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A series of results established running time lower bounds for solving 3-SAT in terms of the
number of variables n. For example, (i) Makino et al. obtained an O(1.3303n) deterministic
algorithm, (ii) Hertli obtained an O(1.308n) randomized algorithm. More generally, for k − SAT
(iii) Dantsin et al. obtained a deterministic O((2 − 1

k+1)n) deterministic algorithm and Paturi et

al. obtained an O(2n−n/k) randomized algorithm.
While these results might be improved in the future, it is believed that 3-SAT requires 2Ω(n)

time. This belief is captured by the Exponential Time Hypothesis formulated by Impagliazzo and
Paturi: For any k ∈ Z+ let sk = inf{s : an O(2sn) algorithm exists for k-SAT }.

Conjecture 1 (Exponential Time Hypothesis). For all k ≥ 3, sk > 0.

Conjecture 2 (Strong Exponential Time Hypothesis). The sequence (sk) converges to 1.

Notice that (1) the ETH implies P 6= NP, (2) the ETH is equivalent to s3 > 0 as the sequence
(sk) is non-decreasing.

For the above n denoted the number of variables. Impagliazzo et al. however proved that one
can equivalently formulate the above hypotheses in terms of the actual length of the input formulae.
This can be done using the following result,

Lemma 3 (The Sparsification Lemma). For any k ∈ N and ε > 0, there is some c > 0 and an
algorithm A such that given a k-CNF formula φ on n variables:

(i) A returns t k-CNF formulas φ1, ...φt, where t ≤ 2εn,

(ii) Each φi involves at most cn clauses,

(iii) φ ∈ SAT iff φi ∈ SAT for some i,

(iv) A runs in O(p(n)2εn) time for some polynomial p.

Using the above lemma one can prove that the ETH and the SETH can be equivalently formu-
lated by characterizing the runtimes in terms of the actual input lengths n′.

Assuming that the ETH is true, one can prove lower bounds of many problems. Given some
polynomial reduction A ≤p B via some f , we’ll say that the reduction has linear blowup if

∣∣f(x)
∣∣ ∈

Θ(|x|). Analogously if
∣∣f(x)

∣∣ ∈ Θ(|x|), we’ll say that the reduction has quadratic blowup. Notice

that if 3-SAT ≤p B with a linear blowup then every algorithm that solves B must run in O(2Ω(n))
time. An analogous statement can be made for when the reduction has quadratic blowup. Using
the above observation one can leverage many standard reductions to show the following,

Theorem 4. Assume that the ETH holds. Then each of the following problems require 2Ω(n) time:
Vertex Cover, 3-Colorability, Clique, Directed Hamiltonian Cycle. Each of these can be shown
using the standard reductions from 3-SAT. Additionally via a reduction from Vertex Cover, the
same runtime is required for Dominating Set.

1



Reductions that have quadratic blowup can be used to prove that (assuming the ETH) certain
problems require O(2Ω(n)) time to solve:

Theorem 5. Along the standard reductions (from 3-SAT) that have quadratic blowup the following
problems all require O(2Ω(

√
n)) time to solve when restricted to planar graphs: 3-colorability, 3-

colorability of 4-regular graphs, Dominating Set, Directed Hamiltonian Cycle, Vertex Cover.

One might wonder if the bounds of the above claim can be improved to 2Ω(n). This question
however is already settled (unconditionally), and all of the mentioned problems are in 2Ω(

√
n).

Conditional on the ETH one can prove results about fixed parameter tractability (FTP). It is
known that V Ck can be solved in O(2kn). Assuming the ETH this bound is tight:

Theorem 6. Assume the ETH, and let l ∈ N+. Then the k-parameterized versions of Vertex
Cover, Clique, Dominating Set, and Directed Hamiltonian cycle problems all require nl2Ω(k) time
to solve.

As before, one can prove analogous results for the planar restrictions of the above problems.
Clique is an exception, as restricted to planar graphs clique is in P.

Theorem 7. Assuming the ETH, the k-parameterized versions of the planar restrictions of Vertex

Cover, Dominating Set, and Directed Hamiltonian cycle all require n2Ω(
√
k) time to solve.

Next, we’ll show that ETH implies f(k)nΩ(k) lower bounds for certain problems. Note that it
can be shown that there is no function f such that CLIQk can be solved in f(k)nO(1) time. The
ETH can be used to make to strengthen this statement.

Theorem 8. Assume the ETH, and let f(k) be any computable function. Then both CLIQk and
ISk require f(k)nΩ(k) time to solve.

The above result serves as a building block to show additional f(k)nΩ(k) lower bounds. First we
need the following notion.

Definition 9. Let A and B be parameterized problems. A k-linear FPT reduction from A to B is
an FPT reduction such that whenever (x, k) is mapped to (y, l), l ∈ O(k).

Using the above definition one can prove the following:

Claim 10. Assume the ETH and let f be some computable function.

(i) Let Ak be some parameterized problem, and assume that CLIQk reduces to Ak via a k-linear
reduction. Then Ak requires f(k)nΩ(k) time.

(ii) The k-parameterized versions of each of the following problems require f(k)nOmega(k) time to
solve: Independent Set, Dominating Set, Set Cover, and Partial Vertex Cover.

Next we’ll define the Grid Tiling problem, which will serve as a building block for deriving lower
bounds for some problems (these results are due to Cygan et al.). Let k ∈ N+, then an instance of
the k-Grid Tiling Problem (GRIDk) is a k× k matrix S such that each entry S(i, j) is a subset of
[n]× [n] for some (given) n ∈ N+. The objective of the GRIDk problem is to decide whether there
are ordered pairs (ai, bj) ∈ S(i, j) such that both (ai, bj) = (ai+1, bj), and (ai, bj) = (ai, bj+1). One
can prove that,

Theorem 11. (i) There is a k-linear FPT reduction from CLIQk to GRIDk.
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(ii) Assuming the ETH, for any computable function f , GRIDk requires f(k)nΩ(k) time to solve.

The above result allows obtaining lower bounds for the List Coloring Problem (LC). Con-
sider a graph G = (V,E), together with a collection of colors Lv ⊂ [n] for each vertex v of G,
where n is the number of colors. The objective of the LC is to determine whether there is a proper
coloring c : V → [n] of G such that c(v) ∈ Lc for all vertices v ∈ V . The restriction of LC to planar
graphs of treewidth k will be denoted PL-LCk.

Theorem 12. There is a k-linear FPT reduction from GRIDk to PL-LCk.

We close these notes by defining three problems to which GRIDk can be reduced:

(i) The k-Grid Tiling LE Problem (GRIDLEk): given a GRIDk instance S, decide if there are
(ai, bj) ∈ S(i, j) such that both ai ≤ ai+1 and bj ≤ bj+1.

(ii) The Scattered Set Problem (SCAT): given a graph G together with two integers k, d, decide if
there are k vertices of G with pairwise distance at least d.

(iii) The Unit Disk Independent Set Problem (UDIS): given a set P ∈ R2 of points in the plane
together with some k ∈ N, decide if there is some subset of k points P ′ ⊆ P such that
2 < d(p, q) for all p, q ∈ P ′.

Theorem 13. (i) There is a k-linear FPT reduction from GRIDk to GRIDLEk.

(ii) There is a k-linear FPT reduction from GRIDLEk to SCAT.

(iii) There is a k-linear FPT reduction from GRIDLEk to UDIS.

Further reading

• The Orthogonal Vectors Problem (OV) is the following: given two sets A,B ⊆ {0, 1}d
of equal size, are there a ∈ A, b ∈ B with a ⊥ b? Writing n = |A| = |B|, notice that OV can be
solved straightforwardly in O(n2d) time. It is conjectured that one cannot do much better:
the Orthogonal Vectors Hypothesis (OVH) asserts that there is no algorithm that solves OV in
time O(n2−ε poly(d)) for any ε > 0. Williams [5] showed that the Strong Exponential Time
Hypothesis implies the OVH.

• A lattice L in Rn is just a discrete subgroup of Rn. The Closest Vector Problem (CVP)
is: given a lattice L (specified through a basis) together with some target vector v ∈ Rn
output u ∈ L that is closest to v. To indicate that the p-norm is being used, the notation
SV Pp has been adopted. Aggarwal et al. [1] showed that for p 6∈ 2Z, CVPp cannot be solved
in time O(2(1−ε)n) for any ε > 0, assuming the SETH.

• A problem closely related to CVP is the Shortest Vector Problem (SVP): given a lattice
L output a lattice vector v ∈ L of minimal norm. By producing a reduction from CVP to SVP

that increases the rank of the lattice by a constant multiplicative factor, Aggarwal et al. [2]
extended the above result to SVP.

• Despite the above results, many open questions remain [3] regarding the fine-grained com-
plexity of lattice problems. As an example we state one open question: Is there a O(20.99n)
time algorithm for SVP assuming the Strong Exponential Time Hypothesis?
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• Finally, we note that despite what the terminology alludes to, the implication SETH ⇒ ETH

is not straightforward. Nonetheless, the implication is indeed true, and the interested reader
can consult Impagliazzo et al. [4]. Note, however, that the reverse implication has not been
ruled out yet.
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