The Infinite Can Ramsey Thm

William Gasarch-U of MD

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":

There are 1950 cans of paint. Find an x such that (1) there are either x cans of paint all the same color, or x cans of paint that are all different colors and (2) it is possible to have neither x + 1 cans that are all the same nor x + 1 cans that are all different.

Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":

There are 1950 cans of paint. Find an x such that (1) there are either x cans of paint all the same color, or x cans of paint that are all different colors and (2) it is possible to have neither x + 1cans that are all the same nor x + 1 cans that are all different.

From Homework, you know the answer is $\lfloor \sqrt{1949} \rfloor + 1 = 45$.

The Can Ramsey Thm is for any number of colors.

It is named "Can Ramsey" in honor of the paint can problem on the 1950 Kürschák/Eötvös Math Competition

Thm: For every $COL : \mathbb{N} \to [c]$ there is an infinite homog set.

What if the number of colors was infinite?

Do not necessarily get a homog set since could color EVERY vertex differently. But then get infinite **rainbow set**.

One-Dim Can Ramsey Thm

Thm: Let V be a countable set. Let $COL : V \rightarrow \omega$. Then there exists either an infinite homog set (all the same color) or an infinite rainb set (all diff colors).

One-Dim Can Ramsey Thm

Thm: Let V be a countable set. Let $COL : V \rightarrow \omega$. Then there exists either an infinite homog set (all the same color) or an infinite rainb set (all diff colors).

Prove with your neighbor.

Ramsey's Thm For Graphs

Thm: For every $COL : {N \choose 2} \to [c]$ there is an infinite homog set.

What if the number of colors was infinite?

Do not necessarily get a homog set since could color EVERY edge differently. But then get infinite rainbow set.

Attempt

Thm: For every $COL : {\mathbb{N} \choose 2} \to \omega$ there is an infinite homog set OR an infinite rainb set. **VOTE:** TRUE, FALSE, or UNKNOWN TO SCIENCE.

Attempt

Thm: For every $COL : {N \choose 2} \to \omega$ there is an infinite homog set OR an infinite rainb set. **VOTE:** TRUE, FALSE, or UNKNOWN TO SCIENCE. FALSE:

$$\blacktriangleright COL(i,j) = \min\{i,j\}.$$

$$\blacktriangleright COL(i,j) = \max\{i,j\}.$$

Min-Homog, Max-Homog, Rainbow

Def: Let $COL : \binom{\mathbb{N}}{2} \to \omega$. Let $V \subseteq \mathbb{N}$. Assume a < b and c < d.

- V is homog if COL(a, b) = COL(c, d) iff TRUE.
- V is min-homog if COL(a, b) = COL(c, d) iff a = c.
- V is max-homog if COL(a, b) = COL(c, d) iff b = d.
- V is rainb if COL(a, b) = COL(c, d) iff a = c and b = d.

Can Ramsey Thm for $\binom{\mathbb{N}}{2}$: For all $COL : \binom{\mathbb{N}}{2} \to \omega$, there exists an infinite set V such that either V is homog, min-homog, max-homog, or rainb.

Proof of Can Ramsey Thm for $\binom{\mathbb{N}}{2}$, et

We are given $COL: \binom{\mathbb{N}}{2} \to \omega$. Want to find infinite homog OR min-homog OR max-homog OR rainbow set.

We use *COL* to define $COL' : {\mathbb{N} \choose 4} \to [16]$ We then apply 4-ary Ramsey Theorem. (an "Application!")

ション ふぼう メリン メリン しょうくしゃ

In the slides below $x_1 < x_2 < x_3 < x_4$. All cases assume negation of prior cases.

Homog always means infinite Homog.

Pairs that begin the same way are same color

1.
$$COL(x_1, x_2) = COL(x_1, x_3) \rightarrow COL'(x_1 < x_2 < x_3 < x_4) = 1.$$

2. $COL(x_1, x_2) = COL(x_1, x_4) \rightarrow COL'(x_1 < x_2 < x_3 < x_4) = 2.$
3. $COL(x_1, x_3) = COL(x_1, x_4) \rightarrow COL'(x_1 < x_2 < x_3 < x_4) = 3.$
4. $COL(x_2, x_3) = COL(x_2, x_4) \rightarrow COL'(x_1 < x_2 < x_3 < x_4) = 4.$
d is homog set, color 1 (rest similar)
 $COL'' : H \rightarrow \omega$ is $COL''(x) = color of all (x, y)$ with $x < y \in H$.

Use 1-dim Can Ramsey!:

Case 1: COL'' has homog set H' then H' homog for COL. **Case 2:** COL'' has rainb set H' then H' min-homog for COL.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Pairs that End the same way are same color

1.
$$COL(x_1, x_3) = COL(x_2, x_3) \rightarrow COL'(x_1 < x_2 < x_3 < x_4) = 5.$$

2. $COL(x_1, x_4) = COL(x_2, x_4) \rightarrow COL'(x_1 < x_2 < x_3 < x_4) = 6.$
3. $COL(x_1, x_4) = COL(x_3, x_4) \rightarrow COL'(x_1 < x_2 < x_3 < x_4) = 7.$
4. $COL(x_2, x_4) = COL(x_3, x_4) \rightarrow COL'(x_1 < x_2 < x_3 < x_4) = 8.$
d is homog set, color 5 (rest similar)
 $COL'' : H \rightarrow \omega$ is $COL''(y) =$ color of all (x, y) with $x < y \in H.$

Use 1-dim Can Ramsey!:

Case 1: COL'' has homog set H' then H' homog for COL. **Case 2:** COL'' has rainb set H' then H' max-homog for COL.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Easy Homog Cases

1.
$$COL(x_1, x_2) = COL(x_2, x_3) \Rightarrow COL(x_1, x_2, x_3, x_4) = 9.$$

2. $COL(x_1, x_2) = COL(x_2, x_4) \Rightarrow COL(x_1, x_2, x_3, x_4) = 10.$
3. $COL(x_1, x_2) = COL(x_3, x_4) \Rightarrow COL(x_1, x_2, x_3, x_4) = 11.$
4. $COL(x_1, x_3) = COL(x_2, x_4) \Rightarrow COL(x_1, x_2, x_3, x_4) = 12.$
5. $COL(x_1, x_3) = COL(x_3, x_4) \Rightarrow COL(x_1, x_2, x_3, x_4) = 13.$
6. $COL(x_2, x_3) = COL(x_1, x_4) \Rightarrow COL(x_1, x_2, x_3, x_4) = 14.$
7. $COL(x_2, x_3) = COL(x_3, x_4) \Rightarrow COL(x_1, x_2, x_3, x_4) = 14.$
H is homog set, color 9 (rest similar)
For all $w < x < y < z \in H.$

$$COL(w, x) = COL(x, y) = COL(y, z).$$

Other cases, like COL(w, y) = COL(x, z), are similar

If **NONE** of the above cases hold then $COL(x_1, x_2, x_3, x_4) = 16$.

Let H be homog set.

All edges from H diff colors, so Rainbow Set.

PROS and CONS of Proof

PRO: Each Case easy. Note that Rainbow case was easy.

CON: Lots of Cases. Use of 4-ary hypergraph Ramsey makes finite version have large bounds. Let $\operatorname{CR}_2(k) = \operatorname{least} n \text{ s.t. } \forall \operatorname{COL}: {[n] \choose 2} \to \omega, \exists H \text{ of size } k \text{ such that either } H \text{ is homog, min-homog, max-homog, or rainb. If finitized, this proof obtains$

 $\operatorname{CR}_2(k) \le R_4(k, 16) \le 16^{16^{16^{O(k)}}}$

PROS and CONS of Proof

PRO: Each Case easy. Note that Rainbow case was easy.

CON: Lots of Cases. Use of 4-ary hypergraph Ramsey makes finite version have large bounds. Let $\operatorname{CR}_2(k) = \operatorname{least} n \text{ s.t. } \forall \operatorname{COL}: {\binom{[n]}{2}} \to \omega, \exists H \text{ of size } k \text{ such that either } H \text{ is homog, min-homog, max-homog, or rainb. If finitized, this proof obtains$

$$\operatorname{CR}_2(k) \le R_4(k, 16) \le 16^{16^{16^{O(k)}}}$$

We will give anther proof which only uses 3-ary hypergraph Ramsey.

Def that Will Help Us

Def Let $COL : {N \choose 2} \to \omega$. If c is a color and $v \in \mathbb{N}$ then $\deg_c(v)$ is the number of c-colored edges with v as an endpoint.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: $\deg_c(v)$ could be infinite.

Needed Lemma

Lemma Let X be infinite. Let $COL: \binom{X}{2} \to \omega$. If for every $x \in X$ and $c \in \omega$, $\deg_c(x) \leq 1$ then there is an infinite rainb set. TRY TO PROVE WITH YOUR NEIGHBOR. I WILL THEN GIVE PROOF.

ション ふゆ アメリア メリア しょうくしゃ

Let R be a MAXIMAL rainb set of X.

$$(\forall y \in X - R)[R \cup \{y\} \text{ is not a rainb set}].$$

We prove R is infinite.

Proof that *R* **is infinite**

Let
$$y \in X - R$$
. Why is $y \notin R$?
1. $(\exists u \in R, \exists \{a, b\} \in {R \choose 2})[COL(y, u) = COL(a, b)].$
2. $(\exists \{a, b\} \in {R \choose 2})[COL(y, a) = COL(y, b)].$
If $c = COL(y, a)$ then $\deg_c(y) \ge 2$, so **Can't Happen!**
Map $X - R$ to $R \times {R \choose 2}$: map $y \in X - R$ to $(u, \{a, b\})$ (item 1).
Map is injective: if y_1 and y_2 both map to $(u, \{a, b\})$ then
 $COL(y_1, u) = COL(y_2, u)$ but $\deg_c(u) \le 1$.
Injection from $X - R$ to $R \times {R \choose 2}$. If R finite then injection from an
infinite set to a finite set Impossible! Hence R is infinite.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Can Ramsey Thm for \mathbb{N}

Thm: For all $COL : {\mathbb{N} \choose 2} \to \omega$ there is either

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

- an infinite homog set,
- an infinite min-homog set,
- an infinite max-homog set, or
- an infinite rainb set.

Proof of Can Ramsey Thm for Graphs

Given $COL : {N \choose 2} \to \omega$. We use COL to obtain $COL' : {N \choose 3} \to [4]$ We will use the 3-ary Ramsey Theorem. In all of the below $x_1 < x_2 < x_3$.

1. If $COL(x_1, x_2) = COL(x_1, x_3)$ then $COL'(x_1 < x_2 < x_3) = 1$. 2. If $COL(x_1, x_3) = COL(x_2, x_3)$ then $COL'(x_1 < x_2 < x_3) = 2$. 3. If $COL(x_1, x_2) = COL(x_2, x_3)$ then $COL'(x_1 < x_2 < x_3) = 3$. 4. If none of the above occur then $COL'(x_1 < x_2 < x_3) = 4$. Cases 1,2,3 are just like in the prior proof. Case 4: For all x, for all c, $\deg_c(x) \le 1$ so have Rainbow by Lemma.

Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

$${
m CR}_2(k) \le 16^{16^{16^{O(k)}}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Using new proof, 3-ary with 4 colors, bound is:

Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

$${
m CR}_2(k) \le 16^{16^{16^{O(k)}}}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Using new proof, 3-ary with 4 colors, bound is:

Not obvious! Cases 1, 2, and 3 easy, but case 4 uses maximal sets.

Good news: Will be on homework.