1 REPLACE COMMENT ON APPROX NASH EQ WITH THIS

DONE

The NE problem really asks for an approximation to the NE. This means that if (x, y) is the NE (where x and y are vectors of probabilities that add to 1) then the algorithm produces (x', y') where x' is close to x and y' is close to y. We briefly discuss a different kind of approximation.

Def 1.1 An ϵ -Nash equilibrium (henceforth just ϵ -equilibrium) is a pair of mixed strategies (x, y) such that the following holds.

- 1. If the row player deviates from x, and the column player stll uses y, then the row player benefits by at most ϵ .
- 2. If the column player deviates from y, and the row player stll uses x, then the column player benefits by at most ϵ .
- 3. For each player, the payoff at (x, y) is at most ϵ less than the optimal.

There are essentially matching upper and lower bounds for the time needed to find an ϵ -equilibrium:

- 1. Lipton et al. [4] showed that, for all $\epsilon > 0$, there is an algorithm that finds an ϵ -equilibrium that runs in time $O(n^{\epsilon^{-2}\log n})$
- 2. Braverman et al. [1] showed that, assuming ETH, there exists ϵ^* such that any algorithm that finds an ϵ^* -equilibrium and requires time $O(n^{\log n})$

2 PUT IN THE PPAD PART

DONE

Def 2.1

1. Let C be a cake. Let P_1, \ldots, P_n be n people. They each have a utility function that maps areas of the cake to values. The entire cake maps to 1 and a single point maps to 0. If A and B are disjoint parts of the cake then, for any utility function $U, U(A \cup B) = U(A) + U(B)$.

- 2. A allocation of C is a partition $C = C_1 \cup \cdots \cup C_n$ of C where, for all $1 \leq i \leq n$, P_i gets piece C_i .
- 3. An allocation is *Proportional* if every person, using their own utility function, gets $\geq \frac{1}{n}$.
- 4. An allocation is *Envy-Free* if every person, using their own utility function, think that nobody has a strictly larger piece than they have.

Stromquist [5] showed that, given any set of n utility functions there exists an envy-free allocation that only uses n cuts. The cuts could be at irraional points. His proof also yielded an algorithm that, given ϵ , found the cuts to within ϵ , in time $O(\log \frac{1}{\epsilon})$. This kind of problem falls neatly into the PPAD paradigm: we have a proof that something exists but we wonder if we can really find it. Deng et al. [2] showed that the problem of finding an approximate envy-free allocation for n people with n - 1 cuts is PPAD-complete.

3 PUT IN THE PPA PART

DONE

1. Goos et al. [3] show that a variant of CHEVALLEY is PPA_q -complete (you will define PPA_q in Exercise 3.1). However, they do not think the original CHEVALLEY is PPA-complete (see there note on page 6).

Exercise 3.1

- 1. Let $q \in \mathsf{N}$ and let G be a bipartite graph. Show that if there is some vertex of degree $\not\equiv 0 \pmod{q}$ then there must be another one.
- 2. Define PPA_q and PPA_q -complete using Part 1 as motivation.
- 3. Read Goos et al. [3] which shows several problems are PPA_q -complete. Rewrite their proofs in your own words.

4 How do he Classes Relate?

DONE

We summarize what is know about how the classes relate, and what is open.

Exercise 4.1

- 1. Show that $PF \subseteq PPAD \subseteq PPA \subseteq FNP$.
- 2. Show that $PF \subseteq PPAD \subseteq PPP \subseteq FNP$.
- 3. (Open problem) For each subset inclusions in Part 1 and 2 resolve if the inclusion is equal or proper. (It is widely believed that all of the inclusions are proper.)
- 4. (Open problem) For each subset inclusions in Part 1 and 2 determine if an equality implies P = NP or some other unlikely conclusion.
- 5. (Open Problem) Resolve how PPA and PPP compare.

References

- M. Braverman, Y. Kun-Ko, and O. Weinstein. Approximating the best nash equilibrium in n^{o(log n)}-time breaks the exponential time hypothesis. In P. Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 970–982. SIAM, 2015. https://doi.org/10.1137/1.9781611973730.66.
- [2] X. Deng, Q. Qi, and A. Saberi. Algorithmic solutions for envy-free cake cutting. *Oper. Res.*, 60(6):1461-1476, 2012. https://doi.org/10.1287/opre.1120.1116.
- [3] M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis. On the complexity of modulo-q arguments and the chevalley - warning theorem. In S. Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 19:1–19:42. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4220/LIPIcg.CCC.2020.19

https://doi.org/10.4230/LIPIcs.CCC.2020.19.

- [4] R. J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In D. A. Menascé and N. Nisan, editors, *Proceedings* 4th ACM Conference on Electronic Commerce (EC-2003), San Diego, California, USA, June 9-12, 2003, pages 36-41. ACM, 2003. https://doi.org/10.1145/779928.779933.
- [5] W. Stromquist. How to cut a cake fairly. *American Mathematics Monthly*, 87(8):640–644, 1980.