
CMSC 858M: Fun with Hardness

Spring 2021

Instructor: Mohammad T. Hajiaghayi
Scribe: Erika Melder

April 7, 2021

1 Overview

In this chapter, we define the class of counting problems #P, which contains
all functions producing the number of solutions to some instance of a prob-
lem in NP. We analyze the hardness of this class. We then discuss the notion
of parsimonious and c-monious reductions, which are reductions preserving the
number of solutions or a multiple thereof, respectively, between the two problem
instances in the reduction. We look at counting versions of various problems,
and perform parsimonious reductions to establish their membership in #P, #P-
completeness, or hardness relative to #P. Finally, we discuss the Another So-
lution Problem (ASP), which involves looking at a witness for some problem in
NP and determining if another solution exists, and then define ASP-reducibility.

2 #SAT and the Class #P

The problem SAT asks whether a given Boolean formula ϕ has some satisfying
assignment. We can define the counting version of this problem, denoted #SAT,
as the problem of returning the number of satisfying assignments for a Boolean
formula ϕ. We can similarly define counting versions of any problem in NP.

Definition 1 Consider a set A ∈ NP. Then there exists a polynomial p and a
set B ∈ P such that

A = {x : (∃y)[|y| = p(|x|)∧ (x, y) ∈ B]}.

#A is the function which, on input x, returns the number of y of length p(|x|)
with (x, y) ∈ B.

1

Scribe: Erika Melder
Chapter 13 Date: 04//07/2021

This definition is not unique, since there may be multiple choices of p and
B creating arbitrary conditions on our witnesses. We therefore assume that the
choice of p and B are natural with respect to the problem statement.

We define the set of all such counting problems as follows.

Definition 2 #P is the set of all functions of the form #A for A ∈ NP.

It is likely that this category of problems is harder than their corresponding
decision problems. In particular, Toda proved that every problem in the poly-
nomial hierarchy is reducible to #3SAT (using potentially many evaluations of
#3SAT) [?]. This would imply that, if #3SAT is computable in polynomial
time, then the entire polynomial hierarchy would be contained in P.

3 Reductions and #P-Completeness

Recall that if A is polynomially reducible to B (i.e. A ≤p B), then we can solve
whether x ∈ A with a single call to B, where the answer to that call is true if
and only if x ∈ A. We can expand the notion of reducibility to one which can
use many calls in many ways via an oracle Turing machine that can query B.

Definition 3 For functions f and g, we write f ≤p,o g if there is some oracle
Turing machine M() such that f(x) = Mg(x) and Mg(x) can be calculated in
polynomial time.

This allows us to define a notion of #P-hardness, and consequently #P-
completeness.

Definition 4

• A function g is #P-hard if for all f ∈ #P, f ≤p,o g.

• A function g is #P-complete if g ∈ #P and g is #P-hard.

In practice, however, we often show #P-completeness using a special type
of reduction on the non-counting versions of the respective problems.

Definition 5 Let A, B be sets in NP. A c-monious reduction from A to B is a
reduction f satisfying both of the following:

1. x ∈ A⇔ f(x) ∈ B

2. There exists a constant a ∈ Z such that the number of witnesses asserting
x ∈ A is equal to a times the number of witnesses asserting f(x) ∈ B.

When a = 1 (i.e. the two instances have equal numbers of solutions), this is
known as a parsimonious reduction.

We can establish #P-completeness of a counting problem #A by finding
a parsimonious reduction from the decision version A to some other decision
problem B whose counting version #B is #P-complete.

2

Scribe: Erika Melder
Chapter 13 Date: 04//07/2021

4 #P-Completeness of Common Problems in NP

4.1 SAT Variants

It is possible to modify the proof of the Cook-Levin Theorem to show that #SAT
is #P-complete. From this starting point, we can produce several parsimonious
reductions to show that other counting versions of common problems are #P-
complete.

Theorem 1

• There is a parsimonious reduction from SAT to 3SAT. Therefore, #3SAT
is #P-complete.

• There is a parsimonious reduction from 3SAT to 3SAT-3. Therefore,
#3SAT-3 is #P-complete.

• There is a parsimonious reduction from 3SAT-3 to CLIQ. Therefore, #CLIQ
is #P-complete.

The proof that #3SAT is #P-complete involves creating dummy variables
with clauses forcing them to be false, in order to fill up all 1-clauses and 2-clauses
while retaining the number of possible solutions. It then uses additional dummy
variables to recursively deconstruct clauses of size ≥ 4 into smaller clauses which
also retain the same number of possible solutions. This reduction is therefore
parsimonious.

From there, the standard reductions from 3SAT to 3SAT-3, and from 3SAT-
3 to CLIQ, are both parsimonious. Therefore, the counting versions of those
problems are also #P-complete.

4.2 Planar SAT Variants

We can extend the chain of parsimonious reductions to Planar 3-SAT - the
standard reduction from 3SAT to PL-3SAT is also parsmonious. This gets us
that #PL-3SAT is #P-complete, and from there, we can prove #P-completeness
of other planar satisfiability problems, such as #PL-RECT-3SAT.

However, in order to prove that #PL-1-in-3-SAT is #P-complete, we need
a different reduction. The established reduction between 3SAT and PL-1-in-3-
SAT is not c-monious, because most of the 3SAT solutions have one correspond-
ing PL-1-in-3-SAT solution, but one particular case admits two PL-1-in-3-SAT
solutions. There is, however, a parsimonious reduction from PL-RECT-3SAT
to PL-POS-RECT-1-in-3-SAT, allowing us to conclude this.

4.3 Planar Directed Hamiltonian Cycles and Slitherlink

The standard reduction from Planar 3SAT to Planar Directed Hamiltonian Cy-
cle is not parsimonious because we can create a distinct Hamiltonian cycle for
each solution to a clause, meaning one clause may admit anywhere between one

3

Scribe: Erika Melder
Chapter 13 Date: 04//07/2021

and three solutions. However, an alternative reduction exists which is parsi-
monious. Sato (2002) constructed an XOR gadget which ensures that exactly
one edge it connects is used in the Hamiltonian cycle, which allows for a par-
simonious reduction from PL-1-in-3-SAT to PL-X3C, which is HAM CYCLE
restricted to directed planar graphs of max degree 3. This reduction relies on
three new gadgets (a binary OR gate, a ternary OR gate, and an implication
gate) which all admit unique solutions.

From this, it is trivial to extend to the general problem of HAM CYCLE,
and consequently prove that #HAM CYCLE is #P-complete.

Armed with this new problem, we may turn to the game of Slitherlink. This
is known to be NP-complete by a reduction from grid-restricted Hamiltonian
cycle, but the counting version of this Hamiltonian cycle variant is not yet known
to be #P-complete. An alternative reduction is possible from PL-X3C which
forces a unique solution for the cycle corresponding to each puzzle solution, and
thus we get that #SLITHERLINK is #P-complete.

4.4 Permanent of a Matrix

Valiant proved all of these results about the permanent of a matrix [?].

Definition 6 For M = (mi,j) an n× n matrix, the permanent of M, denoted
PERM(M), is given by

PERM(M) =
∑
π

n∏
i=1

mi,π(i)

which is the sum of all possible products of exactly one element from each row
and column.

The permanent differs from the determinant in that, when taking the deter-
minant, we multiply each product by −1 before adding it if the number of in-
versions in its index permutation π is odd, whereas in the permanent, we do not
do this. This unfortunately makes the permanent more challenging to compute,
since Gaussian elimination can no longer be used - whereas the determinant can
be computed in O(n3) time, computing the permanent is #P-complete. It was
this drastic leap in complexity which led Valiant to further analyze the problem
and consequently originally define the class #P to encapsulate its hardness.

In Valiant’s work, he redefines the permanent of a matrix M of the sum of
weights of all cycle covers of the weighted DAG whose adjacency matrix is M.
A cycle cover is a set of cycles, not necessarily disjoint, such that every vertex
is present in at least one cycle. The weight of a cycle here denotes the product
(rather than sum) of the weights of its edges, while the weight of the entire cycle
cover is the sum of each cycle’s individual weight. Redefining the permanent as
the sum of weights of cycle covers allowed Valiant to show that PERM is in #P.

The problem of computing the permanent is #P-complete. It remains so
under various restrictions: it is #P-complete when restricted to matrix elements
in {−1, 0, 1, 2, 3}, as well as when restricted to 0-1 matrices.

4

Scribe: Erika Melder
Chapter 13 Date: 04//07/2021

The problem PERMMOD of computing the permanent mod r for some
parameter r is #P-hard but not known to be in #P. It can be shown that
PERM ≤p,o PERMMOD. Since the permanent of a 0-1 matrix is bounded
by n!, one may compute the least prime p for which the product of all primes
≤ p exceeds n!, call PERMMOD(M, r) on each of those primes, and then use
the Chinese Remainder Theorem. Note that for fixed r this is polynomial time
(it can be done in O(n4r−3) operations) so computing the permanent with an
upper bound on the matrix entries takes polynomial time.

4.5 Bipartite Matchings

Consider a graph G. A matching on G is a subset of edges such that no vertex
is incident to more than one of the edges. The set MAT contains all graphs that
have a matching. There are also special types of matchings: a perfect matching
(PM) is one where every vertex is incident to some edge in the graph, and a
maximal matching (MM) is one which cannot be extended into a larger valid
matching by adding another edge fromG. The counting problems of determining
how many matchings of a given type G has (#MAT, #PM, and #MM) are all
#P-complete. The versions of these problems restricted to bipartite graphs
(#BIP-MAT, #BIP-PM, and #BIP-MM) are also all #P-complete.

By viewing a M as the adjacency matrix of a bipartite graph, we get that
the permanent of the matrix is equal to the number of perfect matchings on
the graph. This gives rise to a reduction showing that PERM ≤p,o #BIP-PM.
From here, we can show that #BIP-PM ≤p,o #BIP-MAT and #BIP-PM ≤p,o
#BIP-MM, via a pair of similar reductions that involve replacing each node
with n2 nodes and then replacing each edge with a copy of K(n2, n2) between
the two clusters. It follows from this that the general problems #MAT and
#MM are thus also #P-complete.

4.6 #2SAT and Graph Problems

While the standard version of 2SAT is in P, the counting version #2SAT is
#P-complete. However, one variant of 2SAT is more useful for us in proving
hardness results, known as TH-POS-2SAT.

Definition 7 The problem of Threshold Positive 2SAT (TH-POS-2SAT) is as
follows: Given ϕ, a Boolean formula in 2CNF form with all positive literals,
and a threshold t ∈ N, determine whether there is a satisfying assignment for
ϕ that has at least t variables assigned to False.

The counting version of this problem, #TH-POS-2SAT, is #P-complete via
a parsimonious reduction from PM to TH-POS-2SAT. The reduction takes a
graph of order 2k, generates a variable for each edge, creates a formula consisting
of a 2-clause for each pair of incident edges, and then queries TH-POS-2SAT on
this formula with threshold k. The variables assigned to False in a particular

5

Scribe: Erika Melder
Chapter 13 Date: 04//07/2021

matching correspond to edges we are including. No perfect matching has two
incident edges, so no clause will be false in a perfect matching.

From TH-POS-2SAT, we are able to prove that #IND SET is #P-complete,
via a similar parsimonious reduction. From a 2CNF all positive formula with
threshold k, we may build a graph with vertices for each variable and edges
corresponding to each clause, and then search for an independent set of size k.
As a corollary, this is an alternative proof that #CLIQ is #P-complete, because
IND SET and CLIQ are dual problems.

4.7 Another Solution Problems

This class of problems is a weaker way of measuring solution counts - it only
asks us to determine whether a provided solution is unique.

Definition 8 Consider a set A ∈ NP. Then there exists a polynomial p and a
set B ∈ P such that

A = {x : (∃y)[|y| = p(|x|)∧ (x, y) ∈ B]}.

The Another Solution Problem of A, denoted ASPA, is the following: Given
a problem instance x and a valid solution y, determine if a different solution
exists for x. (You do not need to find the solution.)

Sometimes, finding a solution to A is hard, but if you’re given a solution it
may be easy to show another exists and solve ASPA. For instance, ASP3COL
is easy: take the given 3-coloring and permute the colors.

For another example, HAMCCUBIC is the NP-complete problem of finding a
Hamiltonian cycle on a cubic graph. Tutte, Thomason, and Krawczyk proved
three independent results that, when combined, confirm that given a Hamil-
tonian cycle on a cubic graph, a different one may be generated in worst case
exponential time [?, ?, ?]. The problem ASPHAMCCUBIC is then solvable in
O(1) time: just output “yes” every time! We do not care about finding the
solution, only that another one exists, which will always be the case by these
three results.

We can determine if a given ASP-version of a problem is hard via an ASP-
reduction.

Definition 9 Let A,B ∈ NP.

1. A is ASP-reducible to B if there is a parsimonious reduction from A to
B which, given a solution for an instance of A, allows a solution for an
instance of B to be computed in polynomial time.

2. B is ASP-complete if, for all A ∈ NP, A is ASP-reducible to B.

If A is ASP-reducible to B, then we gain some insight into the relative
hardness of ASP-versions of certain problems.

6

Scribe: Erika Melder
Chapter 13 Date: 04//07/2021

Theorem 2 Suppose A is ASP-reducible to B. Then:

• ASPB ∈ P ⇒ ASPA ∈ P.

• ASPA is NP-hard ⇒ ASPB is NP-hard.

The proof of this theorem is left as an exercise.

5 Open Problems

1. Is there a polynomial-time algorithm for solving some #P-complete prob-
lem? (Finding one implies P = NP. Proving none exists gives P ⊆ NP ⊆
#P, where at least one of the ⊆ is strict.)

2. Similarly to the above, does #P = FP? (FP is the class of all function
problems solvable by a deterministic Turing machine in polynomial time.)
If the answer is yes, then P = NP = PH (where PH is the union of the
entire polynomial hierarchy).

3. There is a set of classes that encapsulates a counting version of the W[t]-
hierarchy - a parameterized counting problem is in #W[t] if it is fixed-
parameter parsimonious reducible to #WSAT[t], the counting version
of weighted circuit SAT of weft t. It is open whether the problem p-
#MATCHING (the problem of counting the number of size-k matchings
in a bipartite graph G for some input k) is in #W[1] [?].

4. It is open whether the entire W[t]-hierarchy is contained within #W[1].

6 Important Problems

• #SAT - #P-complete [?]

Given a Boolean formula, find the number of satisfying assigments it has.

• #3SAT - #P-complete [?, ?]

Given a Boolean formula with exactly three literals per clause, find the
number of satisfying assignments it has.

• #HAM CYCLE - #P-complete [?]

Given an undirected graph, compute the number of distinct Hamiltonian
cycles it has.

• PERMANENT - #P-complete [?]

Given an n× n matrix M, compute
∑
π

∏n
i=1mi,π(i).

7

Scribe: Erika Melder
Chapter 13 Date: 04//07/2021

• #MAT - #P-complete [?, ?]

Given a bipartite graph, determine the number of matchings it has. (Re-
mains #P-complete even for perfect and maximal matchings, and even on
bipartite graphs in any form.)

References

[1] Flum, Jörg, and Grohe, Martin. The parameterized complexity of
counting problems. SIAM Journal on Computing, 33(4):892-922, 2012.
https://doi.org/10.1137/S0097539703427203

[2] Adam Krawczyk. The complexity of finding a second hamiltonian
cycle in cubic graphs.Journal of Computing and System Science,
58(3):641–647,1999.https://doi.org/10.1006/jcss.1998.1611

[3] Seta Takahiro. The complexities of puzzles, cross sum, and their an-
other solution problems (senior honors thesis, university of tokyo).
https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/takahiro.pdf,
2002.

[4] Andrew B. Thomason. Hamiltonian cycles and uniquely edge colourable
graphs. Annals of Discrete Mathematics, 3:259–268, 1978.

[5] Toda, Seinosuke. PP is as hard as the polynomial-time hierarchy. SIAM Jour-
nal on Computing, 20(5):865–877, 1991. https://doi.org/10.1137/0220053.

[6] William T Tutte. On Hamiltonian circuits. The Journal of the London Math-
ematical Society, pages 98–101, 1946.

[7] Valiant, Leslie. The complexity of computing the permanent. Theoreti-
cal Computer Science, 8:189–201, 1979. http://dx.doi.org/10.1016/0304-
3975(79)90044-6

8

