1 The Gap Lemmas

In this section we prove two easy lemmas that show how to go from a reduction that causes a gap (like the one in Theorem ??) to obtain a lower bound on approximation algorithms. This first lemma is for max-problems, the second one is for min-problems. The proofs are similar, hence the proof of the second one is omitted.

Def 1.1 Let f be a max-problem (e.g., CLIQ). Let $a(n)$ and $b(n)$ be functions from \mathbb{N} to \mathbb{N} such that $\frac{b(n)}{a(n)} < 1$. Then $\text{GAP}(f, a, b)$ is the following problem.

Problem 1.2

INSTANCE: y for which you are promised that either $f(y) \geq a(|y|)$ or $f(y) \leq b(|y|)$.

QUESTION: Determine which is the case.

Lemma 1.3 Let A be an NP-complete set. Let f be a max-problem. Let $a(n)$ and $b(n)$ be functions from \mathbb{N} to \mathbb{N} such that (1) $\frac{b(n)}{a(n)} < 1$, and (2) b is computable in poly time in n. Assume there exists a polynomial time reduction that maps x to y such that the following occurs:

- If $x \in A$ then $f(y) \geq a(|y|)$.
- If $x \notin A$ then $f(y) \leq b(|y|)$.

Then:

1. $\text{GAP}(f, a, b)$ is NP-hard (this follows from the premise).

2. If there is an approximation algorithm for f that, on input y, returns a number $> \frac{b(|y|)}{a(|y|)} f(y)$, then $P = NP$.

Proof: We just prove part 2.

We use the reduction and the approximation algorithm to obtain $A \in P$. Since A is NP-complete we obtain $P = NP$.

Algorithm for A

1. Input x.
2. Run the reduction on x to get y.

3. Run the approximation algorithm on y.

4. (This is a comment and not part of the algorithm.)
 \[
x \in A \rightarrow f(y) \geq a(|y|) \rightarrow \text{approx on } y \text{ returns } > \frac{b(|y|)}{a(|y|)} a(|y|) = b(|y|).
 \]
 \[
x \notin A \rightarrow f(y) \leq b(|y|) \rightarrow \text{approx on } y \text{ returns } \leq b(|y|).
 \]

5. If the approx returns a number $> b(|y|)$ then output YES. Otherwise output NO. (This is the step where we need $b(|y|)$ to be computable in polynomial time in $|y|$.)

We now look at min-problems.

Def 1.4 Let f be a min-problem (e.g., TSP). Let $a(n)$ and $b(n)$ be functions from \mathbb{N} to \mathbb{N} such that $\frac{b(n)}{a(n)} > 1$. Then $\text{GAP}(f, a, b)$ is the following problem.

Problem 1.5

- **INSTANCE:** y for which you are promised that either $f(y) \leq a(|y|)$ or $f(y) \geq b(|y|)$.

- **QUESTION:** Determine which is the case.

Lemma 1.6 Let A be an NP-complete set. Let f be a min-problem. Let $a(n)$ and $b(n)$ be functions from \mathbb{N} to \mathbb{N} such that (1) $\frac{b(n)}{a(n)} < 1$, and (2) b is computable in poly time in n. Assume there exists a polynomial time reduction that maps x to y such that the following occurs:

- If $x \in A$ then $f(y) \leq a(|y|)$.
- If $x \notin A$ then $f(y) \geq b(|y|)$.

Then:

1. $\text{GAP}(f, a, b)$ is NP-hard (this follows from the premise).
2. If there is an approximation algorithm for f that, on input y, returns a number $< \frac{b(|y|)}{a(|y|)} f(y)$, then $P = NP$.
Proof: We just prove part 2.

We use the reduction and the approximation algorithm to obtain $A \in P$. Since A is NP-complete we obtain $P = NP$.

Algorithm for A

1. Input x.
2. Run the reduction on x to get y.
3. Run the approximation algorithm on y.
4. (This is a comment and not part of the algorithm.)

 $x \in A \rightarrow f(y) \leq a(|y|) \rightarrow \text{approx on } y \text{ returns } < \frac{b(|y|)}{a(|y|)}a(|y|) = b(|y|)$.

 $x \notin A \rightarrow f(y) \geq b(|y|) \rightarrow \text{approx on } y \text{ returns } \geq b(|y|)$.
5. If the approx returns a number $< b(|y|)$ then output YES. Otherwise output NO. (This is the step where we need $b(|y|)$ to be computable in polynomial time in $|y|$.)

\[\Box \]