Two Triangles

William Gasarch
Clyde Kruskal

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K_{6} there is a mono K_{3}.

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K_{6} there is a mono K_{3}.
Pedagogical Point In this class we then did hypergraphs so we stated the above theorem in terms of coloring $\binom{[6]}{2}$. In this talk it will be helpful to use graphs.

Trivial Theorem

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.

Trivial Theorem

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.
Not gong to vote on this since if you saw my talk you know the answer.

Trivial Theorem

For all 2-cols of edges of K_{12} there are 2 mono K_{3} 's
Question Find n such that

1. For all 2-coloring of the edges of K_{n} there are 2 mono K_{3} 's
2. There exists a 2 -coloring of the edges of K_{n-1} that does not have 2 mono K_{3} 's.
Not gong to vote on this since if you saw my talk you know the answer.
3. For all 2-coloring of the edges of K_{6} there are 2 mono K_{3} 's
4. There exists a 2 -coloring of the edges of K_{5} that does not have 2 mono K_{3} 's.

Proof of K_{6} Two Triangles Theorem

Theorem For all 2-cols of edges of K_{6} there are 2 mono K_{3} 's Proof Let COL be a 2 -coloring of the edges of K_{6}. Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

We show that $|M| \leq 18$, so $|R|+|B| \geq 2$.

A Mixed Triangle Has a Vertex Such That

- $\left(v_{2}, v_{1}\right)$ is red, $\left(v_{2}, v_{3}\right)$ is blue. View this as $\left(v_{2},\left\{v_{1}, v_{3}\right\}\right)$.
- $\left(v_{3}, v_{1}\right)$ is red, $\left(v_{3}, v_{2}\right)$ is blue. View this as $\left(v_{3},\left\{v_{1}, v_{2}\right\}\right)$.

We could map every mixed triangle to $\left(\begin{array}{c}v \times\binom{ v}{2}\end{array}\right)$ but that would be a mess and not quite right anyway.

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.
Map ZAN to M by mapping $(v,\{u, w\})$ to triangle (v, u, w).

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.
Map ZAN to M by mapping $(v,\{u, w\})$ to triangle (v, u, w).
Claim This mapping is exactly 2 -to- 1 .

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.
Map ZAN to M by mapping $(v,\{u, w\})$ to triangle (v, u, w).
Claim This mapping is exactly 2 -to- 1 .
What Zan's map to the triangle:

Map ZAN to M

Definition A Zan is an element $(v,\{u, w\}) \in V \times\binom{ V}{2}$ such that $v \notin\{u, w\}$ and $\operatorname{COL}(v, u) \neq \operatorname{COL}(v, w)$. ZAN is the set of Zan's.
Map ZAN to M by mapping $(v,\{u, w\})$ to triangle (v, u, w).
Claim This mapping is exactly 2 -to- 1 .
What Zan's map to the triangle:

$\left(v_{2},\left\{v_{1}, v_{3}\right\}\right)$ and $\left(v_{3},\left\{v_{1}, v_{2}\right\}\right)$.

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.

Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5 .
Cases:

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5 .
Cases:

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0: v$ contributes 0 .

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5 .
Cases:

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1: v$ contributes 4 .

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5 .
Cases:

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1: v$ contributes 4 .
3. v has $\operatorname{deg}_{R}(v)=3$ or $\operatorname{deg}_{B}(v)=2$: v contributes 6. Max.

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5 .
Cases:

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1: v$ contributes 4 .
3. v has $\operatorname{deg}_{R}(v)=3$ or $\operatorname{deg}_{B}(v)=2$: v contributes 6. Max.

6 vertices, each contribute ≤ 6,

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5 .
Cases:

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1: v$ contributes 4 .
3. v has $\operatorname{deg}_{R}(v)=3$ or $\operatorname{deg}_{B}(v)=2$: v contributes 6 . Max.

6 vertices, each contribute ≤ 6, so $|M| \leq|Z A N| / 2 \leq 6 \times 6 / 2=18$

Upper Bound on M

There is a 2-to-1 map from $Z A N$ to M. Hence

$$
|M| \leq|Z A N| / 2
$$

Now we want to bound $|Z A N|$.
Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5 .
Cases:

1. v has $\operatorname{deg}_{R}(v)=5$ or $\operatorname{deg}_{B}(v)=0$: v contributes 0 .
2. v has $\operatorname{deg}_{R}(v)=4$ or $\operatorname{deg}_{B}(v)=1: v$ contributes 4 .
3. v has $\operatorname{deg}_{R}(v)=3$ or $\operatorname{deg}_{B}(v)=2$: v contributes 6 . Max.

6 vertices, each contribute ≤ 6, so $|M| \leq|Z A N| / 2 \leq 6 \times 6 / 2=18$

$$
|R|+|B| \geq 20-|M| \geq 2
$$

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.
ZAN is max when each vertex: $3 R$ and $2 B$ (or $2 R$ and $3 B$).
$|Z A N| \leq 6 \times 6=36$.

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.
ZAN is max when each vertex: $3 R$ and $2 B$ (or $2 R$ and $3 B$).
$|Z A N| \leq 6 \times 6=36$.
$|M| \leq|Z A N| / 2=18$.

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.
ZAN is max when each vertex: $3 R$ and $2 B$ (or $2 R$ and $3 B$).
$|Z A N| \leq 6 \times 6=36$.
$|M| \leq|Z A N| / 2=18$.
$|R|+|B| \geq 20-|M| \geq 2$.

Summary

$$
|R|+|B|+|M|=\binom{6}{3}=20
$$

Map ZAN to M. Map is 2-to-1, so $|M| \leq|Z A N| / 2$.
ZAN is max when each vertex: $3 R$ and $2 B$ (or $2 R$ and $3 B$).
$|Z A N| \leq 6 \times 6=36$.
$|M| \leq|Z A N| / 2=18$.
$|R|+|B| \geq 20-|M| \geq 2$.
So there are at least 2 Mono Triangles.

