The Very Large Ramsey Theorem Exposition by William Gasarch

1 The Large Ramsey Theorem

In most theorems in Ramsey Theory the labels on the vertices did *not* matter. Here they do.

Def 1.1 A finite set $F \subseteq \mathbb{N}$ is called *large* if the size of F is BIGGER than the smallest element of F.

Example 1.2

- 1. The set $\{1, 2, 10\}$ is large: It has 3 elements, the smallest element is 1, and 3 > 1.
- 2. The set {5, 10, 12, 17, 20} is NOT large: It has 5 elements, the smallest element is 5, and 5 is NOT strictly greater than 5.
- 3. The set $\{20, 30, 40, 50, 60, 70, 80, 90, 100\}$ is NOT large: It has 9 elements, the smallest element is 20, and 9 < 20.
- 4. The set $\{5, 30, 40, 50, 60, 70, 80, 90, 100\}$ is large: It has 9 elements, the smallest element is 5, and 9 > 5.
- 5. The set $\{101, \ldots, 190\}$ is not large: It has 90 elements, the smallest element is 101, and 90 < 101.

We will be considering monochromatic K_m 's where the underlying set of vertices is a large set. We need a definition to identify the underlying set.

Let COL be a 2-coloring of $\binom{[n]}{2}$. Consider the set $\{1, 2\}$. It is clearly both homogeneous and large (using our definition of large). Hence the statement

"for every $n \ge 2$, every 2-coloring of K_n has a large homogeneous set"

is true but trivial.

What if we used $V = \{k, k + 1, ..., n\}$ as our vertex set? Then a large homogeneous set would have to have size at least k.

Notation 1.3 LR(k) is the least n, if it exists, such that every 2-coloring of $\binom{\{k,\dots,n\}}{2}$ has a large homogeneous set.

Theorem 1.4 For every k there exists n such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a large homog set.

Proof: This proof is similar to the standard proof of the finite Ramsey Theorem *from* the infinite Ramsey Theorem.

Suppose, by way of contradiction, that there is some $k \ge 2$ such that no such *n* exists. For every $n \ge k$, there is some way to color $\binom{\{k,\dots,n\}}{2}$ so that there is no large homog sets. Hence there exist the following:

- 1. COL_1 , a 2-coloring of $\binom{\{k,k+1\}}{2}$ that has no large homog set.
- 2. COL_2 , a 2-coloring of $\binom{\{k,k+1,k+2\}}{2}$ that has no large homog set.
- 3. COL_3 , a 2-coloring of $\binom{\{k,\dots,k+3\}}{2}$ that has no large homog set.
 - :
- j. COL_L , a 2-coloring of $\binom{\{k,\dots,k+L\}}{2}$ that has no large homog set.

÷

We will use these 2-colorings to form a 2-coloring COL of $\binom{\{k,k+1,\ldots\}}{2}$. This coloring will have an infinite homog set by the infinite Ramsey Theorem. This will give us a contradiction to the definition of one of the COL_i .

Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{\{k, k+1, \ldots\}}{2}$. We will color e_1 , then e_2 , etc.

How should we color e_1 ? We will color it the way an infinite number of the COL_i 's color it. Call that color c_1 . Then how to color e_2 ? Well, first consider ONLY the colorings that colored e_1 with color c_1 . Color e_2 the way an infinite number of those colorings color it. And so forth.

We now proceed formally:

$$J_0 = \mathsf{N}$$

$$COL(e_1) = \begin{cases} \text{RED if } |\{j \in J_0 \mid COL_j(e_1) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$
(1)

$$J_1 = \{ j \in J_0 \mid COL(e_1) = COL_j(e_1) \}$$

Let $i \geq 2$, and assume that e_1, \ldots, e_{i-1} have been colored. Assume, furthermore, that J_{i-1} is infinite and, for every $j \in J_{i-1}$,

$$COL(e_1) = COL_j(e_1)$$
$$COL(e_2) = COL_j(e_2)$$
$$\vdots$$
$$COL(e_{i-1}) = COL_j(e_{i-1})$$

We now color e_i :

$$COL(e_i) = \begin{cases} \text{RED if } |\{j \in J_{i-1} \mid COL_j(e_i) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$
(2)

$$J_i = \{j \in J_{i-1} \mid COL(e_i) = COL_j(e_i)\}$$

One can show by induction that, for every i, J_i is infinite. Hence this process *never* stops.

Claim: Let A be a finite subset of $\{k, k + 1, \ldots, \}$. Then there exists an infinite number of *i* such that COL on $\binom{A}{2}$ agrees with COL_i on $\binom{A}{2}$.

Proof of Claim

Left to the reader.

End of Proof of Claim

By the infinite Ramsey Theorem there is an infinite homog set for *COL*:

$$H = \{ x_1 < x_2 < x_3 < \cdots \}.$$

Look at

$$H' = \{x_1 < x_2 < \dots < x_{x_1+1}\}$$

This is a homog set with respect to COL. By the claim there is an i (in fact, infinitely many) such that COL and COL_i agree on $\binom{H'}{2}$. Clearly H' is a large homog set for COL_i . This contradicts the definition of COL_i .

Theorem 1.5 For every k, a, c there exists n such that for all c-colorings of $\binom{\{k,\dots,n\}}{a}$ there exists a large homog set. We denote this n by LR(k, a, c).

Note 1.6 The function LR(k, a, c) grows rather fast. So fast that the existence of LR(k, a, c) cannot be proven in Peano Arithmetic.

2 The Very Large Ramsey Theorem

We generalize the definition of large.

Def 2.1 Let $X \subseteq \mathsf{N}$ be a finite set. Let

$$X = \{ x_0 < x_1 < \dots < x_k \}.$$

Let α be an ordinal that is $< \omega^{\omega}$.

We first give some examples of largeness and then generalize to α .

- 1. Let $a \in \mathbb{N}$. X is a-large if $|X| \ge a$.
- 2. X is ω -large if $|X| > \min(X)$ (this is what we call large.
- 3. X is $(\omega + 1)$ -large if $\{x_1, \ldots, x_k\}$ is ω -large.
- 4. X is $(\omega + 2)$ -large if $\{x_2, \ldots, x_k\}$ is ω -large.
- 5. X is $(\omega + \omega)$ -large if $X = X_1 \cup X_2$, $X_1 < X_2$, and both X_1, X_2 are ω -large.
- 6. X is ω^2 -large if $X = \min(X) \cup X_1 \cup \cdots \cup X_{\min(X)}$ and each X_i is ω -large.
- 7. X is $(\alpha + 1)$ -large if $X \min(X)$ is α -large.
- 8. X is $(\alpha + \omega^n)$ -large if $(\alpha + \omega^{n-1} \min(X))$ -large.

Notation 2.2

1. LR(α) is the least *n*, if it exists, such that every 2-coloring of $\binom{\{k,\dots,n\}}{2}$ has an α -large homogeneous set.

- 2. LR(α , a, c) is the least n, if it exists, such that every c-coloring of $\binom{\{k,\dots,n\}}{a}$ has an α -large homogeneous set.
- 3. LR(k, a, c) is the least n, if it exists, such that every c-coloring of $\binom{\{k,\dots,n\}}{a}$ has an ω^k -large homogeneous set.
- 4. LR^{ord}(α) is the least ordinal β such that, for every β -large X, for every 2-coloring of $\binom{\beta}{2}$ has an α -large homogeneous set.

Theorems about α -large sets and Ramsey are stated in terms of LR^{ord}. The following are known:

Theorem 2.3

- 1. $LR^{ord}(\omega) \leq \omega^6$. Ketonen-Solovay, 1981.
- 2. LR^{ord}(ω^k) $\leq \omega^{\omega^k \cdot 2}$ Bigorajska-Kotlarski 2002.
- 3. For all k there exists n such that $LR^{ord}(\omega^k) \leq \omega^n$. Patey-Yokoyama. 2018.
- 4. For all $k \operatorname{LR}^{\operatorname{ord}}(\omega^k) \leq \omega^{300k}$. Aleksander-Wong-Yokoyama 2020.

https://arxiv.org/pdf/2005.06854.pdf

I have not seen the function LR with ordinals defined in the literature.

I speculate that LR(k, a, c) might be the fastest growing natural computable function in mathematics. Of course, this may depend on your definition of *natural*.