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1 General Overview

I really enjoyed this chapter. It’s pretty standard material, but I haven’t seen
most of it taught with this level of rigor and background information. My only
minor concern (as detailed below) is that sometimes this focus on rigor makes
it a bit difficult to grasp certain definitions, but it’s never too too difficult, and
of course this book is targeted at a more advanced audience, so I don’t think
this is a notable flaw.

2 Section 1.1

I like the specification of what problem actually means. It is so often glossed
over that I originally thought defining such a convention was pedantic – that is
until I realized I couldn’t define it with any rigor. Overall, good overview of P.

3 Section 1.2

The section is titled ‘Reductions’, but you don’t actually use that word (or any
variant) anywhere in the section. May be helpful to note (either explicitly or
by some example) how to properly use that terminology in context.

4 Section 1.3

I haven’t seen that particular definition of NP before (it’s more rigorous than
what I’ve seen). I found the increased rigor interested, but I’m also appreciative
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of intuition discussion that immediately follows; it made it easier to comprehend
the formal definition.

While interesting, I’m not sure 12 examples of NP are necessary - by the
fifth or sixth one they already start feeling repetitive, and I’d be surprised if the
average reader went through that whole list. (If you do end up removing some,
do note that you reference this list later, so adjust any later references, as well).

5 Section 1.4

This was probably the most interesting section to me. I specifically had never
know about the fact that P 6= NP would settle many open problems in a similar
fashion to what is discussed in point 3.

6 Section 1.5

I originally had some difficulty processing this section. My thought process (for
VC for example) was “if VCk can be done in polytime, then for the pair (G, k),
why can’t we just use the VCk algorithm on G to do VC in polytime.” I believe
I now understand that you can’t treat k as a constant in the latter case, so it
wouldn’t be polynomial anymore, but I do think this section could be either
explained a bit more, or make it clear that this material will be explained more
in whatever later chapters are relevant to it.

7 Section 1.6

Good - no comments.

8 Section 1.7

This section introduces a cool distinction that I was not aware of. No real
critiques – I just think it’s interesting.

9 Section 1.8

Good - no comments.

10 Section 1.9

I would have appreciated a bit of intuition for Π1, Σ2, and Π2, similar to what
was given when the formal definition for NP was given (perhaps even a bit
briefer since I’m assuming the intuition is similar). However, relying on the
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intuition for the definition of NP, I don’t think it’s terrible to comprehend the
definitions.

11 Section 1.10

I really enjoyed the discussion about factoring and graph isomorphism. I was
relatively familiar with the state-of-the-art algorithms, but I was not aware of
the ramifications of FACT and GRAPH ISOM being NPC.

12 Section 1.11

I’m unfamiliar with what a diagonalization argument means in this context. I
would’ve liked a reference to either a paper/book or a later chapter that discusses
it.

13 Important Related Problems

13.1 Problems in NP

There are several important problems in NP that may be worth mentioning in
this first chapter.

Chromatic Number Problem: Given a graph and an integer c, does there exist
a vertex coloring such that no two adjacent vertices receive the same color? This
problem is one of Karp’s 21 NP-complete problems [10], but its origins can be
traced back at least as far as the famous four color conjecture in the mid-1800s.
The conjecture states that any map can be colored in at most four colors, such
that no two adjacent areas receive the same color. In graph theoretic language,
the conjecture states the chromatic number of a planar graph is at most four. It
was famously proven by Appel and Haken in one of the initial uses of computer-
assisted proof [1].

Knapsack Problem: Given a set of items with weights and values, is it pos-
sible to obtain some value at least V without exceeding some weight W? While
this is often listed as one of Karp’s 21 NP-complete problems [10], Karp’s version
is closer to the subset sum problem case where the weights equal the values. The
knapsack problem is particularly interesting, as the weights and values deter-
mine whether or not the problem is strongly NP-complete; if they are integers,
the problems is weakly NP-complete, while if they are rational numbers, the
problem is strongly NP-complete [12].

Traveling Salesman Problem: Given a (edge) weighted graph, does there
exist a Hamiltonian cycle of weight at most W? The optimization version of
this problem is one of the most famous problems in combinatorial optimization.
Karp showed that checking if a graph contains a Hamiltonian cycle is NP-
complete [10], and this complex problem also falls into that category. See [4]
for a general overview of the problem and its history.
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Dominating Set Problem: Given a graph and an integer D, does there exist
a vertex set V of size at most D, such that every vertex not in V is adjacent to
some vertex in V? This problem can be shown to be NP-complete through a
reduction from the set cover problem, one of Karp’s 21 NP-complete problems
[10].

13.2 Strong NP-complete Examples

It would be nice to prove some examples of strong NP-complete problems when
introducing the topic.

Maximum Independent Set Problem: Given a graph, find the largest vertex
set such that no two vertices are adjacent. This is strong NP-complete [8]. While
not one of Karp’s 21 NP-complete problems [10], it has connections with two
of them: vertex cover and clique. Indeed, it is easy to see that an independent
set is a clique in the graph’s complement, and the set’s complement is a vertex
cover.

3-Partition Problem: Given a list of integers, can they be partitioned into
three groups with identical sums? This was originally shown to be NP-complete
by Garey and Johnson using a reduction from 3-dimensional matching [7]. The
3-partition problem is used in many reductions.

Bin Packing Problem: Given a set of items of varying volumes and k bins of
a fixed volume, can the items fit in the k bins? This problem can be shown to
be NP-complete using a reduction from the previous 3-partition problem. Bin
packing is rich with work on approximate algorithms; see [3] for a survey.

13.3 Possible NP-Intermediate Problems

Two more interesting possibly NP-Intermediate problems are as follows.
Discrete Logarithm Problem: Let a and b be elements of a group G, and

let k be a positive integer. Determine k that solves the equation bk = a. No
polynomial time algorithm (for classical computers) is known, but the problem
has not been shown to be NP-complete, either. There does exist a polynomial
time quantum algorithm, however [11]. This problem is used in several popular
public-key cryptography algorithms [5, 6].

Minimum Circuit Size Problem: Given the truth table of a boolean function
f and an integer s, does f have a circuit with at most s logic gates? This is
an important problem, as smaller circuits minimize resources required in the
production of integrated circuits. It is unknown whether this problem is in P,
nor whether it is NP-complete. Kabanets and Cai have provided arguments for
why it may not be in either class [9].

13.4 Undecidable Problem Example

The following is a seemingly basic undecidable problem.
Mortal Matrix Problem: Given a finite set of n × n matrices, determine

whether they can be multiplied in some order (possibly with repetition) to

4



Scribe: Anthony Ostuni Chapter 1

obtain the zero matrix. For certain parameters – a set of two 15× 15 matrices
for example – this is known to be undecidable [2].
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