1 Extra Related Problems

Cygan et al. [7] showed that, assuming ETH, the following hold:

1. Deciding if there is a homomorphism between two graphs G, H can’t
be done in |V (H)PIV(ED time

2. There is no |V (H)PWV(@D algorithm for deciding if H is a subgraph G.
We will now look at a graph coloring problem.

Def 1.1 An (a : b) coloring of a graph is a coloring where you assign b
colors to each vertex out of a total a colors, so that adjacent verticers have
disjoint sets of colors. One may also say informally that G is §-colorable.
This number is called the Fractional Chromatic Number.

The study of fractional chromatic number was motivated as follows.

e Appel et. al [2, 3] showed that every planar graph is 4-colorable. Their
proof made extensive use of a computer program to check a massive
amount of cases. Robertson et al. [9] had a simpler proof, though it still
needed a computer program. In short, the proof is not human readable.

e By contrast, the proof that every planar graph is 5-colorable is easy to
follow and is clearly human-readable.

e Fractional chromatic number was defined with the goal of finding human-
readable proofs that every planar graph is c-colorable for some values
of ¢ < 5. Cranston & Rabern [6] showed that every planar graph is
4.5-colorable. It is open to lower that.

Bonamy et al. [5] showed the following. Assume ETH. Fix a,b € N
such that b < a. The problem we are considering is, given a graph G, is it
(a : b)-colorable. Assume ETH. Then for any computable function f, the
problem does not have an O( f(b)2°0°s)") algorithm.

2 Some Consequences of SETH

1. The ORTHOGONAL VECTORS PROBLEM (OVP) is the following: given
two sets A, B C {0,1}¢ of equal size n, does there exist @ € A,b € B



with @b =0 (mod 2)7 It is easy to see that OVP can be solved in
O(n*d) time. The ORTHOGONAL VECTORS HypOoTHESIS (OVH) is
that, for all € > 0, there is no O(n*~¢ algorithm for OVP. Williams
[10] showed that SETH implies OVH.

. A lattice £ in R™ is a discrete subgroup of R”. The CLOSEST VECTOR
PrROBLEM (CVP) is: given a lattice L (specified through a basis)
together with a target vector v € R", output the « € L that is closest
to ¥. What do we mean by closest? Let 1 < p < oo. Then the p-norm
of a vector (xy,...,x,) is

o (Jza7 - o+ faa|) P i p # 00

® MmaxXj<i<n |J/’Z| lfp = OQ.

The common case is p = 2 which is the standard Euclidian distance.
To indicate that the p-norm is being used, the notation CVP, is the
convention. Aggarwal et al. [1] showed the following: Assuming SETH,
for all € > 0, for all p ¢ 2Z, there is no 279" algorithm for CVP,. It
is unfortunate that they do not have the result for p = 2 which is the
case of most interest. They comment that the gadgets they use do not
exist for even values of p.

. The SHORTEST VECTOR PROBLEM (SVP) is the following: given a
lattice £, output a vector ¥ € £ of minimal norm. Aggarwal et al. [1]
showed the following: Assuming SETH, for all e > 0, for all p ¢ 2Z,
there is no 2079 algorithm for SVP,. It is unfortunate that they do
not have the result for p = 2 which is the case of most interest. This
result was obtained by a reduction from CVP,. The hardness of SVP
problem is the basis for most lattice-based crypto systems.

. Huck Bennet et al. [4] have a survey of open problems on the complexity
of lattice problems. We mention one. Show that, assuming SETH,
there is no O(2°9°") time algorithm for SVP.

. Based on their names, one would think that SETH = ETH. While
this is true, it is not obvious. The interested reader should see the
paper by Impagliazzo et al. [8]. Does ETH = SETH? This is open.
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