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Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and
can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K6 there is a mono K3.

Pedagogical Point In this class we then did hypergraphs so we
stated the above theorem in terms of coloring

([6]
2

)
. In this talk it

will be helpful to use graphs.



Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and
can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K6 there is a mono K3.

Pedagogical Point In this class we then did hypergraphs so we
stated the above theorem in terms of coloring

([6]
2

)
. In this talk it

will be helpful to use graphs.



Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and
can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K6 there is a mono K3.

Pedagogical Point In this class we then did hypergraphs so we
stated the above theorem in terms of coloring

([6]
2

)
. In this talk it

will be helpful to use graphs.



Trivial Theorem

For all 2-cols of edges of K12 there are 2 mono K3’s

Question Find n such that

1. For all 2-coloring of the edges of Kn there are 2 mono K3’s

2. There exists a 2-coloring of the edges of Kn−1 that does not
have 2 mono K3’s.

Not gong to vote on this since if you saw my talk you know the
answer.

1. For all 2-coloring of the edges of K6 there are 2 mono K3’s

2. There exists a 2-coloring of the edges of K5 that does not
have 2 mono K3’s.
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Proof of K6 Two Triangles Theorem

Theorem For all 2-cols of edges of K6 there are 2 mono K3’s
Proof Let COL be a 2-coloring of the edges of K6.
Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

|R|+ |B|+ |M| =

(
6

3

)
= 20.

We show that |M| ≤ 18, so |R|+ |B| ≥ 2.



A Mixed Triangle Has a Vertex Such That

v1

v2 v3

I (v2, v1) is red, (v2, v3) is blue. View this as (v2, {v1, v3}).

I (v3, v1) is red, (v3, v2) is blue. View this as (v3, {v1, v2}).

We could map every mixed triangle to
(V×(V2)

2

)
but that would be

a mess and not quite right anyway.



Map ZAN to M

Definition A Zan is an element (v , {u,w}) ∈ V ×
(V
2

)
such that

v /∈ {u,w} and COL(v , u) 6= COL(v ,w). ZAN is the set of Zan’s.

Map ZAN to M by mapping (v , {u,w}) to triangle (v , u,w).
Claim This mapping is exactly 2-to-1.
What Zan’s map to the triangle:

v1

v2 v3

(v2, {v1, v3}) and (v3, {v1, v2}).
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Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

|M| ≤ |ZAN|/2

Now we want to bound |ZAN|.
Look at how much each vertex can contribute to ZAN. Note that
each vertex has degree 5.
Cases:

1. v has degR(v) = 5 or degB(v) = 0: v contributes 0.

2. v has degR(v) = 4 or degB(v) = 1: v contributes 4.

3. v has degR(v) = 3 or degB(v) = 2: v contributes 6. Max.

6 vertices, each contribute ≤ 6, so |M| ≤ |ZAN|/2 ≤ 6× 6/2 = 18

|R|+ |B| ≥ 20− |M| ≥ 2
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Summary

|R|+ |B|+ |M| =

(
6

3

)
= 20

Map ZAN to M. Map is 2-to-1, so |M| ≤ |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B).
|ZAN| ≤ 6× 6 = 36.

|M| ≤ |ZAN|/2 = 18.

|R|+ |B| ≥ 20− |M| ≥ 2.

So there are at least 2 Mono Triangles.
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