
1 General comments

I think I found the gadgets to be pretty confusing. When looking at the figures
I had no idea which vertices I should look at, and having an example that is
simpler than Figure 12.6 might have been helpful as well. When presented with
a gadget, there are a lot of vertices and it is hard to understand which ones
were added by the gadget, and which ones correspond to something from the
original problem you are modifying.

2 misc typos

I did not find any.

3 Comments on section 12.2.1

1. Explanation of input/output edges and edge orientation I found
the relationship between input/output edges and the concept of edge di-
rection to be a bit confusing as it was first presented. For instance, right
below figure 12.1 (on page 304), it says ”We say an output edge can acti-
vate if it can be directed out. We say an input edge is active if it can be
directed in”. When reading this I had no idea what it means to say that
an edge CAN be directed in some direction. Instead saying something like
”We say an output edge can activate if it can be directed out subject to
the constraint that the machine is valid”

2. Definition of input/output edges: I found the concept of an edge
being an input or output edge very confusing because as far as I could
tell this was not built into the definition of a machine. My understanding
is the notion of an edge being an output or an input is based on how we
intend for a valid configuration to orient that edge, based on the problem
we are modeling (in this case SAT problems). If this is correct, then the
terms ”output” and ”input” are only defined in the context of designing
gadgets or simulating some other problem. On the other hand, edges are
not inputs or outputs if we just look at an arbitrary CGS problem. The
discussion under Figure 12.1 makes it seem like an edge being an input or
output is built into the specification of the machine which is not the case.

Based on the points above I suggest adding something like the following into
section 12.2.1.

We now construct gadgets which simulate the behavior of logical gates. In
particular, we wish to define machines which have a valid configuration if and
only if the corresponding logical gate outputs TRUE. To make this idea precise,
we need to define what it means for an edge to be an input/output, and we also
need a notion of which boolean value an edge is assigned.

DEFINITION [logical interpretation of CGS]
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Let g be a vertex in a machine, and assume we have labeled each edge
incident to g as either an input or output with respect to g (note the edges are
still not directed yet, we are simply stating the direction we hope they will have
in the future).

1. We think of an edge as carrying the value TRUE iff a valid configuration for
G orients the edge in the same direction as the input/output assignment.

2. An output (input) edge oriented away (towards) g is interpreted as the
corresponding gate having output (input) value TRUE.

3. The reverse situation corresponds to an output or input carrying the value
FALSE.

END DEF

4 Comments on section 12.2.2

1. Figure 12.6: If possible I would render figure 12.6 at a higher resolution.
There is a lot going on and the text looked pretty fuzzy.

2. I found the explanation of the gadgets on page 305 confusing and I found
that I was not sure what to look for in the corresponding figures. I also
think it might be good to additionally have a simpler example. For in-
stance, including an example such as ϕ = (x∨y)∧(y∨z) to help motivate
the logical gadget section would have helped me.

3. Red-Blue Conversion: It took me a while to figure out which edges/vertices
in Figure 12.4 corresponded to the conversion and which ones were just
part of the gadget. It is pretty obvious in hindsight but it was not clear at
first. I think something along the lines of the following would have helped
me follow it better.

(a) Each instance of the construction below will allow for the conversion
of two edges. The gadget itself is in the center and the conversion
is happening at vertices c1 and c2. We view vertices g1 and g2 as
gates, and the blue edges touching them are the outputs of those
gates. This gadget insures

i. that the logical value on each side of ci will be the same (if the
blue edge is pointing up (FALSE) then the red edge must also
be pointing up (FALSE)).

ii. that both logical values are possible. The sub graph in the center
ensures that there will always be a valid configuration in which
c1 and c2 have an incoming red edge. This means that as long
as the orientation of the remaining two edges are opposite (with
respect to ci), either set of orientations is valid. This means it is
possible for gates g1 and g2 to output either TRUE or FALSE,
as would be the case in the corresponding formula.
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5 Comments on 12.2.3

1. Theorem 12.2.4 and Crossover Gadgets: I think it would be good
to briefly describe in 1-2 sentences what a crossover gadget does. Even
just having a before/after figure that shows how the gadget removes edge
intersections, thus making the graph planar. Also, I did not really un-
derstand figure 12.8. I trust the authors that there is a way to get rid of
degree 4 vertices, but I have no idea what is going on with the red-blue
conversion gadgets floating in the corners. I am not sure if comparing the
edge labels between figures 12.7 and 12.8 is supposed to make that clear
but I was not able to figure it out.

2. Theorem 12.2.4 When reading the proof it was a little hard to under-
stand what we were trying to do at first, and I would reword the theorem
proof slightly as follows.

BEGIN PROOF

(a) In order to model a 3SAT formula using a planar graph, we will take
the graph construction used in Theorem 12.2.3, and then introduce
a gadget which eliminates intersections between edges. We call this
gadget a crossover gadget (See Figure 12.7).

(b) The previous bullet point solves the first half of the theorem. The
original constraint graph construction from theorem 12.2.3 was of de-
gree 3, and the crossover gadgets just used introduced several degree
4 vertices. We use the following additional gadget (see Figure 12.8)
to reduce the degree back down to 3.

END PROOF
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