Chapter 12: Lower Bounds for Online Algorithms
CMSC 858M: Algorithmic Lower Bounds: Fun with Hardness
Instructors: Mohammad T. Hajiaghayi and William Gasarch

Textbook: Fun with Hardness: Algorithmic Lower bounds

Juan Luque

Spring 2021

1 Introduction to Streaming Algorithms

Streaming algorithms share many similarities with online algorithms. For
example, they both require decisions without seeing all of the data but
streaming algorithms can use a limited amount of memory to defer decision
making. Intuitively, this is helpful when parsing very large inputs where it
is not possible to store the entirety of input in fast-access memory. In other
words, streaming algorithms take a large set of data and process without
seeing the entire stream with a limited amount of memory. The study of
streaming algorithms began with the seminal paper of [AMS99], which won
the Godel prize.

A brief introduction to communication complexity is given since it is
necessary for proving lower bounds for streaming algorithms.

Streaming algorithms are used for processing very long data streams.
Online social media such as Facebook, Instagram and Twitter produce such
streams.

Example 1. Consider receiving a stream where each of the numbers in
{1,...,n} appears once except for one of the elements. We wish to output
the number that was not received while being constrained to O(logn) space.

Due to the space limitation, we cannot even hold the entire data in
memory, nor create a sort of table to check off seen elements. However, there
is a simple algorithm! Simply maintain a running total sum s of numbers
seen throughout the stream. Then output w — s. This is precisely the

missing number.

Lower Bounds on Streaming Algorithms Scribe: Juan Luque

2 Communication complexity

This section provides a brief, but necessary, introduction to communication
complexity. An excelennet reference that includes all proofs and theorems
in this section is the bookby Kushilevitz and Nisan [KN97].

First some definitions

Definition 1. Let f : X XY — Z be a function. The 2-party communication
model consists of two players, Alice and Bob. Alice is given an input x € X
and Bob is given an input y € Y. Their goal is to compute f(x,y). The
challenge is that neither player knows the other’s input. We are concerned
with the number of bits that Alice and Bob must communicate to compute

f.

1. A protocol for f is an algorithm for Alice and Bob to compute f.
Formally, it is a decision tree where what a player sends depends on
what they have already seen and their input.

2. The best protocol is the one with the smallest worst case needed bits.

3. The communication complexity of f is the worst case of the best pro-
tocol.

4. Protocol variants include (1) deterministic, (2) randomized with a
small probability of error, (3) one-way protocol which means that only
one player sends information thus the other player only receives. Both
roles must be specified and only the receiver needs to be able to compute

f.

Next we introduce three well known problems from communication com-
plexity. These problems will be key to proving lower bounds for streaming
algorithms.

Definition 2. 1. INDEX.
Instance: Alice has a string x € {0,1}" and Bob has a number i € [n].
Question: Bob wants to know x;. We use the one-way model so Alice
sends Bob a string and just from that Bob needs to find x;.

2. INDEXSAME.
Instance: Alice has a string x € {0,1}" and Bob has a number i €
[n—1].
Question: Bob wants to know if x; = x;_1. We use the one-way model
so Alice sends Bob a string and just from that Bob needs to find x;.

Lower Bounds on Streaming Algorithms Scribe: Juan Luque

3. DISJ (short for disjointness).
Instance: Alice has a string x € {0,1}" and Bob has a string y €
{0,1}™.
Question: Alice and Bob both want to know if the sets (represented by
bit vectors) of x and y are disjiont. The communication is 2-way and
they have as many rounds as they want.

Note that the difficultly in INDEX arises because Alice does not know
Bob’s i. Since she doesn’t know Bob’s i, loosely speaking, she has to send the
entirety of the input, result in the following Theorem. DISJ uses as many
rounds as they want so it can be used to prove lower bounds for streaming
algorithms with an arbitrary number of passess of the data.

Theorem 1. 1. INDEX and INDEXSAME require Q(n) bits (in the 1-
way communication model). This lower bound also holds for both de-
terministic and randomized protocols. (Randomized protocol uses pub-
lic coins and probability of correctness is > %)

2. DISJ requires 2(n) bits (in the 1-way communication model). This
lower bounds also holds for both deterministic and randomized proto-
cols. It also holds when promised that Y x; = Y y; = |n/4]. (Ran-
domized protocol uses public coins and probability of correctness is

>3

3 Lower bounds on graph streaming problems

With the results from the previous section on communication complexity
we can prove lower bounds for problems in the following way. Suppose we
have an instance I of II and we wish to show a lower bound on required
memory for I. Then, for the sake of contradiction, suppose there exists
an algorithm A using o(n) bits of memory to solive I. Use this algorithm
to design a protocol that solves INDEX, INDEXSAME, or DISJ. Finally
this leads to a contradiction with the previous theorem since we would have
solved a problem that requires €(n) bits using only o(n).

3.1 Lower bounds using INDEX: Max-Conn-Comp (k)

Definition 3. Max-Conn-Comp(k) (k > 3).

Instance: A forest G = (V, E).

Question: Is there a connected component of size > k. Note that k is not a
part of the input. We have defined an infinite set of problems.

Lower Bounds on Streaming Algorithms Scribe: Juan Luque

Theorem 2. Let k > 3. Any single-pass streaming graph algorithm that
solves Max-Conn-Comp(k) problems on a forest needs Q(n) space.

Proof. Proved by reduction from INDEX to Max-Conn-Comp(k). Assume
there is a o(n) space streaming algorithm A for Max-Conn-Comp(k). We
use A in the following protocol for INDEX. The protocol will use o(n) space
which contradicts Theorem 3. Hence no such A can exist.

1.

Alice has z1 ...z, € {0,1}" and Bob has i € [n]. Our goal is that
Alice gives Bob a strsing of length o(n) and then Bob knows what z;
is.

Alice and Bob construc tdifferents parts of a graph. The vertices are
V, UV, UV, where

Vi={ly,....ln}, Vi=A{ri,....rn}, Va=A{dy,...,dk_2}.
(a) Alice constructs the graph on vertices V; UV, by letting
Ea={{j,rj) : xj =1},
(b) Bob construfcts the graph on vertices {r;} UV by letting
Ep ={(ri,d1)} U{(di,diy1) : 1 <i <k —3}.

Alice runs F 4 through the streaming algorithm A. Since it is an o(n)
space algorithm, when she is done there is o(n) bits in memory. She
tells Bob these bits. Note that this is just o(n) bits.

Bob initializes the memory to those bits sent by Alice and then runs
the streaming algorithm on Fp.

(Comment, not apt of the algorithm.) If x; = 1 then the path {; —r; —
di — -+ — dg_3 is a connected component of size k. If z; = 0 then the
longest connected componenet is of size k — 1.

If when Bob finishes the streaming algorithm answer is YES then he
knows that x; = 1, if NO then he knows that x; = 0. The total 1-way
communication is o(n).

Lower Bounds on Streaming Algorithms Scribe: Juan Luque

3.2

Other lower bounds

Proofs are skipped for brevity’s sake however we can show similar results for
the following problems. Is-Tree(G) is the problem of determining whether
a graph G is a tree; Perfect-Matching(G) is the problem of determining if
G has a perfect matching; given a graph G and two vertices v, w, Shortest
Path is the problem of finding the length of the shortest path from v to w.

Theorem 3. 1. Any single-pass streaming algorithm solving Is-Tree(QG)

2.

3.

needs (n) memory.

Any single pass streaming algorithm for Perfect-Matching(G) requires
Q(m) = Q(n?) memory.

Any single pass streaming algorithm that approzimates Shortest Path
with a factor better than g needs (n?) space. (So the algorithm pro-
duces a number that it < %x the length of the shortest path).

4 Further results

1.

[MV19] For Maximum Coverage, any approximation factor better than
(1—(1—1/k)*) ~ 1 —1/e in constant passes requires Q(m) space for
constant k even if the algorithm is allowed unbounded processing time.

[EHL 18] Gives an algorithm that, with high probability, estimates the
size of a maximum matching within a constant factor using O(n?/?)
space, where n is the number of vertices.

[CGQ15] Gives deterministic and randomized single pass streaming
algorithms that obtain a Q(1/p) approximation using O(k log k) space
where k is an upper bound on the cardinality of the desired set.

[CS14] Gives a (4 + €) approximation algorithm for weighted graph
matching which applies in the semistreaming, sliding window, and
MapReduce models.

[SSS18] shows that coresets are composable and how to compute them
in a streaming setting. Ultimately this leads to scalable algorithms for
fair k-means clustering.

Lower Bounds on Streaming Algorithms Scribe: Juan Luque

5 Chapter suggestions

1. p330 Theorem 18.4.3 uses a different definition of competitive ratio
than what is given at the beginning of the chapter. I believe these
are reciprocals of each other. A suggestion would be to stick with
the convention being used in the Theorem since it seems to be most
commonly used in current research.

2. p327: Under Yao’s Lemma. The second enumerated item has max,ca
but it should read z € X. Same thing below in the lemma environ-
ment.

(a)
(b)

backwards quote right under the Lemma at the top of p328.
Should have a “the worst input in

Suggested edit for the intuition of Yao’s Lemma: cost under the
worst input in p > cost of the best deterministic algorithm w.r.t.

p. Note the case used for the distribution p. Also, the brief

explanation should mention we are comparing costs. Otherwise
it isn’t clear if the < means less cost or better.

References

[AMS99)]

[CGQ15|

[CS14]

[EHL*18]

Noga Alon, Yossi Matias, and Mario Szegedy. The space complex-
ity of approximating the frequency moments. Journal of Com-
puter and System Sciences, 58(1):137-147, 1999.

Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Stream-
ing algorithms for submodular function maximization. In In-
ternational Colloquium on Automata, Languages, and Program-
ming, pages 318-330. Springer, 2015.

Michael Crouch and Daniel M Stubbs. Improved streaming algo-
rithms for weighted matching, via unweighted matching. In Ap-
proximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2014). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

Hossein Esfandiari, Mohammadtaghi Hajiaghayi, Vahid Liaghat,
Morteza Monemizadeh, and Krzysztof Onak. Streaming algo-
rithms for estimating the matching size in planar graphs and
beyond. ACM Transactions on Algorithms (TALG), 14(4):1-23,
2018.

Lower Bounds on Streaming Algorithms Scribe: Juan Luque

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity.
Cambridge University Press, 1997.

[MV19] Andrew McGregor and Hoa T Vu. Better streaming algorithms
for the maximum coverage problem. Theory of Computing Sys-
tems, 63(7):1595-1619, 2019.

[SSS18] Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler.
Fair coresets and streaming algorithms for fair k-means cluster-
ing. arXiw preprint arXiw:1812.10854, 2018.

