ADD to STREAMING

1 Further Readings

1.1 Non-Graph Problem

We often refer to R or R^d . Note that real numbers are infinite in length. For all such problems there is a parameter that bounds the length of precision; however, we still think of the input as elements of R or R^d .

- 1. THE APPROXIMATE NULL VECTOR PROBLEM: given $x_1, \ldots x_{d-1}$ vectors in \mathbb{R}^d output a vector that is approximately orthogonal to all of them. Dagan et al. [4] show that this problem has an $\Omega(d^2)$ lower bound.
- 2. Clarkson & Woodruff [3] consider a variety of Numerical Linear Algebra problems in the Streaming Model. They provide upper and lower boudns on the space complexity of one-pass algorithms. In what follows, A is an $n \times d$ matrix, B is an $n \times d'$ matrix and c = d + d' and the input is assumed to be integers of $O(\log(nc))$ bits or $O(\log(nd))$ bits.
 - (a) For outputing a matrix C such that $||A^TB C|| \le \epsilon ||A|| \cdot ||B||$, they show that $\Theta(c\epsilon^{-2}\log(nc))$ space is needed.
 - (b) For d' = 1, i.e, when B is a vector b, finding an x such that $||Ax b|| \leq (1 + \epsilon) \min_{x' \in \mathbb{R}^d} ||Ax' b||$ requires $\Theta(d^2 \epsilon^{-1} \log(nd))$ space.

1.2 Graph Problems

As usual n is the number of vertices in the graph.

- 1. THE GAP CYCLE COUNTING PROBLEM: Let k be small. A graph G is streamed which is either a disjoint union of $\frac{n}{k}$ k-cycles or a disjoint union of $\frac{n}{2k}$ 2k-cycles. Determine which is the case. Assadi [1] showed that any p-pass streaming algorithm requires $n^{1-1/k^{\Omega 1/p}}$ space.
- 2. Assadi et al. [2] show that two-pass graph streaming algorithm for the *s*-*t* reachability problem for directed graphs requires space $n^{2-o(1)}$.

- 3. Goel et al. [5] consider the maximum matching problem. They show that any single pass algorithm cannot achieve better than 2/3 approximation. There have been improvements to the bound since this work and most recently, [6] showed a $\frac{1}{1+ln^2}$ bound.
- 4. Assadi [1] consider approximating the maximum matching problem for two pass algorithms and show that any such algorithm has approximation ratio at least $1 - \Omega(\frac{\log RS(n)}{\log n})$ where RS(n) denotes maximum number of disjoint induced matchings of size $\theta(n)$.

References

- S. Assadi. A two-pass lower bound for semi-streaming maximum matching, 2021. https://arxiv.org/abs/2108.07187.
- S. Assadi and R. Raz. Near-quadratic lower bounds for two-pass graph streaming algorithms. In S. Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 342–353. IEEE, 2020. https://doi.org/10.1109/F0CS46700.2020.00040.
- K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming model. In M. Mitzenmacher, editor, *Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 June 2, 2009*, pages 205–214. ACM, 2009. https://doi.org/10.1145/1536414.1536445.
- [4] Y. Dagan, G. Kur, and O. Shamir. Space lower bounds for linear prediction in the streaming model. In A. Beygelzimer and D. Hsu, editors, *Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA*, volume 99 of *Proceedings of Machine Learning Research*, pages 929–954. PMLR, 2019. http://proceedings.mlr.press/v99/dagan19b/dagan19b.pdf.
- [5] A. Goel, M. Kapralov, and S. Khanna. On the communication and streaming complexity of maximum bipartite matching. In Y. Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012,

pages 468-485. SIAM, 2012. https://doi.org/10.1137/1.9781611973099.41.

[6] M. Kapralov. Space lower bounds for approximating maximum matching in the edge arrival model. In D. Marx, editor, *Proceedings of the 2021* ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1874–1893. SIAM, 2021. https://doi.org/10.1137/1.9781611976465.112.