Two Triangles

William Gasarch Clyde Kruskal

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs.

For all 2-coloring of the edges of K_6 there is a mono K_3 .

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs. For all 2-coloring of the edges of K_6 there is a mono K_3 .

Pedagogical Point In this class we then did hypergraphs so we stated the above theorem in terms of coloring $\binom{[6]}{2}$. In this talk it will be helpful to use graphs.

Trivial Theorem

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find n such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

Trivial Theorem

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find n such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

Not gong to vote on this since if you saw my talk you know the answer.

Trivial Theorem

For all 2-cols of edges of K_{12} there are 2 mono K_3 's

Question Find n such that

- 1. For all 2-coloring of the edges of K_n there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_{n-1} that does not have 2 mono K_3 's.

Not gong to vote on this since if you saw my talk you know the answer.

- 1. For all 2-coloring of the edges of K_6 there are 2 mono K_3 's
- 2. There exists a 2-coloring of the edges of K_5 that does not have 2 mono K_3 's.

Proof of K_6 **Two Triangles Theorem**

Theorem For all 2-cols of edges of K_6 there are 2 mono K_3 's **Proof** Let COL be a 2-coloring of the edges of K_6 . Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

$$|R| + |B| + |M| = {6 \choose 3} = 20.$$

We show that $|M| \le 18$, so $|R| + |B| \ge 2$.

A Mixed Triangle Has a Vertex Such That

- (v_2, v_1) is red, (v_2, v_3) is blue. View this as $(v_2, \{v_1, v_3\})$.
- (v_3, v_1) is red, (v_3, v_2) is blue. View this as $(v_3, \{v_1, v_2\})$.

We could map every mixed triangle to $\binom{V \times \binom{V}{2}}{2}$ but that would be a mess and not quite right anyway.

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {V \choose 2}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {V \choose 2}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's. Map ZAN to M by mapping $(v, \{u, w\})$ to triangle (v, u, w).

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {V \choose 2}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

Map ZAN to M by mapping $(v, \{u, w\})$ to triangle (v, u, w). Claim This mapping is exactly 2-to-1.

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {V \choose 2}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

Map ZAN to M by mapping $(v, \{u, w\})$ to triangle (v, u, w). Claim This mapping is exactly 2-to-1.

What Zan's map to the triangle:

Definition A **Zan** is an element $(v, \{u, w\}) \in V \times {V \choose 2}$ such that $v \notin \{u, w\}$ and $COL(v, u) \neq COL(v, w)$. ZAN is the set of Zan's.

Map ZAN to M by mapping $(v, \{u, w\})$ to triangle (v, u, w). Claim This mapping is exactly 2-to-1.

What Zan's map to the triangle:

 $(v_2, \{v_1, v_3\})$ and $(v_3, \{v_1, v_2\})$.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \le |ZAN|/2$$

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \leq |ZAN|/2$$

Now we want to bound |ZAN|.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \leq |ZAN|/2$$

Now we want to bound |ZAN|.

Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5.

Cases:

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \leq |ZAN|/2$$

Now we want to bound |ZAN|.

Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5.

Cases:

1. v has $\deg_R(v) = 5$ or $\deg_B(v) = 0$: v contributes 0.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \leq |ZAN|/2$$

Now we want to bound |ZAN|.

Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5.

Cases:

- 1. v has $\deg_R(v) = 5$ or $\deg_B(v) = 0$: v contributes 0.
- 2. $v \text{ has } \deg_R(v) = 4 \text{ or } \deg_B(v) = 1$: v contributes 4.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \leq |ZAN|/2$$

Now we want to bound |ZAN|.

Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5.

Cases:

- 1. v has $\deg_R(v) = 5$ or $\deg_B(v) = 0$: v contributes 0.
- 2. v has $\deg_R(v) = 4$ or $\deg_B(v) = 1$: v contributes 4.
- 3. v has $\deg_R(v) = 3$ or $\deg_B(v) = 2$: v contributes 6. Max.

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \leq |ZAN|/2$$

Now we want to bound |ZAN|.

Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5.

Cases:

- 1. v has $\deg_R(v) = 5$ or $\deg_B(v) = 0$: v contributes 0.
- 2. $v \text{ has } \deg_R(v) = 4 \text{ or } \deg_B(v) = 1$: v contributes 4.
- 3. v has $\deg_R(v) = 3$ or $\deg_B(v) = 2$: v contributes 6. Max.

6 vertices, each contribute \leq 6,

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \leq |ZAN|/2$$

Now we want to bound |ZAN|.

Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5.

Cases:

- 1. v has $\deg_R(v) = 5$ or $\deg_B(v) = 0$: v contributes 0.
- 2. $v \text{ has } \deg_R(v) = 4 \text{ or } \deg_B(v) = 1$: v contributes 4.
- 3. v has $\deg_R(v) = 3$ or $\deg_B(v) = 2$: v contributes 6. Max.

6 vertices, each contribute \leq 6, so $|M| \leq |ZAN|/2 \leq 6 \times 6/2 = 18$

There is a 2-to-1 map from ZAN to M. Hence

$$|M| \leq |ZAN|/2$$

Now we want to bound |ZAN|.

Look at how much each vertex can contribute to ZAN. Note that each vertex has degree 5.

Cases:

- 1. v has $\deg_R(v) = 5$ or $\deg_B(v) = 0$: v contributes 0.
- 2. $v \text{ has } \deg_R(v) = 4 \text{ or } \deg_B(v) = 1$: v contributes 4.
- 3. v has $\deg_R(v) = 3$ or $\deg_B(v) = 2$: v contributes 6. Max.

6 vertices, each contribute \leq 6, so $|\mathit{M}| \leq |\mathit{ZAN}|/2 \leq 6 \times 6/2 = 18$

$$|R| + |B| \ge 20 - |M| \ge 2$$

$$|R| + |B| + |M| = {6 \choose 3} = 20$$

$$|R| + |B| + |M| = {6 \choose 3} = 20$$

Map ZAN to M. Map is 2-to-1, so $|M| \le |ZAN|/2$.

$$|R| + |B| + |M| = {6 \choose 3} = 20$$

Map ZAN to M. Map is 2-to-1, so $|M| \le |ZAN|/2$.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

$$|R| + |B| + |M| = {6 \choose 3} = 20$$

Map ZAN to M. Map is 2-to-1, so $|M| \le |ZAN|/2$.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| \le 6 \times 6 = 36$.

$$|M| \le |ZAN|/2 = 18.$$

$$|R| + |B| + |M| = {6 \choose 3} = 20$$

Map ZAN to M. Map is 2-to-1, so $|M| \le |ZAN|/2$.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| < 6 \times 6 = 36$.

$$|M| \leq |ZAN|/2 = 18.$$

$$|R| + |B| \ge 20 - |M| \ge 2.$$

$$|R| + |B| + |M| = {6 \choose 3} = 20$$

Map ZAN to M. Map is 2-to-1, so $|M| \le |ZAN|/2$.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B). $|ZAN| < 6 \times 6 = 36$.

$$|M| \le |ZAN|/2 = 18.$$

$$|R| + |B| \ge 20 - |M| \ge 2.$$

So there are at least 2 Mono Triangles.