The Infinite Can Ramsey Thm

William Gasarch-U of MD

Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":
There are 1950 cans of paint. Find an x such that (1) there are either x cans of paint all the same color, or x cans of paint that are all different colors and (2) it is possible to have neither $x+1$ cans that are all the same nor $x+1$ cans that are all different.

Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":
There are 1950 cans of paint. Find an x such that (1) there are either x cans of paint all the same color, or x cans of paint that are all different colors and (2) it is possible to have neither $x+1$ cans that are all the same nor $x+1$ cans that are all different.

From Homework, you know the answer is $\lfloor\sqrt{1949}\rfloor+1=45$.

Can Ramsey Thm

The Can Ramsey Thm is for any number of colors.
It is named "Can Ramsey" in honor of the paint can problem on the 1950 Kürschák/Eötvös Math Competition

1-ary Ramsey's Thm

Thm: For every $C O L: \mathbb{N} \rightarrow[c]$ there is an infinite homog set.
What if the number of colors was infinite?
Do not necessarily get a homog set since could color EVERY vertex differently. But then get infinite rainbow set.

One-Dim Can Ramsey Thm

Thm: Let V be a countable set. Let $C O L: V \rightarrow \omega$. Then there exists either an infinite homog set (all the same color) or an infinite rainb set (all diff colors).

One-Dim Can Ramsey Thm

Thm: Let V be a countable set. Let $C O L: V \rightarrow \omega$. Then there exists either an infinite homog set (all the same color) or an infinite rainb set (all diff colors).

Prove with your neighbor.

Ramsey's Thm For Graphs

Thm: For every COL : $\binom{\mathbb{N}}{2} \rightarrow[c]$ there is an infinite homog set.
What if the number of colors was infinite?
Do not necessarily get a homog set since could color EVERY edge differently. But then get infinite rainbow set.

Attempt

Thm: For every COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$ there is an infinite homog set OR an infinite rainb set.
VOTE: TRUE, FALSE, or UNKNOWN TO SCIENCE.

Attempt

Thm: For every COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$ there is an infinite homog set OR an infinite rainb set.
VOTE: TRUE, FALSE, or UNKNOWN TO SCIENCE. FALSE:

- $\operatorname{COL}(i, j)=\min \{i, j\}$.
- $\operatorname{COL}(i, j)=\max \{i, j\}$.

Min-Homog, Max-Homog, Rainbow

Def: Let $C O L:\binom{\mathbb{N}}{2} \rightarrow \omega$. Let $V \subseteq \mathbb{N}$. Assume $a<b$ and $c<d$.

- V is homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff TRUE.
- V is min-homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$.
- V is max-homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $b=d$.
- V is rainb if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$ and $b=d$.

Can Ramsey Thm for $\binom{\mathbb{N}}{2}$: For all COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$, there exists an infinite set V such that either V is homog, min-homog, max-homog, or rainb.

Proof of Can Ramsey Thm for $\binom{\mathbb{N}}{2}$, et

We are given COL : $\binom{\mathbb{N}}{2} \rightarrow \omega$.
Want to find infinite homog OR min-homog OR max-homog OR rainbow set.

We use $C O L$ to define $C O L^{\prime}:\binom{\mathbb{N}}{4} \rightarrow[16]$
We then apply 4-ary Ramsey Theorem. (an "Application!")
In the slides below $x_{1}<x_{2}<x_{3}<x_{4}$.
All cases assume negation of prior cases.
Homog always means infinite Homog.

Pairs that begin the same way are same color

$$
\begin{aligned}
& \text { 1. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=1 . \\
& \text { 2. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right) \rightarrow \operatorname{CoL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=2 . \\
& \text { 3. } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=3 . \\
& \text { 4. } \operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=4 .
\end{aligned}
$$

H is homog set,color 1 (rest similar)
$C O L^{\prime \prime}: H \rightarrow \omega$ is $\operatorname{COL}^{\prime \prime}(x)=$ color of all (x, y) with $x<y \in H$.
Use 1-dim Can Ramsey!:
Case 1: $C O L^{\prime \prime}$ has homog set H^{\prime} then H^{\prime} homog for COL.
Case 2: $C O L^{\prime \prime}$ has rainb set H^{\prime} then H^{\prime} min-homog for COL.

Pairs that End the same way are same color

$$
\begin{aligned}
& \text { 1. } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=5 . \\
& \text { 2. } \operatorname{COL}\left(x_{1}, x_{4}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=6 . \\
& \text { 3. } \operatorname{COL}\left(x_{1}, x_{4}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=7 . \\
& \text { 4. } \operatorname{COL}\left(x_{2}, x_{4}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=8 .
\end{aligned}
$$

H is homog set,color 5 (rest similar)
$C O L^{\prime \prime}: H \rightarrow \omega$ is $\operatorname{COL}^{\prime \prime}(y)=$ color of all (x, y) with $x<y \in H$.
Use 1-dim Can Ramsey!:
Case 1: $C O L^{\prime \prime}$ has homog set H^{\prime} then H^{\prime} homog for COL.
Case 2: COL" has rainb set H^{\prime} then H^{\prime} max-homog for COL.

Easy Homog Cases

$$
\begin{aligned}
& \text { 1. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right) \Rightarrow \operatorname{COL}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=9 . \\
& \text { 2. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right) \Rightarrow \operatorname{COL}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=10 . \\
& \text { 3. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \Rightarrow \operatorname{COL}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=11 . \\
& \text { 4. } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right) \Rightarrow \operatorname{COL}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=12 . \\
& \text { 5. } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \Rightarrow \operatorname{COL}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=13 . \\
& \text { 6. } \operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right) \Rightarrow \operatorname{COL}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=14 . \\
& \text { 7. } \operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \Rightarrow \operatorname{COL}\left(x_{1}, x_{2}, x_{3}\right)=15 .
\end{aligned}
$$

H is homog set, color 9 (rest similar)
For all $w<x<y<z \in H$.

$$
\operatorname{COL}(w, x)=\operatorname{COL}(x, y)=\operatorname{COL}(y, z)
$$

Other cases, like $\operatorname{COL}(w, y)=\operatorname{COL}(x, z)$, are similar

Rainbow Case

If NONE of the above cases hold then $\operatorname{COL}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=16$.
Let H be homog set.
All edges from H diff colors, so Rainbow Set.

PROS and CONS of Proof

PRO: Each Case easy. Note that Rainbow case was easy.
CON: Lots of Cases. Use of 4-ary hypergraph Ramsey makes finite version have large bounds.
Let $\mathrm{CR}_{2}(k)=$ least n s.t. $\forall \mathrm{COL}:\binom{[n]}{2} \rightarrow \omega, \exists H$ of size k such that either H is homog, min-homog, max-homog, or rainb. If finitized, this proof obtains

$$
\mathrm{CR}_{2}(k) \leq R_{4}(k, 16) \leq 16^{16^{16^{O(k)}}}
$$

PROS and CONS of Proof

PRO: Each Case easy. Note that Rainbow case was easy.
CON: Lots of Cases. Use of 4-ary hypergraph Ramsey makes finite version have large bounds.
Let $\mathrm{CR}_{2}(k)=$ least n s.t. $\forall \mathrm{COL}:\binom{[n]}{2} \rightarrow \omega, \exists H$ of size k such that either H is homog, min-homog, max-homog, or rainb. If finitized, this proof obtains

$$
\mathrm{CR}_{2}(k) \leq R_{4}(k, 16) \leq 16^{16^{16^{O(k)}}}
$$

We will give anther proof which only uses 3-ary hypergraph Ramsey.

Def that Will Help Us

Def Let COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$. If c is a color and $v \in \mathbb{N}$ then $\operatorname{deg}_{c}(v)$ is the number of c-colored edges with v as an endpoint.

Note: $\operatorname{deg}_{c}(v)$ could be infinite.

Needed Lemma

Lemma Let X be infinite. Let $C O L:\binom{X}{2} \rightarrow \omega$. If for every $x \in X$ and $c \in \omega, \operatorname{deg}_{c}(x) \leq 1$ then there is an infinite rainb set. TRY TO PROVE WITH YOUR NEIGHBOR. I WILL THEN GIVE PROOF.

Proof

Let R be a MAXIMAL rainb set of X.

$$
(\forall y \in X-R)[R \cup\{y\} \text { is not a rainb set }] .
$$

We prove R is infinite.

Proof that R is infinite

Let $y \in X-R$. Why is $y \notin R$?

1. $\left(\exists u \in R, \exists\{a, b\} \in\binom{R}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]$.
2. $\left(\exists\{a, b\} \in\binom{R}{2}\right)[\operatorname{COL}(y, a)=\operatorname{COL}(y, b)]$.

If $c=\operatorname{COL}(y, a)$ then $\operatorname{deg}_{c}(y) \geq 2$, so Can't Happen!
Map $X-R$ to $R \times\binom{ R}{2}$: map $y \in X-R$ to $(u,\{a, b\})$ (item 1).
Map is injective: if y_{1} and y_{2} both map to $(u,\{a, b\})$ then $\operatorname{COL}\left(y_{1}, u\right)=\operatorname{COL}\left(y_{2}, u\right)$ but $\operatorname{deg}_{c}(u) \leq 1$. Injection from $X-R$ to $R \times\binom{ R}{2}$. If R finite then injection from an infinite set to a finite set Impossible! Hence R is infinite.

Can Ramsey Thm for \mathbb{N}

Thm: For all COL : $\binom{\mathbb{N}}{2} \rightarrow \omega$ there is either

- an infinite homog set,
- an infinite min-homog set,
- an infinite max-homog set, or
- an infinite rainb set.

Proof of Can Ramsey Thm for Graphs

Given COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$. We use COL to obtain COL $^{\prime}:\binom{\mathbb{N}}{3} \rightarrow[4]$ We will use the 3 -ary Ramsey Theorem. In all of the below $x_{1}<x_{2}<x_{3}$.

1. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=1$.
2. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=2$.
3. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=3$.
4. If none of the above occur then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=4$.

Cases 1,2,3 are just like in the prior proof.
Case 4: For all x, for all $c, \operatorname{deg}_{c}(x) \leq 1$ so have Rainbow by Lemma.

Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

$$
\mathrm{CR}_{2}(k) \leq 16^{16^{16^{O(k)}}}
$$

Using new proof, 3-ary with 4 colors, bound is:

Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

$$
\mathrm{CR}_{2}(k) \leq 16^{16^{16^{O(k)}}}
$$

Using new proof, 3-ary with 4 colors, bound is:
Not obvious! Cases 1, 2, and 3 easy, but case 4 uses maximal sets.

Good news: Will be on homework.

