0.1 Regarding Theorem 8.1.1

When going through the proof, I understood it but I believe it can be slightly modified without becoming more complicated, to be more easily understood by the reader.

Specifically, I think that points 3 and 4. of the proof are not very clear. For example, point 3. might never be satisfied, since there might be a VC of size < k. I believe that point 3. should be:

"3. Keep doing this until either the tree is of height k or there are no edges left in the set G - R, where $R \subseteq G$ is the set of vertices removed by this path of the algorithm's tree so far."

Similarly, point 4. should be:

"If one of the leaves' graph G-R contains no edges, then R is a vertex cover of size $\leq k.$ If not, then there is not."

0.2 Chapter Bugs/Improvements

Since some improvements I suggest can be also considered bugs, I added this section, where I explain them.

- 1. On page 213, in the proof of Theorem 8.2.1, on step 3, it should be "If there is a vertex ν of degree *at least* $L + 1 \dots$ ". The algorithm does not work properly with the exact value.
- 2. On page 214, Theorem 8.2.1 should be denoted Theorem 8.2.4.
- 3. Page 215, Ch.8.5, question mark missing in first sentence of second paragraph.

1 Improving Figure 9.1

Using Tikz, I improved Figure 9.1, which is also now easy to modify further in case the authors later want to use it in the book with some changed parameters/notation within the Figure.

$S^{I}_{4i-3,4j-3}$:	$S^{J}_{4i-3,4j-2}:$	$S^{I}_{4i-3,4j-1}:$	$S^{J}_{4i-3,4j}$:
(iN - z, jN + z)	(iN + α , jN + z)	(iN - α , jN + z)	(iN + z,jN + z)
$S^{I}_{4i-2,4j-3}$:	$S^{J}_{4i-2,4j-2}$:	$S^{I}_{4i-2,4j-1}:$	$S^{J}_{4i-2,4j}$:
(iN - z, jN + b)	((i+1)N,(j+1)N)	(iN,(j+1)N)	(iN+z,(j+1)N+b)
$S^{I}_{4i-1,4j-3}$:	$S^{J}_{4i-1,4j-2}:$	$S^{\mathrm{I}}_{4\mathfrak{i}-1,4\mathfrak{j}-1}:$ $(\mathfrak{i}N,\mathfrak{j}N)$	$S^{J}_{4i-1,4j}$:
(iN - z, jN - b)	((i + 1)N,jN)		(iN+z,(j+1)N-b)
$S^{I}_{4i,4j-3} :$ (iN - z, jN - z)	$S_{4i,4j-2}^{J}:$ $((i+1)N+\alpha,jN-z)$	$S_{4i,4j-1}^{I}:$ $((i+1)N-\alpha,jN-z)$	$S^{J}_{4i,4j}$: (iN + z, jN - z)