
ADD to STREAMING

1 Further Readings

1.1 Non-Graph Problem

We often refer to R or Rd. Note that real numbers are infinite in length. For
all such problems there is a parameter that bounds the length of precision;
however, we still think of the input as elements of R or Rd.

1. The approximate null vector problem: given x1, . . . xd−1 vec-
tors in Rd output a vector that is approximately orthogonal to all of
them. Dagan et al. [4] show that this problem has an Ω(d2) lower
bound.

2. Clarkson & Woodruff [3] consider a variety of Numerical Linear Alge-
bra problems in the Streaming Model. They provide upper and lower
boudns on the space complexity of one-pass algorithms. In what fol-
lows, A is an n×d matrix, B is an n×d′ matrix and c = d+d′ and the
input is assumed to be integers of O(log(nc)) bits or O(log(nd)) bits.

(a) For outputing a matrix C such that ||ATB − C|| ≤ ε||A|| · ||B||,
they show that Θ(cε−2 log(nc)) space is needed.

(b) For d′ = 1, i.e, when B is a vector b, finding an x such that
||Ax − b|| ≤ (1 + ε) minx′∈Rd ||Ax′ − b|| requires Θ(d2ε−1 log(nd))
space.

1.2 Graph Problems

As usual n is the number of vertices in the graph.

1. The Gap Cycle Counting Problem: Let k be small. A graph G
is streamed which is either a disjoint union of n

k
k-cycles or a disjoint

union of n
2k

2k-cycles. Determine which is the case. Assadi [1] showed

that any p-pass streaming algorithm requires n1−1/kΩ1/p
space.

2. Assadi et al. [2] show that two-pass graph streaming algorithm for the
s-t reachability problem for directed graphs requires space n2−o(1).
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3. Goel et al. [5] consider the maximum matching problem. They show
that any single pass algorithm cannot achieve better than 2/3 approx-
imation. There have been improvements to the bound since this work
and most recently, [6] showed a 1

1+ln2
bound.

4. Assadi [1] consider approximating the maximum matching problem for
two pass algorithms and show that any such algorithm has approxi-
mation ratio at least 1 − Ω( logRS(n)

logn
) where RS(n) denotes maximum

number of disjoint induced matchings of size θ(n).
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