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Pedagogical Point In this class we then did hypergraphs so we
stated the above theorem in terms of coloring ([g]). In this talk it
will be helpful to use graphs.
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Proof of Ks Two Triangles Theorem

Theorem For all 2-cols of edges of Kg there are 2 mono K3's
Proof Let COL be a 2-coloring of the edges of K.
Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

6
IR+ |B| + M| = (3> — 20.

We show that |[M| <18, so |R| + |B| > 2.



A Mixed Triangle Has a Vertex Such That

@

» (vo,v1) is red, (v2, v3) is blue. View this as (v2, {v1, v3}).

» (v3,v1) is red, (v3, v2) is blue. View this as (v3, {v1, v }).

ixed 1 V()
We could map every mixed triangle to ( 2 ) but that would be
a mess and not quite right anyway.
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Definition A Zan is an element (v,{u,w}) € V x (\2/) such that
v ¢ {u,w} and COL(v,u) # COL(v,w). ZAN is the set of Zan's.

Map ZAN to M by mapping (v, {u, w}) to triangle (v, u, w).
Claim This mapping is exactly 2-to-1.
What Zan's map to the triangle:

(V2, {Vl, V3}) and (V3, {Vl, Vg}).
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Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence
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Now we want to bound |ZAN)|.

Look at how much each vertex can contribute to ZAN. Note that
each vertex has degree 5.

Cases:

1. v has deggr(v) =5 or degg(v) = 0: v contributes 0.
2. v has degr(v) = 4 or degg(v) = 1: v contributes 4.
3. v has degr(v) = 3 or degg(v) = 2: v contributes 6. Max.
6 vertices, each contribute < 6, so |[M| < |ZAN|/2 <6 x 6/2 =18
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Summary

6
IR+ |B| + M| = <3> =20

Map ZAN to M. Map is 2-to-1, so |M| < |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B).
|ZAN| < 6 x 6 = 36.

IM| < |ZAN|/2 = 18.
IR| +|B| > 20— M| > 2.

So there are at least 2 Mono Triangles.



