
1 Further Reading

1.1 Maximum Feasible Linear System (MAXFLS)

Problem 1.1 Maximum Feasible Linear System (MAXFLS)

INSTANCE: A system of linear equations with coefficient in Z: A ·~x = ~b.
QUESTION: A maximum subset of the equations that has a solution over

Q.

MAXFLS look easy since, given matrix A and vector ~b one can, in poly-
nomial time, do the following (by Gaussian elimination):

• Determine if there is a solution, and if so then find one, and if not then
produce a certificate of infeasibility.

• If there is no solution then find a ~x such that A~x is close to ~b. More
precisely ~x is such that, A~x−~b has the least mean squared error.

Nevertheless, Amaldi and Kann [3] showed the following:

• The natural decision formulation of MAXFLS is NP-hard.

• Many variants and restrictions of MAXFLS are NP-hard.

• Assume P 6= NP. Many variants of MAXFLS are hard to approxi-
mate. The hardness varies with the variant. Some are in APX but not
PTAS, and some are harder to approximate than that.

1.2 MAXCUT

Recall the MAXCUT problem has a straightforward 1
2
-approximation algo-

rithm. Better approximation algorithms are known, and lower bounds on
approximation are known:

Theorem 1.2

1. (Goemans & Williamson [6]) There is a 0.878 . . .-approximation algo-
rithm for MAXCUT (the number is actually 2

π
min0≤θ≤π

θ
1−cos(θ)).

2. (Hastad [7] building on work of Trevisan et al [14]). Assume P 6= NP.
Let ε > 0. there is no 16

17
+ ε-approximation algorithm for MAXCUT.

Note that 16
17
∼ 0.941.
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Note that if our hardness assumption is P 6= NP then we do not get
matching upper and lower bounds. In Chapter ?? we will see that, assuming
the Unique Game Conjecture, the algorithm of Goemans & Williamson can
be shown to be optimal.

1.3 Closest Vector Problem (CVP)

Def 1.3

1. A lattice L in Rn is a discrete subgroup of Rn.

2. Let p ∈ [1,∞). The p-norm of a vector ~x = (x1, . . . , xn) ∈ Rn is

||~x||p = (|x1|p + · · ·+ |xn|p)1/p.

Note that p = 2 yields the standard Euclidean distance.

3. If p =∞ then
||~x||p = max

1≤i≤n
|xi|.

4. The distance between ~x and ~y in norm p is ||~x− ~y||p.

In the next problem let p ∈ [1,∞].

Problem 1.4 Shortest Vector Problem in norm p (SVPp)
INSTANCE: A lattice L specified by a basis.
QUESTION: Output the shortest vector in that basis using the p-norm.

Lenstra et al. [11] showed that there is a 2n/2-approximation to SVP2.
They used it to obtain an algorithm to factor polynomials. Schnorr [13] im-
proved this to a 2n(log logn)

2/ logn-approximation. There are many non-approx
results which indicate that the results of the type Lenstra and Schnorr ob-
tained are the best possible. We state some of them and an also refer the
reader to the papers cited for earlier results on this topic.

Theorem 1.5

1. (Boas [15]) SVP∞ is NP-hard.

2. (Ajtai [2]) SVP2 is NP-hard under randomized reductions.
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3. (Khot [9]) Assume NP 6⊆ RP. Let p ∈ (1,∞). There is no poly-time
constant-approx for SVPp.

4. (Khot [9]) Assume NP 6⊆ RTIME(2polylog(n)). Let p ∈ (1,∞). Let

ε > 0. There is no poly-time 2(logn)1/2−ε-approx for SVPp.

5. (Aggarwal et al. [1]) Let p ∈ [1,∞) − 2Z. Assume SETH. SVPp

cannot be solved in time O(2(1−ε)n) for any ε > 0.

6. (Haviv & Regev [8] Assume NP 6⊆ RTIME(2polylog(n)). Let p ∈ [1,∞).
Let ε > 0. There is no poly-time 2(logn)1−ε-approx for SVPp.

7. (Bennett & Peikert [4]) Let p ∈ [1,∞). SVPp is NP-hard under ran-
domized reductions. This proof has some aspects to it that make deran-
domizing it plausible. If this is shown then the hardness assumption of
NP 6⊆ RP can be changed to P 6= NP.

Micciancio [12] presented new proofs of the results of Khot [9] and Haviv
& Regev [8] that, while still using random reductions, seem likely to be able
to derandomize. This gives evidence that (1) Khot’s result can be improved
to use the hardness assumption P 6= NP, and (2) Haviv & Regev’s result
can be improved to use the hardness assumption NP 6⊆ DTIME(2polylog(n)).

For most of the results in Theorem 1.5 there are similar, but not identical,
upper and lower bounds for CVP, the closest vector problem.

1.4 Minimum Bisection

Problem 1.6 Minimum Bisection
INSTANCE: A graph G = (V,E) on an even number of vertices.
QUESTION: A partition V = V1∪V2 such that the number of edges from

V1 to V2 is minimized.

Theorem 1.7

1. (Feige & Krautghamer [5]) There is a O(log n2)-approximation for Min-
imum Bisection.

2. (Khot [10]) Let ε > 0. There exists δ > 0 (which depends on ε such
that the following is true: Assume 3-SAT cannot be solved in 2O(nε)

time. Then there is no (1 + δ)-approximation for Minimum Bisection.
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