
BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Approx Classes and
Reductions

Approx Classes

Convention

There are two kinds of problems:

1. MAX probs: e.g., MAX3SAT, Cliq (CLIQ), Ind Set (IS).

2. MIN probs: e.g., Vertex Cover (VC), Dominating Set (DM).

We will define terms only for MAX problems.
Analogous notions can be defined for MIN problems.

Alg means Poly Time Algorithm.

Alg will find actual solution (e.g., an assignment that satisfies
many clauses).

We Assume P 6= NP.

Convention

There are two kinds of problems:

1. MAX probs: e.g., MAX3SAT, Cliq (CLIQ), Ind Set (IS).

2. MIN probs: e.g., Vertex Cover (VC), Dominating Set (DM).

We will define terms only for MAX problems.
Analogous notions can be defined for MIN problems.

Alg means Poly Time Algorithm.

Alg will find actual solution (e.g., an assignment that satisfies
many clauses).

We Assume P 6= NP.

Convention

There are two kinds of problems:

1. MAX probs: e.g., MAX3SAT, Cliq (CLIQ), Ind Set (IS).

2. MIN probs: e.g., Vertex Cover (VC), Dominating Set (DM).

We will define terms only for MAX problems.
Analogous notions can be defined for MIN problems.

Alg means Poly Time Algorithm.

Alg will find actual solution (e.g., an assignment that satisfies
many clauses).

We Assume P 6= NP.

Convention

There are two kinds of problems:

1. MAX probs: e.g., MAX3SAT, Cliq (CLIQ), Ind Set (IS).

2. MIN probs: e.g., Vertex Cover (VC), Dominating Set (DM).

We will define terms only for MAX problems.

Analogous notions can be defined for MIN problems.

Alg means Poly Time Algorithm.

Alg will find actual solution (e.g., an assignment that satisfies
many clauses).

We Assume P 6= NP.

Convention

There are two kinds of problems:

1. MAX probs: e.g., MAX3SAT, Cliq (CLIQ), Ind Set (IS).

2. MIN probs: e.g., Vertex Cover (VC), Dominating Set (DM).

We will define terms only for MAX problems.
Analogous notions can be defined for MIN problems.

Alg means Poly Time Algorithm.

Alg will find actual solution (e.g., an assignment that satisfies
many clauses).

We Assume P 6= NP.

Convention

There are two kinds of problems:

1. MAX probs: e.g., MAX3SAT, Cliq (CLIQ), Ind Set (IS).

2. MIN probs: e.g., Vertex Cover (VC), Dominating Set (DM).

We will define terms only for MAX problems.
Analogous notions can be defined for MIN problems.

Alg means Poly Time Algorithm.

Alg will find actual solution (e.g., an assignment that satisfies
many clauses).

We Assume P 6= NP.

Convention

There are two kinds of problems:

1. MAX probs: e.g., MAX3SAT, Cliq (CLIQ), Ind Set (IS).

2. MIN probs: e.g., Vertex Cover (VC), Dominating Set (DM).

We will define terms only for MAX problems.
Analogous notions can be defined for MIN problems.

Alg means Poly Time Algorithm.

Alg will find actual solution (e.g., an assignment that satisfies
many clauses).

We Assume P 6= NP.

Convention

There are two kinds of problems:

1. MAX probs: e.g., MAX3SAT, Cliq (CLIQ), Ind Set (IS).

2. MIN probs: e.g., Vertex Cover (VC), Dominating Set (DM).

We will define terms only for MAX problems.
Analogous notions can be defined for MIN problems.

Alg means Poly Time Algorithm.

Alg will find actual solution (e.g., an assignment that satisfies
many clauses).

We Assume P 6= NP.

Max Alg: Benefit Notation

Let A be a max problem (e.g., MAX3SAT).

Let ALG be an alg that finds solutions for A (e.g., assignments).

benefit(ALG(x)) is how good ALG(x) is (e.g., numb clauses
satisfied).

If we dealt with min problems we would use cost.

Max Alg: Benefit Notation

Let A be a max problem (e.g., MAX3SAT).

Let ALG be an alg that finds solutions for A (e.g., assignments).

benefit(ALG(x)) is how good ALG(x) is (e.g., numb clauses
satisfied).

If we dealt with min problems we would use cost.

Max Alg: Benefit Notation

Let A be a max problem (e.g., MAX3SAT).

Let ALG be an alg that finds solutions for A (e.g., assignments).

benefit(ALG(x)) is how good ALG(x) is (e.g., numb clauses
satisfied).

If we dealt with min problems we would use cost.

Max Alg: Benefit Notation

Let A be a max problem (e.g., MAX3SAT).

Let ALG be an alg that finds solutions for A (e.g., assignments).

benefit(ALG(x)) is how good ALG(x) is (e.g., numb clauses
satisfied).

If we dealt with min problems we would use cost.

Def of Approx

Def ALG an alg and c ≥ 1 is a constant A is a max-problem.
ALG is c-app-alg for A if,

benefit(ALG(x)) ≥ 1

c
× benefit(OPT(x)).

Poly Time Approx Scheme (PTAS)

Def Let A be a MAX problem.
A Poly time Approx Scheme (PTAS) for A is an alg that,

on input (x , ε),
returns a y such that benefit(y) ≥ (1− ε)OPT(x).

Note Run time depends on ε.

Can be bad, e.g., n21/ε2

.

Poly Time Approx Scheme (PTAS)

Def Let A be a MAX problem.
A Poly time Approx Scheme (PTAS) for A is an alg that,
on input (x , ε),

returns a y such that benefit(y) ≥ (1− ε)OPT(x).

Note Run time depends on ε.

Can be bad, e.g., n21/ε2

.

Poly Time Approx Scheme (PTAS)

Def Let A be a MAX problem.
A Poly time Approx Scheme (PTAS) for A is an alg that,
on input (x , ε),
returns a y such that benefit(y) ≥ (1− ε)OPT(x).

Note Run time depends on ε.

Can be bad, e.g., n21/ε2

.

Poly Time Approx Scheme (PTAS)

Def Let A be a MAX problem.
A Poly time Approx Scheme (PTAS) for A is an alg that,
on input (x , ε),
returns a y such that benefit(y) ≥ (1− ε)OPT(x).

Note Run time depends on ε.

Can be bad, e.g., n21/ε2

.

Poly Time Approx Scheme (PTAS)

Def Let A be a MAX problem.
A Poly time Approx Scheme (PTAS) for A is an alg that,
on input (x , ε),
returns a y such that benefit(y) ≥ (1− ε)OPT(x).

Note Run time depends on ε.

Can be bad, e.g., n21/ε2

.

Complexity Classes of Approx Problems

Let A be a MAX problem

(1) A ∈ PTAS is ∃ a PTAS for A.

(2) A ∈ APX if ∃ c ≥ 1 and alg M: M(x) ≥ 1
c OPT(x).

(3) A ∈ LAPX if ∃ c and alg M: M(x) ≥ 1
c log x OPT(x).

(4) A ∈ PAPX if ∃ poly p and alg M: M(x) ≥ 1
p(x)OPT(x).

(5) Can define more classes.

Complexity Classes of Approx Problems

Let A be a MAX problem

(1) A ∈ PTAS is ∃ a PTAS for A.

(2) A ∈ APX if ∃ c ≥ 1 and alg M: M(x) ≥ 1
c OPT(x).

(3) A ∈ LAPX if ∃ c and alg M: M(x) ≥ 1
c log x OPT(x).

(4) A ∈ PAPX if ∃ poly p and alg M: M(x) ≥ 1
p(x)OPT(x).

(5) Can define more classes.

Complexity Classes of Approx Problems

Let A be a MAX problem

(1) A ∈ PTAS is ∃ a PTAS for A.

(2) A ∈ APX if ∃ c ≥ 1 and alg M: M(x) ≥ 1
c OPT(x).

(3) A ∈ LAPX if ∃ c and alg M: M(x) ≥ 1
c log x OPT(x).

(4) A ∈ PAPX if ∃ poly p and alg M: M(x) ≥ 1
p(x)OPT(x).

(5) Can define more classes.

Complexity Classes of Approx Problems

Let A be a MAX problem

(1) A ∈ PTAS is ∃ a PTAS for A.

(2) A ∈ APX if ∃ c ≥ 1 and alg M: M(x) ≥ 1
c OPT(x).

(3) A ∈ LAPX if ∃ c and alg M: M(x) ≥ 1
c log x OPT(x).

(4) A ∈ PAPX if ∃ poly p and alg M: M(x) ≥ 1
p(x)OPT(x).

(5) Can define more classes.

Complexity Classes of Approx Problems

Let A be a MAX problem

(1) A ∈ PTAS is ∃ a PTAS for A.

(2) A ∈ APX if ∃ c ≥ 1 and alg M: M(x) ≥ 1
c OPT(x).

(3) A ∈ LAPX if ∃ c and alg M: M(x) ≥ 1
c log x OPT(x).

(4) A ∈ PAPX if ∃ poly p and alg M: M(x) ≥ 1
p(x)OPT(x).

(5) Can define more classes.

Complexity Classes of Approx Problems

Let A be a MAX problem

(1) A ∈ PTAS is ∃ a PTAS for A.

(2) A ∈ APX if ∃ c ≥ 1 and alg M: M(x) ≥ 1
c OPT(x).

(3) A ∈ LAPX if ∃ c and alg M: M(x) ≥ 1
c log x OPT(x).

(4) A ∈ PAPX if ∃ poly p and alg M: M(x) ≥ 1
p(x)OPT(x).

(5) Can define more classes.

What do we Know?

The following are known:
(1) PTAS ⊆ APX ⊆ LAPX ⊆ PAPX (this is obvious).

(2) P 6= NP→ the inclusions are proper:

a) MAX3SAT ∈ APX− PTAS

b) SETCOVER ∈ LAPX−APX

c) CLIQ ∈ PAPX− LAPX.

d) TSP /∈ PAPX.

What do we Know?

The following are known:
(1) PTAS ⊆ APX ⊆ LAPX ⊆ PAPX (this is obvious).

(2) P 6= NP→ the inclusions are proper:

a) MAX3SAT ∈ APX− PTAS

b) SETCOVER ∈ LAPX−APX

c) CLIQ ∈ PAPX− LAPX.

d) TSP /∈ PAPX.

What do we Know?

The following are known:
(1) PTAS ⊆ APX ⊆ LAPX ⊆ PAPX (this is obvious).

(2) P 6= NP→ the inclusions are proper:

a) MAX3SAT ∈ APX− PTAS

b) SETCOVER ∈ LAPX−APX

c) CLIQ ∈ PAPX− LAPX.

d) TSP /∈ PAPX.

What do we Know?

The following are known:
(1) PTAS ⊆ APX ⊆ LAPX ⊆ PAPX (this is obvious).

(2) P 6= NP→ the inclusions are proper:

a) MAX3SAT ∈ APX− PTAS

b) SETCOVER ∈ LAPX−APX

c) CLIQ ∈ PAPX− LAPX.

d) TSP /∈ PAPX.

What do we Know?

The following are known:
(1) PTAS ⊆ APX ⊆ LAPX ⊆ PAPX (this is obvious).

(2) P 6= NP→ the inclusions are proper:

a) MAX3SAT ∈ APX− PTAS

b) SETCOVER ∈ LAPX−APX

c) CLIQ ∈ PAPX− LAPX.

d) TSP /∈ PAPX.

What do we Know?

The following are known:
(1) PTAS ⊆ APX ⊆ LAPX ⊆ PAPX (this is obvious).

(2) P 6= NP→ the inclusions are proper:

a) MAX3SAT ∈ APX− PTAS

b) SETCOVER ∈ LAPX−APX

c) CLIQ ∈ PAPX− LAPX.

d) TSP /∈ PAPX.

Approx Reductions

Example of an Approx Reduction

Recall MAX3SAT /∈ PTAS.

Def IS returns the largest ind set.

Thm If IS ∈ PTAS then MAX3SAT ∈ PTAS.
Assume IS ∈ PTAS. We give PTAS for MAX3SAT.
1) Input (φ, ε).
2) Form graph G SEE NEXT SLIDE.
3) Use PTAS on (G , ε) to get Ind set of size ≥ (1− ε)OPT(G)
clauses.
4) Easily map that Ind Set to a partial assignment that satisfies
≥ (1− ε)OPT(φ).

Example of an Approx Reduction

Recall MAX3SAT /∈ PTAS.

Def IS returns the largest ind set.

Thm If IS ∈ PTAS then MAX3SAT ∈ PTAS.
Assume IS ∈ PTAS. We give PTAS for MAX3SAT.
1) Input (φ, ε).
2) Form graph G SEE NEXT SLIDE.
3) Use PTAS on (G , ε) to get Ind set of size ≥ (1− ε)OPT(G)
clauses.
4) Easily map that Ind Set to a partial assignment that satisfies
≥ (1− ε)OPT(φ).

Example of an Approx Reduction

Recall MAX3SAT /∈ PTAS.

Def IS returns the largest ind set.

Thm If IS ∈ PTAS then MAX3SAT ∈ PTAS.
Assume IS ∈ PTAS. We give PTAS for MAX3SAT.

1) Input (φ, ε).
2) Form graph G SEE NEXT SLIDE.
3) Use PTAS on (G , ε) to get Ind set of size ≥ (1− ε)OPT(G)
clauses.
4) Easily map that Ind Set to a partial assignment that satisfies
≥ (1− ε)OPT(φ).

Example of an Approx Reduction

Recall MAX3SAT /∈ PTAS.

Def IS returns the largest ind set.

Thm If IS ∈ PTAS then MAX3SAT ∈ PTAS.
Assume IS ∈ PTAS. We give PTAS for MAX3SAT.
1) Input (φ, ε).

2) Form graph G SEE NEXT SLIDE.
3) Use PTAS on (G , ε) to get Ind set of size ≥ (1− ε)OPT(G)
clauses.
4) Easily map that Ind Set to a partial assignment that satisfies
≥ (1− ε)OPT(φ).

Example of an Approx Reduction

Recall MAX3SAT /∈ PTAS.

Def IS returns the largest ind set.

Thm If IS ∈ PTAS then MAX3SAT ∈ PTAS.
Assume IS ∈ PTAS. We give PTAS for MAX3SAT.
1) Input (φ, ε).
2) Form graph G SEE NEXT SLIDE.

3) Use PTAS on (G , ε) to get Ind set of size ≥ (1− ε)OPT(G)
clauses.
4) Easily map that Ind Set to a partial assignment that satisfies
≥ (1− ε)OPT(φ).

Example of an Approx Reduction

Recall MAX3SAT /∈ PTAS.

Def IS returns the largest ind set.

Thm If IS ∈ PTAS then MAX3SAT ∈ PTAS.
Assume IS ∈ PTAS. We give PTAS for MAX3SAT.
1) Input (φ, ε).
2) Form graph G SEE NEXT SLIDE.
3) Use PTAS on (G , ε) to get Ind set of size ≥ (1− ε)OPT(G)
clauses.

4) Easily map that Ind Set to a partial assignment that satisfies
≥ (1− ε)OPT(φ).

Example of an Approx Reduction

Recall MAX3SAT /∈ PTAS.

Def IS returns the largest ind set.

Thm If IS ∈ PTAS then MAX3SAT ∈ PTAS.
Assume IS ∈ PTAS. We give PTAS for MAX3SAT.
1) Input (φ, ε).
2) Form graph G SEE NEXT SLIDE.
3) Use PTAS on (G , ε) to get Ind set of size ≥ (1− ε)OPT(G)
clauses.
4) Easily map that Ind Set to a partial assignment that satisfies
≥ (1− ε)OPT(φ).

Figure: MAX3SAT ≤ IS

Formal Def of Approx Preserving Reduction

Def A,B be 2 problems. An approximation preserving
reduction (APR) from A to B is a pair of poly time functions
x → x ′ and y ′ → y
1) If x is an instance of A then x ′ is an instance of B.
2) If y ′ is a solution for x ′ then y is a solution for x .
3) If y ′ is a good solution for x ′ then y is a good solution for x .
(The notion of good will vary.)

We are only interested in good solutions. Hence we may restrict y ′

to solutions that do not have an obvious improvement.
Example We assume a solutions for MAX3SAT will assign a var
that only appears positively to T.

Formal Def of Approx Preserving Reduction

Def A,B be 2 problems. An approximation preserving
reduction (APR) from A to B is a pair of poly time functions
x → x ′ and y ′ → y
1) If x is an instance of A then x ′ is an instance of B.
2) If y ′ is a solution for x ′ then y is a solution for x .
3) If y ′ is a good solution for x ′ then y is a good solution for x .
(The notion of good will vary.)

We are only interested in good solutions. Hence we may restrict y ′

to solutions that do not have an obvious improvement.
Example We assume a solutions for MAX3SAT will assign a var
that only appears positively to T.

L-Reductions

Def An L-reduction A ≤L B is an APR where:

(1) OPTB(x ′) = O(OPTA(x))
(2) |benefitA(x ′)−OPTA(x)| = O(|benefitB(y ′)−OPTB(y)|)

Thm If B ∈ PTAS and A ≤L B then A ∈ PTAS.

L-Reductions

Def An L-reduction A ≤L B is an APR where:
(1) OPTB(x ′) = O(OPTA(x))

(2) |benefitA(x ′)−OPTA(x)| = O(|benefitB(y ′)−OPTB(y)|)

Thm If B ∈ PTAS and A ≤L B then A ∈ PTAS.

L-Reductions

Def An L-reduction A ≤L B is an APR where:
(1) OPTB(x ′) = O(OPTA(x))
(2) |benefitA(x ′)−OPTA(x)| = O(|benefitB(y ′)−OPTB(y)|)

Thm If B ∈ PTAS and A ≤L B then A ∈ PTAS.

L-Reductions

Def An L-reduction A ≤L B is an APR where:
(1) OPTB(x ′) = O(OPTA(x))
(2) |benefitA(x ′)−OPTA(x)| = O(|benefitB(y ′)−OPTB(y)|)

Thm If B ∈ PTAS and A ≤L B then A ∈ PTAS.

APX-Complete and APX-Hard

Def Let A be a max-problem.

(1) A is APX-hard if MAX3SAT ≤L A.

(2) A is APX-complete if A is APX-hard and A ∈ APX .

We showed that IS is APX-hard.

Its PAPX-complete since CLIQ is PAPX-complete.

APX-Complete and APX-Hard

Def Let A be a max-problem.

(1) A is APX-hard if MAX3SAT ≤L A.

(2) A is APX-complete if A is APX-hard and A ∈ APX .

We showed that IS is APX-hard.

Its PAPX-complete since CLIQ is PAPX-complete.

APX-Complete and APX-Hard

Def Let A be a max-problem.

(1) A is APX-hard if MAX3SAT ≤L A.

(2) A is APX-complete if A is APX-hard and A ∈ APX .

We showed that IS is APX-hard.

Its PAPX-complete since CLIQ is PAPX-complete.

APX-Complete and APX-Hard

Def Let A be a max-problem.

(1) A is APX-hard if MAX3SAT ≤L A.

(2) A is APX-complete if A is APX-hard and A ∈ APX .

We showed that IS is APX-hard.

Its PAPX-complete since CLIQ is PAPX-complete.

APX-Complete and APX-Hard

Def Let A be a max-problem.

(1) A is APX-hard if MAX3SAT ≤L A.

(2) A is APX-complete if A is APX-hard and A ∈ APX .

We showed that IS is APX-hard.

Its PAPX-complete since CLIQ is PAPX-complete.

MAX3SAT ≤L
MAX3SATE-3

MAXthSAT and Variants

Def
(1) MAX3SAT Input a 3CNF fml φ.
Output: Max number of clauses that can be satisfied.

(2) MAX3SATE-a Input 3CNF fml φ where every var occurs ≤ a.
Output: Max number of clauses that can be satisfied.

MAXthSAT and Variants

Def
(1) MAX3SAT Input a 3CNF fml φ.
Output: Max number of clauses that can be satisfied.

(2) MAX3SATE-a Input 3CNF fml φ where every var occurs ≤ a.
Output: Max number of clauses that can be satisfied.

MAX3SAT ≤L MAX3SATE-3

We show bad reduction to motivate a good reduction.

1. Input φ(x1, . . . , xn). Assume φ has m clauses.

2. For each variable x that occurs ≥ 4 times do the following:

2.1 Let k be the number of times x occurs. Introduce new
variables z1, . . . , zk .

2.2 Replace the k occurrences of x with z1, . . . , zk .
2.3 Add (z1 → z2), (z2 → z3), . . ., (zL−1 → zk), (zk → z1). These

clauses are an attempt to force all of the zi to have the same
truth value. (If this was a decision-problem reduction then the
attempt would succeed.)

Output φ′.

MAX3SAT ≤L MAX3SATE-3

We show bad reduction to motivate a good reduction.

1. Input φ(x1, . . . , xn). Assume φ has m clauses.

2. For each variable x that occurs ≥ 4 times do the following:

2.1 Let k be the number of times x occurs. Introduce new
variables z1, . . . , zk .

2.2 Replace the k occurrences of x with z1, . . . , zk .
2.3 Add (z1 → z2), (z2 → z3), . . ., (zL−1 → zk), (zk → z1). These

clauses are an attempt to force all of the zi to have the same
truth value. (If this was a decision-problem reduction then the
attempt would succeed.)

Output φ′.

MAX3SAT ≤L MAX3SATE-3

We show bad reduction to motivate a good reduction.

1. Input φ(x1, . . . , xn). Assume φ has m clauses.

2. For each variable x that occurs ≥ 4 times do the following:

2.1 Let k be the number of times x occurs. Introduce new
variables z1, . . . , zk .

2.2 Replace the k occurrences of x with z1, . . . , zk .
2.3 Add (z1 → z2), (z2 → z3), . . ., (zL−1 → zk), (zk → z1). These

clauses are an attempt to force all of the zi to have the same
truth value. (If this was a decision-problem reduction then the
attempt would succeed.)

Output φ′.

MAX3SAT ≤L MAX3SATE-3

We show bad reduction to motivate a good reduction.

1. Input φ(x1, . . . , xn). Assume φ has m clauses.

2. For each variable x that occurs ≥ 4 times do the following:

2.1 Let k be the number of times x occurs. Introduce new
variables z1, . . . , zk .

2.2 Replace the k occurrences of x with z1, . . . , zk .
2.3 Add (z1 → z2), (z2 → z3), . . ., (zL−1 → zk), (zk → z1). These

clauses are an attempt to force all of the zi to have the same
truth value. (If this was a decision-problem reduction then the
attempt would succeed.)

Output φ′.

MAX3SAT ≤L MAX3SATE-3

We show bad reduction to motivate a good reduction.

1. Input φ(x1, . . . , xn). Assume φ has m clauses.

2. For each variable x that occurs ≥ 4 times do the following:

2.1 Let k be the number of times x occurs. Introduce new
variables z1, . . . , zk .

2.2 Replace the k occurrences of x with z1, . . . , zk .

2.3 Add (z1 → z2), (z2 → z3), . . ., (zL−1 → zk), (zk → z1). These
clauses are an attempt to force all of the zi to have the same
truth value. (If this was a decision-problem reduction then the
attempt would succeed.)

Output φ′.

MAX3SAT ≤L MAX3SATE-3

We show bad reduction to motivate a good reduction.

1. Input φ(x1, . . . , xn). Assume φ has m clauses.

2. For each variable x that occurs ≥ 4 times do the following:

2.1 Let k be the number of times x occurs. Introduce new
variables z1, . . . , zk .

2.2 Replace the k occurrences of x with z1, . . . , zk .
2.3 Add (z1 → z2), (z2 → z3), . . ., (zL−1 → zk), (zk → z1). These

clauses are an attempt to force all of the zi to have the same
truth value. (If this was a decision-problem reduction then the
attempt would succeed.)

Output φ′.

MAX3SAT ≤L MAX3SATE-3

We show bad reduction to motivate a good reduction.

1. Input φ(x1, . . . , xn). Assume φ has m clauses.

2. For each variable x that occurs ≥ 4 times do the following:

2.1 Let k be the number of times x occurs. Introduce new
variables z1, . . . , zk .

2.2 Replace the k occurrences of x with z1, . . . , zk .
2.3 Add (z1 → z2), (z2 → z3), . . ., (zL−1 → zk), (zk → z1). These

clauses are an attempt to force all of the zi to have the same
truth value. (If this was a decision-problem reduction then the
attempt would succeed.)

Output φ′.

What is Wrong with that Reduction?

Good News φ ∈ SAT iff φ′ ∈ SAT.

Caveat We need to be able to take an assignment that satisfies
many clauses of φ′ and map it to an assignment that satisfies
many clauses of φ.

Bad News Example of why reduction does not work.

φ(x) = (x∨x∨x)∧· · ·∧(x∨x∨x)∧(¬x∨¬x∨¬x)∧· · ·∧(¬x∨¬x∨¬x)

There are m (x ∨ x ∨ x) clauses and m (¬x ∨ ¬x ∨ ¬x) clauses.
Note that MAX3SAT(φ) = m.

Next Slide has φ′

What is Wrong with that Reduction?

Good News φ ∈ SAT iff φ′ ∈ SAT.

Caveat We need to be able to take an assignment that satisfies
many clauses of φ′ and map it to an assignment that satisfies
many clauses of φ.

Bad News Example of why reduction does not work.

φ(x) = (x∨x∨x)∧· · ·∧(x∨x∨x)∧(¬x∨¬x∨¬x)∧· · ·∧(¬x∨¬x∨¬x)

There are m (x ∨ x ∨ x) clauses and m (¬x ∨ ¬x ∨ ¬x) clauses.
Note that MAX3SAT(φ) = m.

Next Slide has φ′

What is Wrong with that Reduction?

Good News φ ∈ SAT iff φ′ ∈ SAT.

Caveat We need to be able to take an assignment that satisfies
many clauses of φ′ and map it to an assignment that satisfies
many clauses of φ.

Bad News Example of why reduction does not work.

φ(x) = (x∨x∨x)∧· · ·∧(x∨x∨x)∧(¬x∨¬x∨¬x)∧· · ·∧(¬x∨¬x∨¬x)

There are m (x ∨ x ∨ x) clauses and m (¬x ∨ ¬x ∨ ¬x) clauses.
Note that MAX3SAT(φ) = m.

Next Slide has φ′

What is Wrong with that Reduction?

Good News φ ∈ SAT iff φ′ ∈ SAT.

Caveat We need to be able to take an assignment that satisfies
many clauses of φ′ and map it to an assignment that satisfies
many clauses of φ.

Bad News Example of why reduction does not work.

φ(x) = (x∨x∨x)∧· · ·∧(x∨x∨x)∧(¬x∨¬x∨¬x)∧· · ·∧(¬x∨¬x∨¬x)

There are m (x ∨ x ∨ x) clauses and m (¬x ∨ ¬x ∨ ¬x) clauses.
Note that MAX3SAT(φ) = m.

Next Slide has φ′

What is Wrong with that Reduction?

Good News φ ∈ SAT iff φ′ ∈ SAT.

Caveat We need to be able to take an assignment that satisfies
many clauses of φ′ and map it to an assignment that satisfies
many clauses of φ.

Bad News Example of why reduction does not work.

φ(x) = (x∨x∨x)∧· · ·∧(x∨x∨x)∧(¬x∨¬x∨¬x)∧· · ·∧(¬x∨¬x∨¬x)

There are m (x ∨ x ∨ x) clauses and m (¬x ∨ ¬x ∨ ¬x) clauses.
Note that MAX3SAT(φ) = m.

Next Slide has φ′

φ′

(z1 ∨ z2 ∨ z3) ∧ · · · ∧ (z3m−2 ∨ z3m−1 ∨ z3m)∧

(¬z3m+1 ∨ ¬z3m+2 ∨ ¬z3m+3) ∧ · · · ∧ (¬z6m−2 ∨ ¬z6m−1 ∨ ¬z6m)∧

(z1 → z2) ∧ · · · ∧ (z6m−1 → z6m) ∧ (z6m → z1)

Set z1, . . . , z3m to T and z3m+1, . . . , z6m to F. We satisfy every
single clause except z3m → z3m+1. Thats
m + m + 6m − 1 = 8m − 1 clauses.

Upshot MAX3SAT(φ) = m and MAX3SAT(φ′) = 8m − 1.
That doesn’t seem to bad. But wait. . ..

φ′

(z1 ∨ z2 ∨ z3) ∧ · · · ∧ (z3m−2 ∨ z3m−1 ∨ z3m)∧

(¬z3m+1 ∨ ¬z3m+2 ∨ ¬z3m+3) ∧ · · · ∧ (¬z6m−2 ∨ ¬z6m−1 ∨ ¬z6m)∧

(z1 → z2) ∧ · · · ∧ (z6m−1 → z6m) ∧ (z6m → z1)

Set z1, . . . , z3m to T and z3m+1, . . . , z6m to F. We satisfy every
single clause except z3m → z3m+1. Thats
m + m + 6m − 1 = 8m − 1 clauses.

Upshot MAX3SAT(φ) = m and MAX3SAT(φ′) = 8m − 1.
That doesn’t seem to bad. But wait. . ..

φ′

(z1 ∨ z2 ∨ z3) ∧ · · · ∧ (z3m−2 ∨ z3m−1 ∨ z3m)∧

(¬z3m+1 ∨ ¬z3m+2 ∨ ¬z3m+3) ∧ · · · ∧ (¬z6m−2 ∨ ¬z6m−1 ∨ ¬z6m)∧

(z1 → z2) ∧ · · · ∧ (z6m−1 → z6m) ∧ (z6m → z1)

Set z1, . . . , z3m to T and z3m+1, . . . , z6m to F. We satisfy every
single clause except z3m → z3m+1. Thats
m + m + 6m − 1 = 8m − 1 clauses.

Upshot MAX3SAT(φ) = m and MAX3SAT(φ′) = 8m − 1.
That doesn’t seem to bad. But wait. . ..

No Map from y ′ to y

It Gets Worse There is no useful way to take that assignment and
map it to an assignment for φ that satisfies many clauses.

What We Did Wrong We replaced x with z1, z2, z3 and we
intended z1, z2, z3 them to all get the same truth value. But we
did nothing to enforce that.

What To Do We replaced x with z1, z2, z3 in such a way that
making them all the same will be beneficial towards getting more
clauses satisfied.

Small Caveat We will actually work with z1, . . . , z7.

No Map from y ′ to y

It Gets Worse There is no useful way to take that assignment and
map it to an assignment for φ that satisfies many clauses.

What We Did Wrong We replaced x with z1, z2, z3 and we
intended z1, z2, z3 them to all get the same truth value. But we
did nothing to enforce that.

What To Do We replaced x with z1, z2, z3 in such a way that
making them all the same will be beneficial towards getting more
clauses satisfied.

Small Caveat We will actually work with z1, . . . , z7.

No Map from y ′ to y

It Gets Worse There is no useful way to take that assignment and
map it to an assignment for φ that satisfies many clauses.

What We Did Wrong We replaced x with z1, z2, z3 and we
intended z1, z2, z3 them to all get the same truth value. But we
did nothing to enforce that.

What To Do We replaced x with z1, z2, z3 in such a way that
making them all the same will be beneficial towards getting more
clauses satisfied.

Small Caveat We will actually work with z1, . . . , z7.

No Map from y ′ to y

It Gets Worse There is no useful way to take that assignment and
map it to an assignment for φ that satisfies many clauses.

What We Did Wrong We replaced x with z1, z2, z3 and we
intended z1, z2, z3 them to all get the same truth value. But we
did nothing to enforce that.

What To Do We replaced x with z1, z2, z3 in such a way that
making them all the same will be beneficial towards getting more
clauses satisfied.

Small Caveat We will actually work with z1, . . . , z7.

Instead of Cycles Use . . .

In failed reduction we used a cycle to connect the different
variables that are supposed to all have the same truth value.

In the correct reduction we will use a more complicated graph.
Def Let d ∈ N. A d -expander graph G = (V ,E) has:
(1) every vertex has degree d
(2) for every partition V = V1 ∪ V2, E (V1,V2) ≥ min(|V1|, |V2|).

An expander graph has properties of both sparse graphs (low
degree) and dense graphs (lots of edges).

Known for all k ≡ 0 (mod 2), there exists a 3-expander graph on
k vertices. we will assume every var that appears ≥ 8 times
appears an even number of times.

Instead of Cycles Use . . .

In failed reduction we used a cycle to connect the different
variables that are supposed to all have the same truth value.

In the correct reduction we will use a more complicated graph.

Def Let d ∈ N. A d -expander graph G = (V ,E) has:
(1) every vertex has degree d
(2) for every partition V = V1 ∪ V2, E (V1,V2) ≥ min(|V1|, |V2|).

An expander graph has properties of both sparse graphs (low
degree) and dense graphs (lots of edges).

Known for all k ≡ 0 (mod 2), there exists a 3-expander graph on
k vertices. we will assume every var that appears ≥ 8 times
appears an even number of times.

Instead of Cycles Use . . .

In failed reduction we used a cycle to connect the different
variables that are supposed to all have the same truth value.

In the correct reduction we will use a more complicated graph.
Def Let d ∈ N. A d -expander graph G = (V ,E) has:
(1) every vertex has degree d
(2) for every partition V = V1 ∪ V2, E (V1,V2) ≥ min(|V1|, |V2|).

An expander graph has properties of both sparse graphs (low
degree) and dense graphs (lots of edges).

Known for all k ≡ 0 (mod 2), there exists a 3-expander graph on
k vertices. we will assume every var that appears ≥ 8 times
appears an even number of times.

Instead of Cycles Use . . .

In failed reduction we used a cycle to connect the different
variables that are supposed to all have the same truth value.

In the correct reduction we will use a more complicated graph.
Def Let d ∈ N. A d -expander graph G = (V ,E) has:
(1) every vertex has degree d
(2) for every partition V = V1 ∪ V2, E (V1,V2) ≥ min(|V1|, |V2|).

An expander graph has properties of both sparse graphs (low
degree) and dense graphs (lots of edges).

Known for all k ≡ 0 (mod 2), there exists a 3-expander graph on
k vertices. we will assume every var that appears ≥ 8 times
appears an even number of times.

Instead of Cycles Use . . .

In failed reduction we used a cycle to connect the different
variables that are supposed to all have the same truth value.

In the correct reduction we will use a more complicated graph.
Def Let d ∈ N. A d -expander graph G = (V ,E) has:
(1) every vertex has degree d
(2) for every partition V = V1 ∪ V2, E (V1,V2) ≥ min(|V1|, |V2|).

An expander graph has properties of both sparse graphs (low
degree) and dense graphs (lots of edges).

Known for all k ≡ 0 (mod 2), there exists a 3-expander graph on
k vertices. we will assume every var that appears ≥ 8 times
appears an even number of times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:

1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .

2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .

3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).

zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:

(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,

(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),

(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).

The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

MAX3SAT ≤L MAX3SATE-7

Here is the reduction:

1. Input φ(x1, . . . , xn).

2. If x occurs k ≥ 8 times do the following:
1) Introduce z1, . . . , zk .
2) Replace the k occurrences of x with z1, . . . , zk .
3) G is a 3-expander graph on k vertices {1, . . . , k}.
∀ edges {i , j} add clauses (zi → zj) and (zj → zi).
zi will occur 7 times in φ′:
(a) once in the place it replaces x in the original formula,
(b) three times in clauses of the form zi → zj (deg 3),
(c) three times in clauses of the form zj → zi (deg 3).
The last two come from G having degree 3.

Clearly every var occurs ≤ 7 times.

Why Does This Reduction Work?

How to go from an assignment for φ′ to an assignment for φ.

Let ~b′ be an assignment for φ′.

If x occurs ≤ 7 times in φ then x is in φ′ and gets the same truth
value that ~b′ gave it.

If x occurs k ≥ 8 times in φ then there are z1, . . . , zk in φ′.

This is the interesting case so goto the next slide.

Why Does This Reduction Work?

How to go from an assignment for φ′ to an assignment for φ.

Let ~b′ be an assignment for φ′.

If x occurs ≤ 7 times in φ then x is in φ′ and gets the same truth
value that ~b′ gave it.

If x occurs k ≥ 8 times in φ then there are z1, . . . , zk in φ′.

This is the interesting case so goto the next slide.

Why Does This Reduction Work?

How to go from an assignment for φ′ to an assignment for φ.

Let ~b′ be an assignment for φ′.

If x occurs ≤ 7 times in φ then x is in φ′ and gets the same truth
value that ~b′ gave it.

If x occurs k ≥ 8 times in φ then there are z1, . . . , zk in φ′.

This is the interesting case so goto the next slide.

Why Does This Reduction Work?

How to go from an assignment for φ′ to an assignment for φ.

Let ~b′ be an assignment for φ′.

If x occurs ≤ 7 times in φ then x is in φ′ and gets the same truth
value that ~b′ gave it.

If x occurs k ≥ 8 times in φ then there are z1, . . . , zk in φ′.

This is the interesting case so goto the next slide.

Why Does This Reduction Work?

How to go from an assignment for φ′ to an assignment for φ.

Let ~b′ be an assignment for φ′.

If x occurs ≤ 7 times in φ then x is in φ′ and gets the same truth
value that ~b′ gave it.

If x occurs k ≥ 8 times in φ then there are z1, . . . , zk in φ′.

This is the interesting case so goto the next slide.

Why Does This Reduction Work? Interesting Case

Recall We said that if can easily improve ~b′ we assume that has
already been done.

We show that all the z1, . . . , zk are assigned same value.
We can then set x to that value in ~b.
Intuition If we set all of the zi to SAME truth value then all of the
clauses from the expander, of the form zi → zj , will be set to T.
More of these clauses will be set T then clauses in the original
formula which might get flipped to F.

Why Does This Reduction Work? Interesting Case

Recall We said that if can easily improve ~b′ we assume that has
already been done.

We show that all the z1, . . . , zk are assigned same value.
We can then set x to that value in ~b.

Intuition If we set all of the zi to SAME truth value then all of the
clauses from the expander, of the form zi → zj , will be set to T.
More of these clauses will be set T then clauses in the original
formula which might get flipped to F.

Why Does This Reduction Work? Interesting Case

Recall We said that if can easily improve ~b′ we assume that has
already been done.

We show that all the z1, . . . , zk are assigned same value.
We can then set x to that value in ~b.
Intuition If we set all of the zi to SAME truth value then all of the
clauses from the expander, of the form zi → zj , will be set to T.

More of these clauses will be set T then clauses in the original
formula which might get flipped to F.

Why Does This Reduction Work? Interesting Case

Recall We said that if can easily improve ~b′ we assume that has
already been done.

We show that all the z1, . . . , zk are assigned same value.
We can then set x to that value in ~b.
Intuition If we set all of the zi to SAME truth value then all of the
clauses from the expander, of the form zi → zj , will be set to T.
More of these clauses will be set T then clauses in the original
formula which might get flipped to F.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.

Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).
The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .
IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.
(2) ≤ |ZF | clauses from the main formula switch from T to F.
Net Gain of ≥ |ZF | clauses are T.
Hence can assume all vars in z1, . . . , zk are set the same.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.
Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).
The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .
IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.
(2) ≤ |ZF | clauses from the main formula switch from T to F.
Net Gain of ≥ |ZF | clauses are T.
Hence can assume all vars in z1, . . . , zk are set the same.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.
Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).

The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .
IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.
(2) ≤ |ZF | clauses from the main formula switch from T to F.
Net Gain of ≥ |ZF | clauses are T.
Hence can assume all vars in z1, . . . , zk are set the same.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.
Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).
The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .
IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.
(2) ≤ |ZF | clauses from the main formula switch from T to F.
Net Gain of ≥ |ZF | clauses are T.
Hence can assume all vars in z1, . . . , zk are set the same.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.
Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).
The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .

IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.
(2) ≤ |ZF | clauses from the main formula switch from T to F.
Net Gain of ≥ |ZF | clauses are T.
Hence can assume all vars in z1, . . . , zk are set the same.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.
Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).
The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .
IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.

(2) ≤ |ZF | clauses from the main formula switch from T to F.
Net Gain of ≥ |ZF | clauses are T.
Hence can assume all vars in z1, . . . , zk are set the same.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.
Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).
The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .
IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.
(2) ≤ |ZF | clauses from the main formula switch from T to F.

Net Gain of ≥ |ZF | clauses are T.
Hence can assume all vars in z1, . . . , zk are set the same.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.
Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).
The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .
IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.
(2) ≤ |ZF | clauses from the main formula switch from T to F.
Net Gain of ≥ |ZF | clauses are T.

Hence can assume all vars in z1, . . . , zk are set the same.

Why Does This Reduction Work? Interesting Case

Let ZT be the subset of {z1, . . . , zk} that are assigned T.
Let ZF be the subset of {z1, . . . , zk} that are assigned F.

Assume |ZT | > |ZF | (other case similar).
The expander graph has ≥ |ZF | edges from ZT to ZF .

For every edge (i , j) where i ∈ ZT and j ∈ ZF , there are two
clauses, zi → zj and zj → zi . Hence there are ≥ 2|ZT | clauses that
connect a variable from ZT to a variable from ZF .
IF set all of the z ∈ ZF to T then
(1) 2|ZF | clauses from the expander graph switch from F to T.
(2) ≤ |ZF | clauses from the main formula switch from T to F.
Net Gain of ≥ |ZF | clauses are T.
Hence can assume all vars in z1, . . . , zk are set the same.

Recap and Nitpicks

Recap

1) Via expander graphs, force all z1, . . . , zk to have same truth
value.

2) Have a reduction φ to φ′ where φ is 3CNF and φ′ is 3CNF with
each var occurring ≤ 7 times.

3) Routine to show that this is an L-reduction.

4) MAX3SAT-7 is APX-complete.

Recap and Nitpicks

Recap
1) Via expander graphs, force all z1, . . . , zk to have same truth
value.

2) Have a reduction φ to φ′ where φ is 3CNF and φ′ is 3CNF with
each var occurring ≤ 7 times.

3) Routine to show that this is an L-reduction.

4) MAX3SAT-7 is APX-complete.

Recap and Nitpicks

Recap
1) Via expander graphs, force all z1, . . . , zk to have same truth
value.

2) Have a reduction φ to φ′ where φ is 3CNF and φ′ is 3CNF with
each var occurring ≤ 7 times.

3) Routine to show that this is an L-reduction.

4) MAX3SAT-7 is APX-complete.

Recap and Nitpicks

Recap
1) Via expander graphs, force all z1, . . . , zk to have same truth
value.

2) Have a reduction φ to φ′ where φ is 3CNF and φ′ is 3CNF with
each var occurring ≤ 7 times.

3) Routine to show that this is an L-reduction.

4) MAX3SAT-7 is APX-complete.

Recap and Nitpicks

Recap
1) Via expander graphs, force all z1, . . . , zk to have same truth
value.

2) Have a reduction φ to φ′ where φ is 3CNF and φ′ is 3CNF with
each var occurring ≤ 7 times.

3) Routine to show that this is an L-reduction.

4) MAX3SAT-7 is APX-complete.

What About MAX3SATE-3

Thm MAX3SAT-7 ≤L MAX3SAT-3.
This is an easy reduction using the cycles from the bad reduction.

We leave the details to the reader.

What About MAX3SATE-3

Thm MAX3SAT-7 ≤L MAX3SAT-3.
This is an easy reduction using the cycles from the bad reduction.

We leave the details to the reader.

Two Reasons Lower Bounds On MAX3SAT-3
Important

1. We will use MAX3SAT-3 to prove many graph problems on
bounded-degree graphs are hard to approximate. These proofs
will be clever but elementary.

2. We will use MAX3SAT-3 to prove SET COVER is hard to
approximate. This proof will use PCP-like machinery. (We
won’t get that far.)

Two Reasons Lower Bounds On MAX3SAT-3
Important

1. We will use MAX3SAT-3 to prove many graph problems on
bounded-degree graphs are hard to approximate. These proofs
will be clever but elementary.

2. We will use MAX3SAT-3 to prove SET COVER is hard to
approximate. This proof will use PCP-like machinery. (We
won’t get that far.)

Two Reasons Lower Bounds On MAX3SAT-3
Important

1. We will use MAX3SAT-3 to prove many graph problems on
bounded-degree graphs are hard to approximate. These proofs
will be clever but elementary.

2. We will use MAX3SAT-3 to prove SET COVER is hard to
approximate. This proof will use PCP-like machinery. (We
won’t get that far.)

Bounded Degree Graph
Problems

Graph Problems

Notation If G is a graph then ∆(G) is the max degree.
Def

ISB-a: Given graph G , ∆(G) ≤ a, ret. size of max ind set.
VCB-a: Given graph G , ∆(G) ≤ a, ret. size of min vert. cov.
DOMB-a: Given graph G , ∆(G) ≤ a, ret. size of min dom set.

We show that, for some constant a, all of these are APX-complete.

Graph Problems

Notation If G is a graph then ∆(G) is the max degree.
Def
ISB-a: Given graph G , ∆(G) ≤ a, ret. size of max ind set.

VCB-a: Given graph G , ∆(G) ≤ a, ret. size of min vert. cov.
DOMB-a: Given graph G , ∆(G) ≤ a, ret. size of min dom set.

We show that, for some constant a, all of these are APX-complete.

Graph Problems

Notation If G is a graph then ∆(G) is the max degree.
Def
ISB-a: Given graph G , ∆(G) ≤ a, ret. size of max ind set.
VCB-a: Given graph G , ∆(G) ≤ a, ret. size of min vert. cov.

DOMB-a: Given graph G , ∆(G) ≤ a, ret. size of min dom set.

We show that, for some constant a, all of these are APX-complete.

Graph Problems

Notation If G is a graph then ∆(G) is the max degree.
Def
ISB-a: Given graph G , ∆(G) ≤ a, ret. size of max ind set.
VCB-a: Given graph G , ∆(G) ≤ a, ret. size of min vert. cov.
DOMB-a: Given graph G , ∆(G) ≤ a, ret. size of min dom set.

We show that, for some constant a, all of these are APX-complete.

Graph Problems

Notation If G is a graph then ∆(G) is the max degree.
Def
ISB-a: Given graph G , ∆(G) ≤ a, ret. size of max ind set.
VCB-a: Given graph G , ∆(G) ≤ a, ret. size of min vert. cov.
DOMB-a: Given graph G , ∆(G) ≤ a, ret. size of min dom set.

We show that, for some constant a, all of these are APX-complete.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

ISB-4 Is APX-Complete

AP-Hard

MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.

So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.

So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered?

Might be open.

ISB-4 Is APX-Complete

AP-Hard
MAX3SAT-3 ≤L ISB-4 by the MAX3SAT ≤L IS reduction.
So ISB-4 is APX-hard.

ISB-4 ∈ APX:
Halldórsson-Radhakrishnan showed that
ISB-∆ has a ∆+2

3 -approx.

If ∆ = 4 we get ISB-3 has a 2-approx.
So ISB-4 ∈ APX.

We now know that ISB-4 does not have a PTAS.

Can the 2 be lowered? Might be open.

VCB-4 is APX-Complete

APX-hard
ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.
For VCB-4 is there a (2− ε)-approx? Might be open.

VCB-4 is APX-Complete

APX-hard

ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.
For VCB-4 is there a (2− ε)-approx? Might be open.

VCB-4 is APX-Complete

APX-hard
ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.
For VCB-4 is there a (2− ε)-approx? Might be open.

VCB-4 is APX-Complete

APX-hard
ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.
For VCB-4 is there a (2− ε)-approx? Might be open.

VCB-4 is APX-Complete

APX-hard
ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.
For VCB-4 is there a (2− ε)-approx? Might be open.

VCB-4 is APX-Complete

APX-hard
ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.
For VCB-4 is there a (2− ε)-approx? Might be open.

VCB-4 is APX-Complete

APX-hard
ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.

For VCB-4 is there a (2− ε)-approx? Might be open.

VCB-4 is APX-Complete

APX-hard
ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.
For VCB-4 is there a (2− ε)-approx?

Might be open.

VCB-4 is APX-Complete

APX-hard
ISB-4 ≤L VCB-4: The usual,
(1) Map G to G .

(2) Map a vertex cover for G to its complement to get an
independent set for G .

VCB-4 ∈ APX:

Know that VC has a 2-Approx.

There are reasons to think VC does not have a (2− ε)-approx.
For VCB-4 is there a (2− ε)-approx? Might be open.

DOMB-8 is APX-Complete

APX-Hard
VCB-4 ≤L DOMB-8:
See next slide

DOMB-8 is APX-Complete

APX-Hard

VCB-4 ≤L DOMB-8:
See next slide

DOMB-8 is APX-Complete

APX-Hard
VCB-4 ≤L DOMB-8:
See next slide

VCB-4 ≤L DOMB-8

A B C

DE

A B C

DE

AB BC

BE CD

ED

AE

G =
Vertex Cover {E,B,C}

G’ =
Dominating Set {BE,E,AB,C}

= {B,E,C}

DOMB-∆ in APX

Parekh showed that DOMB-∆ has a O(log ∆)-approx.

Pinning down the exact constant may be open.

We know that DOMB-∆ is APX but not PTAS.

DOMB-∆ in APX

Parekh showed that DOMB-∆ has a O(log ∆)-approx.
Pinning down the exact constant may be open.

We know that DOMB-∆ is APX but not PTAS.

DOMB-∆ in APX

Parekh showed that DOMB-∆ has a O(log ∆)-approx.
Pinning down the exact constant may be open.

We know that DOMB-∆ is APX but not PTAS.

Recap

We have shown

MAX3SAT ≤L MAX3SAT-3 ≤L ISB-4 ≤L VCB-4 ≤L DOMB-8

and that all of these problems are APX-complete.

Our next goal is to show that MAXCUT is APX-complete.

We will need two more problems in logic to help us get there.

Recap

We have shown

MAX3SAT ≤L MAX3SAT-3 ≤L ISB-4 ≤L VCB-4 ≤L DOMB-8

and that all of these problems are APX-complete.

Our next goal is to show that MAXCUT is APX-complete.

We will need two more problems in logic to help us get there.

Recap

We have shown

MAX3SAT ≤L MAX3SAT-3 ≤L ISB-4 ≤L VCB-4 ≤L DOMB-8

and that all of these problems are APX-complete.

Our next goal is to show that MAXCUT is APX-complete.

We will need two more problems in logic to help us get there.

Logic Problems We Will Need

Def
MAX2SAT Given a 2CNF formula φ,

what is the max number of clauses that can be satisfied by an
assignment?

MAX3NAESAT Given a 3CNF formula φ,
what is the max number of clauses that can be satisfied by an
assignment with the extra condition that no clause has all of its
literals T. (NAE stands for Not-All-Equal.)

Logic Problems We Will Need

Def
MAX2SAT Given a 2CNF formula φ,
what is the max number of clauses that can be satisfied by an
assignment?

MAX3NAESAT Given a 3CNF formula φ,
what is the max number of clauses that can be satisfied by an
assignment with the extra condition that no clause has all of its
literals T. (NAE stands for Not-All-Equal.)

Logic Problems We Will Need

Def
MAX2SAT Given a 2CNF formula φ,
what is the max number of clauses that can be satisfied by an
assignment?

MAX3NAESAT Given a 3CNF formula φ,

what is the max number of clauses that can be satisfied by an
assignment with the extra condition that no clause has all of its
literals T. (NAE stands for Not-All-Equal.)

Logic Problems We Will Need

Def
MAX2SAT Given a 2CNF formula φ,
what is the max number of clauses that can be satisfied by an
assignment?

MAX3NAESAT Given a 3CNF formula φ,
what is the max number of clauses that can be satisfied by an
assignment with the extra condition that no clause has all of its
literals T. (NAE stands for Not-All-Equal.)

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:

(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.

(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T

It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.

It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.

Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: APX-Hard

APX-Hard We show ISB-4 ≤L MAX2SAT.

1. Input G = (V ,E), a graph of degree ≤ 4.

2. Form φ as follows:
(1) For every v ∈ V we have clause {v}.
(2) For every (u, v) ∈ E we have clause {u ∨ v}.

We map an assignment for φ to an IS set of G .
Key If the assignment makes some 2-clause u ∨ v F, then change
the assignment to make u F.
This will make u ∨ v T
It may make more 2-clauses true.
It will make ONE 1-clause, {u} F.
Hence number of clauses satisfied will not decrease.

The set of variables set T are an IS in G .

Leave to the reader that this works.

MAX2SAT is APX-Complete: In APX

The randomized algorithm gives a 1
2 -approx.

Can be made deterministic by Cond. Prob. Method.

We now know that MAX2SAT is APX but not PTAS.

MAX2SAT is APX-Complete: In APX

The randomized algorithm gives a 1
2 -approx.

Can be made deterministic by Cond. Prob. Method.

We now know that MAX2SAT is APX but not PTAS.

MAX2SAT is APX-Complete: In APX

The randomized algorithm gives a 1
2 -approx.

Can be made deterministic by Cond. Prob. Method.

We now know that MAX2SAT is APX but not PTAS.

MAX3NAESAT is APX-Complete: APX-Hard

MAX2SAT ≤L MAX3NAESAT.

1. Input φ, a formula where every clause has ≤ 2 literals.

2. Let z be a new variable.

3. We form a formula φ′ by adding ∨z to all 2-clauses, and
∨z ∨ z to all 1-clause.

Let ~b′ be an assignment for φ′ where m of the clauses are satisfied
but no clause has TTT. We map it to an assignment ~b for φ.

Case z = T The m satisfied clauses all have ≥ 1 literal set F. If
we flip the truth value of all the vars (z is now F) we get an
assignment where m clauses are T, and none of them are TTT.
Hence we can assume z = F .
Case z = F T The assignment, not including z , is an assignment
for φ that makes m clauses T. Hence

benefit(φ′, ~b′) = benefit(φ, ~b).

MAX3NAESAT is APX-Complete: APX-Hard

MAX2SAT ≤L MAX3NAESAT.

1. Input φ, a formula where every clause has ≤ 2 literals.

2. Let z be a new variable.

3. We form a formula φ′ by adding ∨z to all 2-clauses, and
∨z ∨ z to all 1-clause.

Let ~b′ be an assignment for φ′ where m of the clauses are satisfied
but no clause has TTT. We map it to an assignment ~b for φ.

Case z = T The m satisfied clauses all have ≥ 1 literal set F. If
we flip the truth value of all the vars (z is now F) we get an
assignment where m clauses are T, and none of them are TTT.
Hence we can assume z = F .
Case z = F T The assignment, not including z , is an assignment
for φ that makes m clauses T. Hence

benefit(φ′, ~b′) = benefit(φ, ~b).

MAX3NAESAT is APX-Complete: APX-Hard

MAX2SAT ≤L MAX3NAESAT.

1. Input φ, a formula where every clause has ≤ 2 literals.

2. Let z be a new variable.

3. We form a formula φ′ by adding ∨z to all 2-clauses, and
∨z ∨ z to all 1-clause.

Let ~b′ be an assignment for φ′ where m of the clauses are satisfied
but no clause has TTT. We map it to an assignment ~b for φ.

Case z = T The m satisfied clauses all have ≥ 1 literal set F. If
we flip the truth value of all the vars (z is now F) we get an
assignment where m clauses are T, and none of them are TTT.
Hence we can assume z = F .
Case z = F T The assignment, not including z , is an assignment
for φ that makes m clauses T. Hence

benefit(φ′, ~b′) = benefit(φ, ~b).

MAX3NAESAT is APX-Complete: APX-Hard

MAX2SAT ≤L MAX3NAESAT.

1. Input φ, a formula where every clause has ≤ 2 literals.

2. Let z be a new variable.

3. We form a formula φ′ by adding ∨z to all 2-clauses, and
∨z ∨ z to all 1-clause.

Let ~b′ be an assignment for φ′ where m of the clauses are satisfied
but no clause has TTT. We map it to an assignment ~b for φ.

Case z = T The m satisfied clauses all have ≥ 1 literal set F. If
we flip the truth value of all the vars (z is now F) we get an
assignment where m clauses are T, and none of them are TTT.
Hence we can assume z = F .
Case z = F T The assignment, not including z , is an assignment
for φ that makes m clauses T. Hence

benefit(φ′, ~b′) = benefit(φ, ~b).

MAX3NAESAT is APX-Complete: APX-Hard

MAX2SAT ≤L MAX3NAESAT.

1. Input φ, a formula where every clause has ≤ 2 literals.

2. Let z be a new variable.

3. We form a formula φ′ by adding ∨z to all 2-clauses, and
∨z ∨ z to all 1-clause.

Let ~b′ be an assignment for φ′ where m of the clauses are satisfied
but no clause has TTT. We map it to an assignment ~b for φ.

Case z = T The m satisfied clauses all have ≥ 1 literal set F. If
we flip the truth value of all the vars (z is now F) we get an
assignment where m clauses are T, and none of them are TTT.
Hence we can assume z = F .
Case z = F T The assignment, not including z , is an assignment
for φ that makes m clauses T. Hence

benefit(φ′, ~b′) = benefit(φ, ~b).

MAX3NAESAT is APX-Complete: APX-Hard

MAX2SAT ≤L MAX3NAESAT.

1. Input φ, a formula where every clause has ≤ 2 literals.

2. Let z be a new variable.

3. We form a formula φ′ by adding ∨z to all 2-clauses, and
∨z ∨ z to all 1-clause.

Let ~b′ be an assignment for φ′ where m of the clauses are satisfied
but no clause has TTT. We map it to an assignment ~b for φ.

Case z = T The m satisfied clauses all have ≥ 1 literal set F. If
we flip the truth value of all the vars (z is now F) we get an
assignment where m clauses are T, and none of them are TTT.
Hence we can assume z = F .

Case z = F T The assignment, not including z , is an assignment
for φ that makes m clauses T. Hence

benefit(φ′, ~b′) = benefit(φ, ~b).

MAX3NAESAT is APX-Complete: APX-Hard

MAX2SAT ≤L MAX3NAESAT.

1. Input φ, a formula where every clause has ≤ 2 literals.

2. Let z be a new variable.

3. We form a formula φ′ by adding ∨z to all 2-clauses, and
∨z ∨ z to all 1-clause.

Let ~b′ be an assignment for φ′ where m of the clauses are satisfied
but no clause has TTT. We map it to an assignment ~b for φ.

Case z = T The m satisfied clauses all have ≥ 1 literal set F. If
we flip the truth value of all the vars (z is now F) we get an
assignment where m clauses are T, and none of them are TTT.
Hence we can assume z = F .
Case z = F T The assignment, not including z , is an assignment
for φ that makes m clauses T. Hence

benefit(φ′, ~b′) = benefit(φ, ~b).

MAX3NAESAT is APX-Complete: In APX

MAX3NAESAT has a 3
4 -approx.

The usual: Pick a random assignment.

The prob that a clause is satisfied with the condition is the (prob
that the assignment is NOT TTT or FFF), so is 6

8 = 3
4

Hence expected number of satisfied clauses is 3
4 of the clauses.

Can be made deterministic by the Cond. Prob. Method.. Method.

Now we know that MAX3NAESAT is in APX but not PTAS.

MAX3NAESAT is APX-Complete: In APX

MAX3NAESAT has a 3
4 -approx.

The usual: Pick a random assignment.

The prob that a clause is satisfied with the condition is the (prob
that the assignment is NOT TTT or FFF), so is 6

8 = 3
4

Hence expected number of satisfied clauses is 3
4 of the clauses.

Can be made deterministic by the Cond. Prob. Method.. Method.

Now we know that MAX3NAESAT is in APX but not PTAS.

MAX3NAESAT is APX-Complete: In APX

MAX3NAESAT has a 3
4 -approx.

The usual: Pick a random assignment.

The prob that a clause is satisfied with the condition is the (prob
that the assignment is NOT TTT or FFF), so is 6

8 = 3
4

Hence expected number of satisfied clauses is 3
4 of the clauses.

Can be made deterministic by the Cond. Prob. Method.. Method.

Now we know that MAX3NAESAT is in APX but not PTAS.

MAX3NAESAT is APX-Complete: In APX

MAX3NAESAT has a 3
4 -approx.

The usual: Pick a random assignment.

The prob that a clause is satisfied with the condition is the (prob
that the assignment is NOT TTT or FFF), so is 6

8 = 3
4

Hence expected number of satisfied clauses is 3
4 of the clauses.

Can be made deterministic by the Cond. Prob. Method.. Method.

Now we know that MAX3NAESAT is in APX but not PTAS.

MAX3NAESAT is APX-Complete: In APX

MAX3NAESAT has a 3
4 -approx.

The usual: Pick a random assignment.

The prob that a clause is satisfied with the condition is the (prob
that the assignment is NOT TTT or FFF), so is 6

8 = 3
4

Hence expected number of satisfied clauses is 3
4 of the clauses.

Can be made deterministic by the Cond. Prob. Method.. Method.

Now we know that MAX3NAESAT is in APX but not PTAS.

MAX3NAESAT is APX-Complete: In APX

MAX3NAESAT has a 3
4 -approx.

The usual: Pick a random assignment.

The prob that a clause is satisfied with the condition is the (prob
that the assignment is NOT TTT or FFF), so is 6

8 = 3
4

Hence expected number of satisfied clauses is 3
4 of the clauses.

Can be made deterministic by the Cond. Prob. Method.. Method.

Now we know that MAX3NAESAT is in APX but not PTAS.

MAXCUT IS APX-Complete

Def MAXCUT Given graph G , finds U ⊆ V that maximizes
E (U,V − U).

Thm MAXCUT is APX-complete.
We omit proof that
MAX3NAESAT ≤L MAXCUT

MAXCUT IS APX-Complete

Def MAXCUT Given graph G , finds U ⊆ V that maximizes
E (U,V − U).

Thm MAXCUT is APX-complete.
We omit proof that
MAX3NAESAT ≤L MAXCUT

More Logic Problems!

Max CSP, Min CSP, Max Ones, Min Ones

Def Let C be some type of SAT problem (e.g., 3CNF, 1-in-7-SAT,
NAE-8-SAT).

We refer to rels satisfied rather than clauses satisfied since we
may regard (say) satisfying exactly 1 out of the 7 literals as T as
satisfying the relationship, but not 2 out of the 7.

(1) MAXCSP Given a C -type fml, find an assignment that
maximizes the number of rels satisfied.

(2) MINCSP Given a C -type fml, find an assignment that
minimizes the number of rels unsatisfied. (Equiv to MAXCSP as
functions, but not as approx.)

(3) MAXONES Given a C -type fml, find a assignment that
satisfies all rels and maximizes the number of 1’s in the assignment.

(4)MINONES Given a C -type fml, find an assignment that
satisfies all rels and minimizes the number of 1’s in the assignment.

Max CSP, Min CSP, Max Ones, Min Ones

Def Let C be some type of SAT problem (e.g., 3CNF, 1-in-7-SAT,
NAE-8-SAT).

We refer to rels satisfied rather than clauses satisfied since we
may regard (say) satisfying exactly 1 out of the 7 literals as T as
satisfying the relationship, but not 2 out of the 7.

(1) MAXCSP Given a C -type fml, find an assignment that
maximizes the number of rels satisfied.

(2) MINCSP Given a C -type fml, find an assignment that
minimizes the number of rels unsatisfied. (Equiv to MAXCSP as
functions, but not as approx.)

(3) MAXONES Given a C -type fml, find a assignment that
satisfies all rels and maximizes the number of 1’s in the assignment.

(4)MINONES Given a C -type fml, find an assignment that
satisfies all rels and minimizes the number of 1’s in the assignment.

Max CSP, Min CSP, Max Ones, Min Ones

Def Let C be some type of SAT problem (e.g., 3CNF, 1-in-7-SAT,
NAE-8-SAT).

We refer to rels satisfied rather than clauses satisfied since we
may regard (say) satisfying exactly 1 out of the 7 literals as T as
satisfying the relationship, but not 2 out of the 7.

(1) MAXCSP Given a C -type fml, find an assignment that
maximizes the number of rels satisfied.

(2) MINCSP Given a C -type fml, find an assignment that
minimizes the number of rels unsatisfied. (Equiv to MAXCSP as
functions, but not as approx.)

(3) MAXONES Given a C -type fml, find a assignment that
satisfies all rels and maximizes the number of 1’s in the assignment.

(4)MINONES Given a C -type fml, find an assignment that
satisfies all rels and minimizes the number of 1’s in the assignment.

Max CSP, Min CSP, Max Ones, Min Ones

Def Let C be some type of SAT problem (e.g., 3CNF, 1-in-7-SAT,
NAE-8-SAT).

We refer to rels satisfied rather than clauses satisfied since we
may regard (say) satisfying exactly 1 out of the 7 literals as T as
satisfying the relationship, but not 2 out of the 7.

(1) MAXCSP Given a C -type fml, find an assignment that
maximizes the number of rels satisfied.

(2) MINCSP Given a C -type fml, find an assignment that
minimizes the number of rels unsatisfied. (Equiv to MAXCSP as
functions, but not as approx.)

(3) MAXONES Given a C -type fml, find a assignment that
satisfies all rels and maximizes the number of 1’s in the assignment.

(4)MINONES Given a C -type fml, find an assignment that
satisfies all rels and minimizes the number of 1’s in the assignment.

Max CSP, Min CSP, Max Ones, Min Ones

Def Let C be some type of SAT problem (e.g., 3CNF, 1-in-7-SAT,
NAE-8-SAT).

We refer to rels satisfied rather than clauses satisfied since we
may regard (say) satisfying exactly 1 out of the 7 literals as T as
satisfying the relationship, but not 2 out of the 7.

(1) MAXCSP Given a C -type fml, find an assignment that
maximizes the number of rels satisfied.

(2) MINCSP Given a C -type fml, find an assignment that
minimizes the number of rels unsatisfied. (Equiv to MAXCSP as
functions, but not as approx.)

(3) MAXONES Given a C -type fml, find a assignment that
satisfies all rels and maximizes the number of 1’s in the assignment.

(4)MINONES Given a C -type fml, find an assignment that
satisfies all rels and minimizes the number of 1’s in the assignment.

Max CSP, Min CSP, Max Ones, Min Ones

Def Let C be some type of SAT problem (e.g., 3CNF, 1-in-7-SAT,
NAE-8-SAT).

We refer to rels satisfied rather than clauses satisfied since we
may regard (say) satisfying exactly 1 out of the 7 literals as T as
satisfying the relationship, but not 2 out of the 7.

(1) MAXCSP Given a C -type fml, find an assignment that
maximizes the number of rels satisfied.

(2) MINCSP Given a C -type fml, find an assignment that
minimizes the number of rels unsatisfied. (Equiv to MAXCSP as
functions, but not as approx.)

(3) MAXONES Given a C -type fml, find a assignment that
satisfies all rels and maximizes the number of 1’s in the assignment.

(4)MINONES Given a C -type fml, find an assignment that
satisfies all rels and minimizes the number of 1’s in the assignment.

Connection to Other Problems

Some problems can be phrased as one of these four types.

(1) MAXCUT is a MAXCSP problem where the relations are all
2-ary ⊕.
If G = (V ,E) is a graph then the corresponding MAXCSP
problem is the set of relations:
{xi ⊕ xj : (i , j) ∈ E}.
(2) VC is a MINONES problem where the relations are 2-ary ∨.
If G = (V ,E) is a graph then the corresponding MINCSP
problem is the set of relations:
{xi ∨ xj : (i , j) ∈ E}.

Connection to Other Problems

Some problems can be phrased as one of these four types.
(1) MAXCUT is a MAXCSP problem where the relations are all
2-ary ⊕.
If G = (V ,E) is a graph then the corresponding MAXCSP
problem is the set of relations:
{xi ⊕ xj : (i , j) ∈ E}.

(2) VC is a MINONES problem where the relations are 2-ary ∨.
If G = (V ,E) is a graph then the corresponding MINCSP
problem is the set of relations:
{xi ∨ xj : (i , j) ∈ E}.

Connection to Other Problems

Some problems can be phrased as one of these four types.
(1) MAXCUT is a MAXCSP problem where the relations are all
2-ary ⊕.
If G = (V ,E) is a graph then the corresponding MAXCSP
problem is the set of relations:
{xi ⊕ xj : (i , j) ∈ E}.
(2) VC is a MINONES problem where the relations are 2-ary ∨.
If G = (V ,E) is a graph then the corresponding MINCSP
problem is the set of relations:
{xi ∨ xj : (i , j) ∈ E}.

There is a Classification Thm! Yeah! But. . .

Recall Schaefer’s theorem classified all types of formulas as either
P or NPC.

Do we have the same here for MAXCSP, etc?
Good News There is a theorem that classifies all such functions in
terms of how hard to approx!

Bad News Its a mess involving some classes that are contrived
just for the theorem.

Good News I won’t be presenting it.

There is a Classification Thm! Yeah! But. . .

Recall Schaefer’s theorem classified all types of formulas as either
P or NPC.
Do we have the same here for MAXCSP, etc?

Good News There is a theorem that classifies all such functions in
terms of how hard to approx!

Bad News Its a mess involving some classes that are contrived
just for the theorem.

Good News I won’t be presenting it.

There is a Classification Thm! Yeah! But. . .

Recall Schaefer’s theorem classified all types of formulas as either
P or NPC.
Do we have the same here for MAXCSP, etc?
Good News There is a theorem that classifies all such functions in
terms of how hard to approx!

Bad News Its a mess involving some classes that are contrived
just for the theorem.

Good News I won’t be presenting it.

There is a Classification Thm! Yeah! But. . .

Recall Schaefer’s theorem classified all types of formulas as either
P or NPC.
Do we have the same here for MAXCSP, etc?
Good News There is a theorem that classifies all such functions in
terms of how hard to approx!

Bad News Its a mess involving some classes that are contrived
just for the theorem.

Good News I won’t be presenting it.

There is a Classification Thm! Yeah! But. . .

Recall Schaefer’s theorem classified all types of formulas as either
P or NPC.
Do we have the same here for MAXCSP, etc?
Good News There is a theorem that classifies all such functions in
terms of how hard to approx!

Bad News Its a mess involving some classes that are contrived
just for the theorem.

Good News I won’t be presenting it.

List of APX-Complete
Problems

About this List

We list several APX-complete problems.

There are many more.

We will not prove any of them APX-complete.

We note that they do not just use MAX3SAT. They use each other
or the problems proven APX-complete earlier in this slide packet.

This will in in contrast to LAPX which we will see has much fewer
problems and only uses SET COVER for reductions.

About this List

We list several APX-complete problems.

There are many more.

We will not prove any of them APX-complete.

We note that they do not just use MAX3SAT. They use each other
or the problems proven APX-complete earlier in this slide packet.

This will in in contrast to LAPX which we will see has much fewer
problems and only uses SET COVER for reductions.

About this List

We list several APX-complete problems.

There are many more.

We will not prove any of them APX-complete.

We note that they do not just use MAX3SAT. They use each other
or the problems proven APX-complete earlier in this slide packet.

This will in in contrast to LAPX which we will see has much fewer
problems and only uses SET COVER for reductions.

About this List

We list several APX-complete problems.

There are many more.

We will not prove any of them APX-complete.

We note that they do not just use MAX3SAT. They use each other
or the problems proven APX-complete earlier in this slide packet.

This will in in contrast to LAPX which we will see has much fewer
problems and only uses SET COVER for reductions.

About this List

We list several APX-complete problems.

There are many more.

We will not prove any of them APX-complete.

We note that they do not just use MAX3SAT. They use each other
or the problems proven APX-complete earlier in this slide packet.

This will in in contrast to LAPX which we will see has much fewer
problems and only uses SET COVER for reductions.

EDGEMATCHPUZ (EMP)

Input A set of unit squares with the edges colored, and a target
rectangle RECT.

Question Is there a packing of the squares into RECT such that
all tiles sharing an edge have matching colors. (The colors are
unary numbers, hence the frame will be shown strongly
NP-complete. (These tiles are called Wang Tiles and were
introduced by Hao Wang to study frames in logic.) he function
version of EMP is to maximize the number of edges that match.

EDGEMATCHPUZ (EMP)

Input A set of unit squares with the edges colored, and a target
rectangle RECT.

Question Is there a packing of the squares into RECT such that
all tiles sharing an edge have matching colors. (The colors are
unary numbers, hence the frame will be shown strongly
NP-complete. (These tiles are called Wang Tiles and were
introduced by Hao Wang to study frames in logic.) he function
version of EMP is to maximize the number of edges that match.

Max Ind Set on 3-regular, 3-edge colorable graphs

Input A 3-regular graph and a 3-coloring of the edges (no two
incident edges are the same color).

Question Find the largest independent set.
(This problem is used to show EMP is APX-complete.)

Max Ind Set on 3-regular, 3-edge colorable graphs

Input A 3-regular graph and a 3-coloring of the edges (no two
incident edges are the same color).

Question Find the largest independent set.
(This problem is used to show EMP is APX-complete.)

3-Dim Matching with 2 occurrence (3DM-2)

Input Disjoint sets A,B,C with |A| = |B| = |C | = n, and
M ⊆ A× B × C such that every elements of A ∪ B ∪ C appears
twice.

Question The intuition is that some alien species has three sexes
and we are trying to arrange n 3-person-marriages.

The output is an M ′ ⊆ M such that

1. All the triples in M ′ are disjoint (no polygamy).

2. Every element of A ∪ B ∪ C is in some triple of M ′ (no
unmarried people).

3. In the function version of this we are trying to maximize the
size of M ′ that satisfies the two above.

3-Dim Matching with 2 occurrence (3DM-2)

Input Disjoint sets A,B,C with |A| = |B| = |C | = n, and
M ⊆ A× B × C such that every elements of A ∪ B ∪ C appears
twice.

Question The intuition is that some alien species has three sexes
and we are trying to arrange n 3-person-marriages.

The output is an M ′ ⊆ M such that

1. All the triples in M ′ are disjoint (no polygamy).

2. Every element of A ∪ B ∪ C is in some triple of M ′ (no
unmarried people).

3. In the function version of this we are trying to maximize the
size of M ′ that satisfies the two above.

3-Dim Matching with 2 occurrence (3DM-2)

Input Disjoint sets A,B,C with |A| = |B| = |C | = n, and
M ⊆ A× B × C such that every elements of A ∪ B ∪ C appears
twice.

Question The intuition is that some alien species has three sexes
and we are trying to arrange n 3-person-marriages.

The output is an M ′ ⊆ M such that

1. All the triples in M ′ are disjoint (no polygamy).

2. Every element of A ∪ B ∪ C is in some triple of M ′ (no
unmarried people).

3. In the function version of this we are trying to maximize the
size of M ′ that satisfies the two above.

3-Dim Matching with 2 occurrence (3DM-2)

Input Disjoint sets A,B,C with |A| = |B| = |C | = n, and
M ⊆ A× B × C such that every elements of A ∪ B ∪ C appears
twice.

Question The intuition is that some alien species has three sexes
and we are trying to arrange n 3-person-marriages.

The output is an M ′ ⊆ M such that

1. All the triples in M ′ are disjoint (no polygamy).

2. Every element of A ∪ B ∪ C is in some triple of M ′ (no
unmarried people).

3. In the function version of this we are trying to maximize the
size of M ′ that satisfies the two above.

3-Dim Matching with 2 occurrence (3DM-2)

Input Disjoint sets A,B,C with |A| = |B| = |C | = n, and
M ⊆ A× B × C such that every elements of A ∪ B ∪ C appears
twice.

Question The intuition is that some alien species has three sexes
and we are trying to arrange n 3-person-marriages.

The output is an M ′ ⊆ M such that

1. All the triples in M ′ are disjoint (no polygamy).

2. Every element of A ∪ B ∪ C is in some triple of M ′ (no
unmarried people).

3. In the function version of this we are trying to maximize the
size of M ′ that satisfies the two above.

3-Dim Matching with 2 occurrence (3DM-2)

Input Disjoint sets A,B,C with |A| = |B| = |C | = n, and
M ⊆ A× B × C such that every elements of A ∪ B ∪ C appears
twice.

Question The intuition is that some alien species has three sexes
and we are trying to arrange n 3-person-marriages.

The output is an M ′ ⊆ M such that

1. All the triples in M ′ are disjoint (no polygamy).

2. Every element of A ∪ B ∪ C is in some triple of M ′ (no
unmarried people).

3. In the function version of this we are trying to maximize the
size of M ′ that satisfies the two above.

Metric TSP

Input A Weighted graph G such that for all vertices a, b, c
w(a, c) ≤ w(a, b) + w(b, c).

Question Find the lowest cost HAM cycle.

Metric TSP

Input A Weighted graph G such that for all vertices a, b, c
w(a, c) ≤ w(a, b) + w(b, c).

Question Find the lowest cost HAM cycle.

