The Distinct Volumes Problem

David Conlon- Cambridge (Prof)

Jacob Fox-MIT (Prof)

William Gasarch-U of MD (Prof)

David Harris- U of MD (Grad Student)

Douglas Ulrich- U of MD (Ugrad Student)

Sam Zbarsky- Mont. Blair. (High School Student- now CMU)

Darling Wants an Actual Coloring

1. **Infinite Ramsey Theorem:** For any 2-coloring of the EDGES of K_{ω} there exists an infinite *monochromatic* K_{ω} .

Darling Wants an Actual Coloring

- 1. **Infinite Ramsey Theorem:** For any 2-coloring of the EDGES of K_{ω} there exists an infinite *monochromatic* K_{ω} .
- 2. **Infinite Can Ramsey Theorem:** For any ω -coloring of the EDGES of K_{ω} there exists an infinite H such that either (1) H homog, (2) H min-homog, (3) H max-homog, (4) H rainbow.

Darling Wants an Actual Coloring

- 1. **Infinite Ramsey Theorem:** For any 2-coloring of the EDGES of K_{ω} there exists an infinite *monochromatic* K_{ω} .
- 2. **Infinite Can Ramsey Theorem:** For any ω -coloring of the EDGES of K_{ω} there exists an infinite H such that either (1) H homog, (2) H min-homog, (3) H max-homog, (4) H rainbow.
- 3. Darling: Give me an example of an actual coloring.

Bill thinks of one— next page.

Points and Distances

Let $p_1, p_2...$ be an infinite set of points in \mathbb{R} . Let $COL: \binom{\mathbb{N}}{2} \to \mathbb{R}$ be

$$COL(i,j) = |p_i - p_j|$$
 Distance Between p_i and p_j .

Result: For any infinite set of points in the plane there is an infinite subset where all distances are distinct. (Already known by Erdös via diff proof.)

Next Step: Finite version: For every set of n points in the plane there is a subset of size $\Omega(\log n)$ where all distances are distinct. (Much better is known.)

INITIAL MOTIVATION ABANDONED

- Dumped Ramsey approach! Added co-authors! Got new results!
- 2. What about Area? If there are n points in \mathbb{R}^2 want large subset so that all areas are distinct.
- 3. More general question: n points in \mathbb{R}^d and looking for all a-volumes to be different. (This question seems to be new.)

EXAMPLES with DISTANCES

The following is an **EXAMPLE** of the kind of theorems we will be talking about.

If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/3})$ with all distances between points **DIFF**.

EXAMPLES with AREAS

If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas **DIFF**.

EXAMPLES with AREAS

If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas **DIFF**.

FALSE: Take *n* points on a LINE. All triangle areas are 0.

EXAMPLES with AREAS

If there are n points in \mathbb{R}^2 then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas **DIFF**.

FALSE: Take *n* points on a LINE. All triangle areas are 0.

Two ways to modify:

- 1. If there are n points in \mathbb{R}^2 , no three collinear, then there is a subset of size $\Omega(n^{1/5})$ with all triangle areas DIFF.
- 2. If there are n points in \mathbb{R}^2 , then there is a subset of size $\Omega(n^{1/5})$ with all nonzero triangle areas DIFF.

We state theorems in no three collinear form.

Maximal Rainbow Sets

Definition: A **(2)-Rainbow Set** is a set of points in \mathbb{R}^d where all of the distances are distinct. Also called a **dist-rainbow**.

Definition: A **3-Rainbow Set** is a set of points in \mathbb{R}^d where all nonzero areas of triangles are distinct. Also called an **area-rainbow**.

Definition: An *a*-Rainbow Set is a set of points in \mathbb{R}^d where all nonzero *a*-volumes are distinct. An *a*-volume is the volume enclosed by *a* points. Also called a **vol**-rainbow.

Definition: Let $X \subseteq \mathbb{R}^d$. A **Maximal Rainbow Set** is a rainbow set $Y \subseteq X$ such that if any more points of X are added then it STOPS being a rainbow set.

Definition: Let $X \subseteq \mathbb{R}^d$. An *a*-Maximal Rainbow Set is a *a*-rainbow set $Y \subseteq X$ such that if any more points of X are added then it STOPS being an *a*-rainbow set.

Easy Lemma

Lemma If there is a MAP from X to Y that is $\leq c$ -to-1 then $|Y| \geq |X|/c$.

We will call this LEMMA.

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X-M to reason $x \notin M$. $f: X-M \to \binom{M}{2} \cup M \times \binom{M}{2}$ What is $f^{-1}(\{x_1,x_2\})$?

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \to {M \choose 2} \cup M \times {M \choose 2}$$

What is $f^{-1}(\{x_1, x_2\})$? It's ≤ 1 POINT.

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a MAXIMAL DIST-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \to {M \choose 2} \cup M \times {M \choose 2}$$

What is $f^{-1}(\{x_1, x_2\})$? It's ≤ 1 POINT.

What is $f^{-1}(x_1, \{x_2, x_3\})$?

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \to {M \choose 2} \cup M \times {M \choose 2}$$

What is $f^{-1}(\{x_1, x_2\})$? It's ≤ 1 POINT.

What is $f^{-1}(x_1, \{x_2, x_3\})$? It's ≤ 2 POINTS.

Theorem: For all $X \subseteq \mathbb{R}^1$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \to \binom{M}{2} \cup M \times \binom{M}{2}$$

What is $f^{-1}(\{x_1, x_2\})$? It's ≤ 1 POINT.

What is $f^{-1}(x_1, \{x_2, x_3\})$? It's ≤ 2 POINTS.

$$f: X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$$
 is \leq 2-to-1.

The d=1 Case- Cont

$$f: X - M \rightarrow {M \choose 2} \cup M \times {M \choose 2}$$
 is \leq 2-to-1.
Case 1: $|M| \geq n^{1/3}$ DONE!
Case 2: $|M| \leq n^{1/3}$. So $|X - M| = \Theta(|X|)$. By LEMMA $|{M \choose 2} + M \times {M \choose 2}| \geq 0.5|X - M| = \Omega(|X|) = \Omega(n)$ $M \geq \Omega(n^{1/3})$

On Circle

Theorem: For all $X \subseteq \mathbb{S}^1$ (the circle) of size n there exists a dist-rainbow subset of size $\Omega(n^{1/3})$.

Proof: Use MAXIMAL DIST-RAINBOW SET. Similar Proof.

Better is known

Better is known: In 1975 Komlos, Sulyok, Szemeredi showed: **Theorem:** For all $X \subseteq \mathbb{S}^1$ or \mathbb{R}^1 of size n there exists a dist-rainbow subset of size $\Omega(n^{1/2})$.

This is optimal in \mathbb{S}^1 and \mathbb{R}^1 **Theorem:** If $X = \{1, \dots, n\}$ then the largest dist-rainbow subset is of size $\leq (1 + o(1))n^{1/2}$.

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let *M* be a MAXIMAL DIST-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

$$(\exists x_1, x_2 \in M)[|x - x_1| = |x - x_2|].$$

$$(\exists x_1, x_2, x_3 \in M)[|x - x_1| = |x_2 - x_3|].$$

f maps an element of X-M to reason $x \notin M$. $f: X-M \to \binom{M}{2} \cup M \times \binom{M}{2}$

What is
$$f^{-1}(\{x_1, x_2\})$$
?

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \to \binom{M}{2} \cup M \times \binom{M}{2}$$

What is $f^{-1}(\lbrace x_1, x_2 \rbrace)$? Lies on LINE.

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let *M* be a MAXIMAL DIST-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \to {M \choose 2} \cup M \times {M \choose 2}$$

What is $f^{-1}(\lbrace x_1, x_2 \rbrace)$? Lies on LINE.

What is $f^{-1}(x_1, \{x_2, x_3\})$?

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \to {M \choose 2} \cup M \times {M \choose 2}$$

What is $f^{-1}(\lbrace x_1, x_2 \rbrace)$? Lies on LINE.

What is $f^{-1}(x_1, \{x_2, x_3\})$? Lies on CIRCLE.

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Let *M* be a **MAXIMAL DIST-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2 \in M)[|x x_1| = |x x_2|].$
- $(\exists x_1, x_2, x_3 \in M)[|x x_1| = |x_2 x_3|].$

f maps an element of X - M to reason $x \notin M$.

 $f: X - M \to \binom{M}{2} \cup M \times \binom{M}{2}$

What is $f^{-1}(\lbrace x_1, x_2 \rbrace)$? Lies on LINE.

What is $f^{-1}(x_1, \{x_2, x_3\})$? Lies on CIRCLE.

All INVERSE IMG's lie on LINES or CIRCLES.

The d=2 Case- Cont

$$f: X - M \rightarrow \binom{M}{2} \cup M \times \binom{M}{2}$$

All INVERSE IMG's lie on LINES or CIRCLES. δ TBD.

Cases 1 and 2 induct into line and circle case.

Case 1:
$$(\exists x_1, x_2)[(f^{-1}(\{x_1, x_2\}))] \geq n^{\delta}].$$

 $\geq n^{\delta}$ points on a line, so rainbow set size $\geq \Omega(n^{\delta/3})$.

Case 2:
$$(\exists x_1, x_2, x_3)[|f^{-1}(\{x_1, x_2, x_3\})| \geq n^{\delta}].$$

 $\geq n^{\delta}$ points on a circle, so rainbow set size $\geq \Omega(n^{\delta/3})$.

Case 3: $|M| \ge n^{1/6}$ DONE!

Case 4: Map is $\leq n^{\delta}$ -to-1 AND $|X - M| = \Theta(|X|)$. By LEMMA

$$|\binom{M}{2} \cup M \times \binom{M}{2}| \geq n/n^{\delta} = n^{1-\delta}$$

 $|M| \geq \Omega(n^{(1-\delta)/3})$

Set
$$\delta/3 = (1 - \delta)/3$$
. $\delta = 1/2$. Get $\Omega(n^{1/6})$.

On Sphere

Theorem: For all $X \subseteq \mathbb{S}^2$ (surface of sphere) of size n there exists a dist-rainbow subset of size $\Omega(n^{1/6})$.

Proof: Use MAXIMAL DIST-RAINBOW SET. Similar Proof.

Note: Better is known: Charalambides showed $\Omega(n^{1/3})$.

General d Case

Theorem:

For all $X \subseteq \mathbb{R}^d$ of size $n \ni$ dist-rainbow subset of size $\Omega(n^{1/3d})$. For all $X \subseteq \mathbb{S}^d$ of size $n \ni$ dist-rainbow subset of size $\Omega(n^{1/3d})$.

Proof: Use **MAXIMAL DIST-RAINBOW SET** and induction. Need result on \mathbb{S}^d and \mathbb{R}^d to get result for \mathbb{S}^{d+1} and \mathbb{R}^{d+1} .

Note: Better is known. In 1995 Thiele showed $\Omega(n^{1/(3d-2)})$. But WE improved that!

General d Case- Much Better

Theorem: For all $d \ge 2$, for all $X \subseteq \mathbb{R}^d$ of size n there exists a dist-rainbow subset of size $\Omega(n^{1/(3d-3)}(\log n)^{\frac{1}{3}-\frac{2}{3d-3}})$.

Proof: Use VARIANT ON MAX DIST-RAINBOW SET

d	$n^{1/3d}$	$n^{1/(3d-3)}(\log n)^{\frac{1}{3}-\frac{2}{3d-3}}$
1	$n^{1/3}$	
2	$n^{1/6}$	$n^{1/3}(\log n)^{-1/3}$
3	$n^{1/9}$	$n^{1/6}(\log n)^0$
4	$n^{1/12}$	$n^{1/9}(\log n)^{1/12}$
5	$n^{1/15}$	$n^{1/12}(\log n)^{1/6}$
6	$n^{1/18}$	$n^{1/15}(\log n)^{1/5}$

Can we do better? Best we can hope for is roughly $n^{1/d}$.

Area-d=2 Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let M be a **MAXIMAL AREA-RAINBOW SET**. Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X-M to **reason** $x \notin M$. $f: X-M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. Recall that What is $f^{-1}(\{x_1,x_2\},\{x_1,x_3\})$? SEE NEXT SLIDE FOR GEOM LEMMA.

Lemma On Area

Lemma: Let L_1 and L_2 be lines in \mathbb{R}^2 .

$$\{p: AREA(L_1, p) = AREA(L_2, p)\}$$

is a line.

Sketch:
$$AREA(L_1, p) = AREA(L_2, p)$$
 iff $|L_1| \times |L_1 - p| = |L_2| \times |L_2 - p|$ iff $\frac{|L_1 - p|}{|L_2 - p|} = \frac{|L_1|}{|L_2|}$. This is a line.

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a MAXIMAL AREA-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M o {M \choose 2} imes {M \choose 2} \cup {M \choose 2} imes {M \choose 3}$$
. Recall that

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a MAXIMAL AREA-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

$$f: X-M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$$
. Recall that What is $f^{-1}(\{x_1,x_2\},\{x_1,x_3\})$?

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a MAXIMAL AREA-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

 $f: X - M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. Recall that

What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a MAXIMAL AREA-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

 $f: X - M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so < 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$?

a line- so < 2 points. FINITE.

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let M be a MAXIMAL AREA-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

 $f: X - M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{2}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on

What is $f^{-1}(\lbrace x_1, x_2 \rbrace, \lbrace x_3, x_4 \rbrace)$? By Lemma all points on it are on

a line- so < 2 points. FINITE.

(Reboot) Area-d = 2 Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a MAXIMAL AREA-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

 $f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$. Recall that What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so < 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$?

(Reboot) Area-d = 2 Case

Theorem: For all $X \subseteq \mathbb{R}^2$ of size n, no three colinear, \exists area-rainbow set of size $\Omega(n^{1/5})$.

Proof: Let *M* be a MAXIMAL AREA-RAINBOW SET.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[AREA(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

 $f: X - M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$. Recall that

What is $f^{-1}(\{x_1, x_2\}, \{x_1, x_3\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE.

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$? By Lemma all points on it are on a line- so ≤ 2 points. FINITE. $f: X - M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$ FINITE-to-1.

Area d = 2 Case- Cont

$$f: X - M \to {M \choose 2} \times {M \choose 2} \cup {M \choose 2} \times {M \choose 3}$$
 is FINITE-to-1.
Case 1: $|M| \ge n^{1/5}$ DONE!

Case 2: $|M| \le n^{1/5}$. Then $|X - M| = \Theta(|X|)$. Since MAP is finite-to-1, by LEMMA

$$|\binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}| \geq \Omega(|X - M|) = \Omega(|X|) = \Omega(n)$$
$$|M| \geq \Omega(n^{1/5})$$

Volume d = 3

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no four on a plane, there exists Vol-rainbow set of size $\Omega(n^\delta)$. (δ TBD) Similar. Left for the reader.

KEY to These Proofs

- 1. Used MAXIMAL a-RAINBOW SET M.
- 2. Used Map f from $x \in X M$ to the reason x is NOT in M.
- 3. Looked at **INVERSE IMAGES** of that map.
- 4. Either:

All INVERSE IMG's are small, so use LEMMA.

OR

Some INVERSE IMG's are large subsets of \mathbb{R}^d or \mathbb{S}^d , so induct.

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^\delta)$. $(\delta \text{ TBD})$

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[A(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$$
. What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\}\})$?

What is $t^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\}))$

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^\delta)$. (δ TBD)

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[A(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \to \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$$
.

What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^\delta)$. $(\delta \text{ TBD})$

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[A(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$$
.

What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$?

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^\delta)$. (δ TBD)

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[A(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

 $f: X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$.

What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? THIS IS HARD!

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^\delta)$. $(\delta \text{ TBD})$

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[A(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

$$f: X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$$

What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$?

Theorem: For all $X \subseteq \mathbb{R}^3$ of size n, no three colinear, there exists Area-rainbow set of size $\Omega(n^\delta)$. $(\delta \text{ TBD})$

Proof: Let *M* be a **MAXIMAL AREA-RAINBOW SET**.

Let $x \in X - M$. WHY IS x NOT IN M!? Either

- $(\exists x_1, x_2, x_3 \in M)[AREA(x, x_1, x_2) = AREA(x, x_1, x_3)].$
- $(\exists x_1, x_2, x_3, x_4 \in M)[A(x, x_1, x_2) = AREA(x, x_3, x_4)].$
- $(\exists x_1, x_2, x_3, x_4, x_5 \in M)[AREA(x, x_1, x_2) = AREA(x_3, x_4, x_5)].$

f maps an element of X - M to reason $x \notin M$.

 $f: X - M \rightarrow \binom{M}{2} \times \binom{M}{2} \cup \binom{M}{2} \times \binom{M}{3}$

What is $f^{-1}(\{\{x_1, x_2\}, \{x_1, x_3\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4\})$? THIS IS HARD!

What is $f^{-1}(\{x_1, x_2\}, \{x_3, x_4, x_5\})$? THIS IS HARD! What to do?

WHAT CHANGED?

Why is this proof harder?

KEY statement about prior proof:

- 1. If INVERSE IMG's are all finite so M is large.
- 2. If INVERSE IMG's are subsets of \mathbb{R}^d or \mathbb{S}^d then induct.

KEY: We cared about $X \subseteq \mathbb{R}^d$ but had to work with \mathbb{S}^d as well. NOW we will have to work with more complicated objects.

What Do Inverse Images Look Like?

$$\{x : AREA(x, x_1, x_2) = AREA(x, x_3, x_4)\} =$$

 $\{x : |DET(x, x_1, x_2)| = |DET(x, x_3, x_4)|\}.$

Definition: (Informally) An **Algebraic Variety in** \mathbb{R}^d is a set of points in \mathbb{R}^d that satisfy a polynomial equation in d variables.

General Theorem

Theorem Let $2 \le a \le d+1$. Let $r \in \mathbb{N}$. For all varieties V of dim d and degree r for all sets of n points on V there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary Let $2 \le a \le d+1$. For all $X \subseteq \mathbb{R}^d$ of size n there exists an a-rainbow set of size $\Omega(n^{1/(2a-1)d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size n there exists a 2-rainbow set (dist. distances) of size $\Omega(n^{1/3d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size n there is a 3-rainbow set (dist. areas) of size $\Omega(n^{1/5d})$.

Corollary For all $X \subseteq \mathbb{R}^d$ of size n there is a 4-rainbow set (dist. volumes) of size $\Omega(n^{1/7d})$.

Comments on the Proof

- 1. Proof uses Algebraic Geometry in Proj Space over \mathbb{C} .
- 2. Proof uses Maximal subsets in same way as easier proofs.
- 3. Proof is by induction on *d*.

Open Questions

- 1. Better Particular Results: e.g., want for all $X \subseteq \mathbb{R}^2$ of size n, there exists a rainbow set of size $\Omega(n^{1/2})$.
- 2. General Better Results: e.g., want Let $1 \le a \le d+1$. For all $X \subseteq \mathbb{R}^d$ of size n there exists a rainbow set of size $\Omega(n^{1/ad})$.
- 3. Get easier proofs of general theorem.
- 4. Find any nontrivial limits on what we can do. (Trivial: $n^{1/d}$).
- 5. Algorithmic aspects.