U]}{n}$ and outputs the elements of A in some order. This tells us how to store A in an array.
4. An algorithm $FIND$ that, on input $x \in U$, probes the array (by asking ‘What is in cell c’), and based on the answer probes another cell, etc, and then says either x is in A, or x is not in A.
Examples One: Sort

- The function PUT takes $A \in ([U]_n)$ and puts them in an n-array SORTED.
- The algorithm $FIND$ does Binary Search.

Number of Probes $\lceil \log(n + 1) \rceil$.

Can we do better?
Silly Example: \(U = n \).

- The function \(PUT \) takes \(A \in \left(\begin{array}{c} n \\ n \end{array} \right) \) and puts \(A \) into an \(n \)-array. Note that \textit{everything in} \(U \) \textit{is in the table}.

- Just say \textit{YES}, since \textit{EVERY} element is in the table.

Number of Probes 0.

Caveat The Model only asked us to determine if \(x \) is \textit{IN} the table, not to find \textit{WHERE} in the table \(x \) is.
Silly Example: $U = n + 1$.

- The function PUT takes $A \in \binom{[n+1]}{n}$, notes that z is the ONLY element of $U - A$, and puts $z - 1 \pmod{U}$ into the first spot of the array.

- Given x, look at the first spot of the array and you see w. If $x = w + 1 \pmod{U}$ then say NO, else say YES.

Number of Probes 1.
1 Probes But Its HW

\[U = 2n - 2. \]

I have notes on this and there will be a HW on it.
We saw that if U is not that big then we can do FIND with $\ll \log n$ probes.
Main Result

We saw that if U is not that big then we can do FIND with $<< \log n$ probes. The main result is that if U is BIG then it REQUIRES $\log n$ probes.
Lemma on Sorting

Lemma If $U \geq 2n - 1$ and the elements are always put in in sorted order than ANY probe algorithm requires $\geq \log(n + 1)$ probes.
Lemma If $U \geq 2n - 1$ and the elements are always put in in sorted order than ANY probe algorithm requires $\geq \log(n + 1)$ probes. We omit the proof. Its in the paper. It is an adversary argument.
Lemma on Sorting

Lemma If $U \geq 2n - 1$ and the elements are always put in in sorted order than ANY probe algorithm requires $\geq \log(n + 1)$ probes. We omit the proof. Its in the paper. It is an adversary argument. We can rephrase the lemma as follows:

Lemma Let σ be the permutation $(1, 2, 3, \ldots, n)$. If $U \geq 2n - 1$ and the elements are always put in in the array using the perm σ then ANY probe algorithm requires $\geq \log(n + 1)$ probes.
Lemma on Any Permutation

Let $\sigma = (3, 4, 5, 1, 2)$. Then we can think of putting elements into an array using this σ. $A[1]$ would have the 3rd largest elements $A[2]$ would have the 4th largest elements $A[3]$ would have the 5th largest elements $A[4]$ would have the 1st largest elements $A[5]$ would have the 2nd largest elements

Lemma Let σ be any permutation of \{1, \ldots, n\}. If $U \geq 2n - 1$ and the elements are always put in in the array using the perm σ then ANY probe algorithm requires $\geq \log(n + 1)$ probes. We omit the proof. Its in the paper. It is an adversary argument.
Main Theorem

Theorem Let $U \geq R_n(2n - 1, n!)$ (n-ary Ramsey, $2n - 1$ homog set, $n!$ color). Then any Cell Probe Search Algorithm requires $\log_2(n + 1)$ probes.
Main Theorem

Theorem Let $U \geq R_n(2n - 1, n!)$ (n-ary Ramsey, $2n - 1$ homog set, $n!$ color). Then any Cell Probe Search Algorithm requires $\log_2(n + 1)$ probes.

Proof Color $\binom{U}{n}$ as follows: Color $X \in \binom{U}{n}$ by σ such that X was put into the array via σ.

By the n-ary Ramsey Theorem and the definition of U there exists $2n - 1$ element that are always put into the array using the SAME perm, which we call σ.

By Lemma above, if you restrict the cell probe algorithm to there $2n - 1$ elements then ANY probe-algorithm requires $\log_2(n + 1)$ probes.