
The Very Large Ramsey Theorem
Exposition by William Gasarch

1 The Large Ramsey Theorem

In most theorems in Ramsey Theory the labels on the vertices did not matter.
Here they do.

Def 1.1 A finite set F ⊆ N is called large if the size of F is BIGGER than
the smallest element of F .

Example 1.2

1. The set {1, 2, 10} is large: It has 3 elements, the smallest element is 1,
and 3 > 1.

2. The set {5, 10, 12, 17, 20} is NOT large: It has 5 elements, the smallest
element is 5, and 5 is NOT strictly greater than 5.

3. The set {20, 30, 40, 50, 60, 70, 80, 90, 100} is NOT large: It has 9 ele-
ments, the smallest element is 20, and 9 < 20.

4. The set {5, 30, 40, 50, 60, 70, 80, 90, 100} is large: It has 9 elements, the
smallest element is 5, and 9 > 5.

5. The set {101, . . . , 190} is not large: It has 90 elements, the smallest
element is 101, and 90 < 101.

We will be considering monochromatic Km’s where the underlying set of
vertices is a large set. We need a definition to identify the underlying set.

Let COL be a 2-coloring of
(
[n]
2

)
. Consider the set {1, 2}. It is clearly both

homogeneous and large (using our definition of large). Hence the statement

“for every n ≥ 2, every 2-coloring of Kn has a large homogeneous set”

is true but trivial.
What if we used V = {k, k + 1, . . . , n} as our vertex set? Then a large

homogeneous set would have to have size at least k.
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Notation 1.3 LR(k) is the least n, if it exists, such that every 2-coloring of({k,...,n}
2

)
has a large homogeneous set.

Theorem 1.4 For every k there exists n such that for all 2-colorings of({k,...,n}
2

)
there exists a large homog set.

Proof: This proof is similar to the standard proof of the finite Ramsey
Theorem from the infinite Ramsey Theorem.

Suppose, by way of contradiction, that there is some k ≥ 2 such that no
such n exists. For every n ≥ k, there is some way to color

({k,...,n}
2

)
so that

there is no large homog sets. Hence there exist the following:

1. COL1, a 2-coloring of
({k,k+1}

2

)
that has no large homog set.

2. COL2, a 2-coloring of
({k,k+1,k+2}

2

)
that has no large homog set.

3. COL3, a 2-coloring of
({k,...,k+3}

2

)
that has no large homog set.

...

j. COLL, a 2-coloring of
({k,...,k+L}

2

)
that has no large homog set.

...

We will use these 2-colorings to form a 2-coloring COL of
({k,k+1,...}

2

)
. This

coloring will have an infinite homog set by the infinite Ramsey Theorem. This
will give us a contradiction to the definition of one of the COLi.

Let e1, e2, e3, . . . be a list of every element of
({k,k+1,...}

2

)
. We will color e1,

then e2, etc.
How should we color e1? We will color it the way an infinite number of

the COLi’s color it. Call that color c1. Then how to color e2? Well, first
consider ONLY the colorings that colored e1 with color c1. Color e2 the way
an infinite number of those colorings color it. And so forth.

We now proceed formally:

J0 = N
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COL(e1) =

{
RED if |{j ∈ J0 | COLj(e1) = RED}| is infinite;

BLUE otherwise.
(1)

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}
Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume,

furthermore, that Ji−1 is infinite and, for every j ∈ Ji−1,

COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =

{
RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite;

BLUE otherwise.
(2)

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}
One can show by induction that, for every i, Ji is infinite. Hence this

process never stops.
Claim: Let A be a finite subset of {k, k + 1, . . . , }. Then there exists an
infinite number of i such that COL on

(
A
2

)
agrees with COLi on

(
A
2

)
.

Proof of Claim
Left to the reader.

End of Proof of Claim
By the infinite Ramsey Theorem there is an infinite homog set for COL:

H = {x1 < x2 < x3 < · · · }.
Look at

H ′ = {x1 < x2 < · · · < xx1+1}
This is a homog set with respect to COL. By the claim there is an i (in

fact, infinitely many) such that COL and COLi agree on
(
H′

2

)
. Clearly H ′ is

a large homog set for COLi. This contradicts the definition of COLi.
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Theorem 1.5 For every k, a, c there exists n such that for all c-colorings of({k,...,n}
a

)
there exists a large homog set. We denote this n by LR(k, a, c).

Note 1.6 The function LR(k, a, c) grows rather fast. So fast that the exis-
tence of LR(k, a, c) cannot be proven in Peano Arithmetic.

2 The Very Large Ramsey Theorem

We generalize the definition of large.

Def 2.1 Let X ⊆ N be a finite set. Let

X = {x0 < x1 < · · · < xk}.

Let α be an ordinal that is < ωω.
We first give some examples of largeness and then generalize to α.

1. Let a ∈ N. X is a-large if |X| ≥ a.

2. X is ω-large if |X| > min(X) (this is what we call large.

3. X is (ω + 1)-large if {x1, . . . , xk} is ω-large.

4. X is (ω + 2)-large if {x2, . . . , xk} is ω-large.

5. X is (ω + ω)-large if X = X1 ∪ X2, X1 < X2, and both X1, X2 are
ω-large.

6. X is ω2-large if X = min(X)∪X1∪· · ·∪Xmin(X) and each Xi is ω-large.

7. X is (α + 1)-large if X −min(X) is α-large.

8. X is (α + ωn)-large if (α + ωn−1 min(X))-large.

Notation 2.2

1. LR(α) is the least n, if it exists, such that every 2-coloring of
({k,...,n}

2

)
has an α-large homogeneous set.
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2. LR(α, a, c) is the least n, if it exists, such that every c-coloring of({k,...,n}
a

)
has an α-large homogeneous set.

3. LR(k, a, c) is the least n, if it exists, such that every c-coloring of({k,...,n}
a

)
has an ωk-large homogeneous set.

4. LRord(α) is the least ordinal β such that, for every β-large X, for every
2-coloring of

(
β
2

)
has an α-large homogeneous set.

Theorems about α-large sets and Ramsey are stated in terms of LRord.
The following are known:

Theorem 2.3

1. LRord(ω) ≤ ω6. Ketonen-Solovay, 1981.

2. LRord(ωk) ≤ ωω
k·2 Bigorajska-Kotlarski 2002.

3. For all k there exists n such that LRord(ωk) ≤ ωn. Patey-Yokoyama.
2018.

4. For all k LRord(ωk) ≤ ω300k. Aleksander-Wong-Yokoyama 2020.

https://arxiv.org/pdf/2005.06854.pdf

I have not seen the function LR with ordinals defined in the literature.
I speculate that LR(k, a, c) might be the fastest growing natural com-

putable function in mathematics. Of course, this may depend on your defi-
nition of natural.
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