
BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!



ETH and NPC Probs on
Graphs and Planar

Graphs

Exposition by William Gasarch—U of MD



Is Assuming P 6= NP
Enough?

Exposition by William Gasarch—U of MD



What if Nathan Proved P 6= NP in a Way that
Nobody Cared?

Scenario Nathan shows 3SAT requires nlog log log n steps.

PRO Nathan gets $1,000,000 and he promised that for ever $1000
he wins I get a free lunch.

CON We believe 3SAT is a hard problem. We still don’t quite
know that.

CON For all NPC problems A there is a c such that A requires
nc(log log log n). So they have not really been proven hard.

So. . . What should Nathan try to prove now?
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We Believe More than P 6= NP

So we think 3SAT /∈ P. Whats the best known algorithm?

1. 3SAT is in deterministic time O(1.3303n) ∼ 20.418n.

2. 3SAT is in randomized time O(1.308n) ∼ 20.387n.

How much better can we get?

1. It is plausible that there is an algorithm in (say) 20.1n.

2. It is unlikely that there is an algorithm in (say) n(log n)10
.

Hypotheses The Exponential Time Hypothesis (ETH) is that
3SAT requires 2Ω(n) steps.
Note If ETH is true this gives a good lower bound on NPC
problems. How good? We will encounter this later.
Nathan Go to it!



We Believe More than P 6= NP

So we think 3SAT /∈ P. Whats the best known algorithm?

1. 3SAT is in deterministic time O(1.3303n) ∼ 20.418n.

2. 3SAT is in randomized time O(1.308n) ∼ 20.387n.

How much better can we get?

1. It is plausible that there is an algorithm in (say) 20.1n.

2. It is unlikely that there is an algorithm in (say) n(log n)10
.

Hypotheses The Exponential Time Hypothesis (ETH) is that
3SAT requires 2Ω(n) steps.
Note If ETH is true this gives a good lower bound on NPC
problems. How good? We will encounter this later.
Nathan Go to it!



We Believe More than P 6= NP

So we think 3SAT /∈ P. Whats the best known algorithm?

1. 3SAT is in deterministic time O(1.3303n) ∼ 20.418n.

2. 3SAT is in randomized time O(1.308n) ∼ 20.387n.

How much better can we get?

1. It is plausible that there is an algorithm in (say) 20.1n.

2. It is unlikely that there is an algorithm in (say) n(log n)10
.

Hypotheses The Exponential Time Hypothesis (ETH) is that
3SAT requires 2Ω(n) steps.
Note If ETH is true this gives a good lower bound on NPC
problems. How good? We will encounter this later.
Nathan Go to it!



We Believe More than P 6= NP

So we think 3SAT /∈ P. Whats the best known algorithm?

1. 3SAT is in deterministic time O(1.3303n) ∼ 20.418n.

2. 3SAT is in randomized time O(1.308n) ∼ 20.387n.

How much better can we get?

1. It is plausible that there is an algorithm in (say) 20.1n.

2. It is unlikely that there is an algorithm in (say) n(log n)10
.

Hypotheses The Exponential Time Hypothesis (ETH) is that
3SAT requires 2Ω(n) steps.
Note If ETH is true this gives a good lower bound on NPC
problems. How good? We will encounter this later.
Nathan Go to it!



We Believe More than P 6= NP

So we think 3SAT /∈ P. Whats the best known algorithm?

1. 3SAT is in deterministic time O(1.3303n) ∼ 20.418n.

2. 3SAT is in randomized time O(1.308n) ∼ 20.387n.

How much better can we get?

1. It is plausible that there is an algorithm in (say) 20.1n.

2. It is unlikely that there is an algorithm in (say) n(log n)10
.

Hypotheses The Exponential Time Hypothesis (ETH) is that
3SAT requires 2Ω(n) steps.
Note If ETH is true this gives a good lower bound on NPC
problems. How good? We will encounter this later.
Nathan Go to it!



We Believe More than P 6= NP

So we think 3SAT /∈ P. Whats the best known algorithm?

1. 3SAT is in deterministic time O(1.3303n) ∼ 20.418n.

2. 3SAT is in randomized time O(1.308n) ∼ 20.387n.

How much better can we get?

1. It is plausible that there is an algorithm in (say) 20.1n.

2. It is unlikely that there is an algorithm in (say) n(log n)10
.

Hypotheses The Exponential Time Hypothesis (ETH) is that
3SAT requires 2Ω(n) steps.

Note If ETH is true this gives a good lower bound on NPC
problems. How good? We will encounter this later.
Nathan Go to it!



We Believe More than P 6= NP

So we think 3SAT /∈ P. Whats the best known algorithm?

1. 3SAT is in deterministic time O(1.3303n) ∼ 20.418n.

2. 3SAT is in randomized time O(1.308n) ∼ 20.387n.

How much better can we get?

1. It is plausible that there is an algorithm in (say) 20.1n.

2. It is unlikely that there is an algorithm in (say) n(log n)10
.

Hypotheses The Exponential Time Hypothesis (ETH) is that
3SAT requires 2Ω(n) steps.
Note If ETH is true this gives a good lower bound on NPC
problems. How good? We will encounter this later.

Nathan Go to it!



We Believe More than P 6= NP

So we think 3SAT /∈ P. Whats the best known algorithm?

1. 3SAT is in deterministic time O(1.3303n) ∼ 20.418n.

2. 3SAT is in randomized time O(1.308n) ∼ 20.387n.

How much better can we get?

1. It is plausible that there is an algorithm in (say) 20.1n.

2. It is unlikely that there is an algorithm in (say) n(log n)10
.

Hypotheses The Exponential Time Hypothesis (ETH) is that
3SAT requires 2Ω(n) steps.
Note If ETH is true this gives a good lower bound on NPC
problems. How good? We will encounter this later.
Nathan Go to it!



One Subtle Point about ETH

ETH is in terms of n, the number of variables.

What about the number of clauses?
Our reductions may depend on then number of clauses.

We will revisit this point after the next reduction.
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NPC Problems on
Graphs

Exposition by William Gasarch—U of MD



The Clique Problem

Def If G is a graph then a clique is a set of vertices such that
every pair has an edge.

Def

CLIQ = {(G , k) : G has a clique of size k }.
We show that CLIQ is NPC.
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3SAT ≤ CLIQ

1) Input φ = C1 ∧ · · · ∧ Ck where each Ci is a 3-clause.

2) Graph G with 7k vertices as follows: For each clause we have 7
vertices. Label them with the 7 ways to set the 3 vars to make the
clause satisfiable. For example, for the clause x ∨ y ∨ ¬z , we have
7 vertices: TTT, TTF, TFT, TFF, FTT, FTF, FFF,

There are no edges between vertices associated to the same clause.
We put an edge between vertices associated with different clauses
if the assignments do not conflict. Example:
(x = T , y = T , z = T ) has edge to (w = F , x = T , z = T ) but
not to (w = F , x = F , z = T ).

3) Example on next slide
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(x ∨ y ∨ z) ∧ (w ∨ z) ∧ (x ∨ z)
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There is More to the Story of 3SAT ≤ CLIQ

Notation v is numb of verts since n is numb of vars.
Since we believe 3SAT /∈ P, we believe CLIQ /∈ P.

But we believe ETH: 3SAT requires 2Ω(n) time.

Mapped φ to a graph G with ≤ 7m vertices.

Want 3SAT requires 2Ω(n) → CLIQ requires 2Ω(v).

Don’t Have We need a linear reduction. We have φ on n
variables, m clauses maps to graph with 7m clauses.

Revisit ETH on next slide.
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What Does ETH Mean?

What does 3SAT requires 2Ω(n) steps mean?

It means (∃c > 0)[3SAT /∈ DTIME(2cn)].

Let A be a graph problem.
What does A requires 2Ω(v) steps mean?
It means (∃d > 0)[A /∈ DTIME(2dv )].

We want
(∃c > 0)[3SAT /∈ DTIME(2cn)] → (∃d > 0)[A /∈ DTIME(2dv )].

Easier to proof contrapositive
(∀d > 0)[A ∈ DTIME(2dv )]→ (∀c > 0)[3SAT ∈ DTIME(2cn)].

This is equivalent to
(∀c)(∃d)[A ∈ DTIME(2dv )→ 3SAT ∈ DTIME(2cn)].
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How to use ETH to Get 2Ω(v) Lower Bounds

Let A be a graph problem. We want to show that A takes 2Ω(v).
Thm (ETH) 3SAT ≤ A by reduction f AND (∃a)[|f (φ)| ≤ an]
then A requires 2Ω(v).

Need (∀c)(∃d)[A ∈ DTIME(2dv )→ 3SAT ∈ DTIME(2cn)].
Pick a c . We pick d later.
1) Input φ on n variables.
2) Compute f (φ) to get a graph G with v ≤ an vertices. Time
poly in n, so negligible, we ignore.
3) Run 2dv alg for A on G . (We chose d later.) Time ≤ 2adn.
4) Ouput the answer.
This takes time 2adn. Take d = c

a to get a 2cn alg for 3SAT.
Note If the reduction took 2εn time, would still work. If needed to
do the reduction many times would still work.
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1) Input φ on n variables.
2) Compute f (φ) to get a graph G with v ≤ an vertices. Time
poly in n, so negligible, we ignore.
3) Run 2dv alg for A on G . (We chose d later.) Time ≤ 2adn.
4) Ouput the answer.
This takes time 2adn. Take d = c

a to get a 2cn alg for 3SAT.
Note If the reduction took 2εn time, would still work. If needed to
do the reduction many times would still work.



Recap of Our Dilemma

We have 3SAT ≤ CLIQ where a formula on n variables and m
clauses maps to a graph on ≤ 7m vertices.
So cannot use ETH to show that CLIQ requires 2Ω(v).

We need a way to reduce 3SAT problems to a 3SAT problem
where the number of clauses is ≤ O(n).

Since we are dealing with exponential time the reduction will take
exponential time but in a controlled way.

Notation Õ(f (n)): ignore polys. Often used as Õ(2cn).
ETH is equiv to: (∃c)(∀p(n)) 3SAT requires ≥ p(n)2Ω(cn).
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Notation Õ(f (n)): ignore polys. Often used as Õ(2cn).
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Notation Õ(f (n)): ignore polys. Often used as Õ(2cn).
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Sparsification Lemma (SL)

For all ε > 0 there exists a constant e(ε) and a Õ(2εn) algorithm
that does the following:
Input φ, 3CNF formula.

Output 3CNF formulas φ1, . . . , φ2εn such that:

(1) Each φi has ≤ e(ε)n clauses

(2) φ ∈ 3SAT iff (∃i)[φi ∈ 3SAT].
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that does the following:
Input φ, 3CNF formula.

Output 3CNF formulas φ1, . . . , φ2εn such that:

(1) Each φi has ≤ e(ε)n clauses

(2) φ ∈ 3SAT iff (∃i)[φi ∈ 3SAT].



Sparsification Lemma (SL)

For all ε > 0 there exists a constant e(ε) and a Õ(2εn) algorithm
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Using the SL

Thm (ETH) CLIQ requires 2Ω(v).

Need (∀c)(∃d)[CLIQ ∈ DTIME(2dv )→ 3SAT ∈ DTIME(2cn)].
Erika What Lemma do we use? Right! SL!
Pick a c . We pick ε and d later.

1. Input φ in 3CNF, on n variables.

2. SL: In time Õ(2εn) get 3CNF φ1, . . . , φ2εn such that:
(1) Each φi has ≤ e(ε)n clauses.
(2) φ ∈ 3SAT iff (∃i)[φi ∈ 3SAT].

3. For each φi do reduction, get (Gi , ki ). Key φi has ≤ e(ε)n
clauses, so Gi has ≤ 7e(ε)n vertices. This took time Õ(2εn).

4. Do the 2dv algorithm on each (Gi , ki ). This takes time

Õ(2εn × 27de(ε))n) = Õ(2(ε+7de(ε))n).

Pick d , ε on next slide.



Using the SL

Thm (ETH) CLIQ requires 2Ω(v).
Need (∀c)(∃d)[CLIQ ∈ DTIME(2dv )→ 3SAT ∈ DTIME(2cn)].

Erika What Lemma do we use? Right! SL!
Pick a c . We pick ε and d later.

1. Input φ in 3CNF, on n variables.
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Pick d , ε on next slide.



Using the SL

Thm (ETH) CLIQ requires 2Ω(v).
Need (∀c)(∃d)[CLIQ ∈ DTIME(2dv )→ 3SAT ∈ DTIME(2cn)].
Erika What Lemma do we use? Right! SL!
Pick a c . We pick ε and d later.

1. Input φ in 3CNF, on n variables.
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4. Do the 2dv algorithm on each (Gi , ki ). This takes time
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ETH implies CLIQ Requires 2Ω(v)

Given c we want to pick d , ε such tha t

2(ε+7de(ε))n < 2cn

(ε+ 7de(ε))n < cn

ε+ 7de(ε) < c

Pick ε = c
3 .

Pick d = c
14e(ε) .

Then

ε+ 7de(ε) =
c

3
+

c

2
=

5c

6
< c .
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Recap

From

1. ETH

2. 3SAT ≤ CLIQ is linear.

3. SL.

we get that CLIQ requires 2Ω(v).

A similar argument can be made for all of the graph problems in
the rest of this talk.

So we won’t bother.
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The Ind. Set Problem

Def If G is a graph then an ind. set is a set of vertices such that
no pair has an edge.

Def

IS = {(G , k) : G has an ind. set of size k }.
We show that IS is NPC.



The Ind. Set Problem

Def If G is a graph then an ind. set is a set of vertices such that
no pair has an edge.

Def

IS = {(G , k) : G has an ind. set of size k }.
We show that IS is NPC.



Two ways to prove IS is NPC

Method One Prove 3SAT ≤ IS, similar to 3SAT ≤ CLIQ.
Method Two Show CLIQ ≤ IS.
Easy (G , k) ∈ CLIQ iff (G , k) ∈ IS.
(G is (V ,

(V
2

)
− E ).)

Moral Once you have many NPC sets you can use them rather
than SAT. In the future we won’t bother with method one.
Bonus Reduction is linear, so assuming ETH and using SL we have
IS requires 2Ω(v) time.
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Def If G is a graph then a vertex cover is a set of vertices such
that every edge has at least one endpoint in that set.

Def

VC = {(G , k) : G has a vertex cover of size k }.
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We show IS ≤ VC.

GO TO BREAKOUT ROOMS TO TRY TO PROVE THIS.
(G , k) ∈ IS iff (G , n − k) ∈ VC.
I leave the proof to you.
Bonus Reduction is linear, so assuming ETH and using SL, VC
requires 2Ω(v) time.
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RECAP

1. CLIQ is NPC.

2. IS is NPC.

3. VC is NPC.

4. All of the reductions were linear so, assuming ETH, and using
the sparsification lemma, all three problems requires 2Ω(v)

time.

We now look at graph coloring.
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Graph Coloring

Def A graph is k-colorable if can map vertices to {1, . . . , k} such
that no adjacent vertices are the same color.

kCOL = {G : G is k-colorable}
k = 1 is in P but silly, G is 1-col iff G has no edges.
k = 2 is in P: Color 1 RED and everything is forced.

k = 3 is first interesting case. We show 3COL is NPC.

Fractional Colorings One can define fractional colorings, so a
graph can be 5

2 -colorable. For all k > 2, kCOL is NPC. We won’t
define or prove this.
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3COL is NPC

Given φ = C1 ∨ · · · ∨ Ck in 3-CNF form we produce G such that

φ ∈ 3SAT iff G ∈ 3COL

We construct three gadgets on the next three slides.

The first two gadgets will set things up. They have nothing to do
with the formula except for the number-of-variables.

The third gadget involves the clauses.
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TRUE, FALSE, and RED

We have the following triangle. The colors are not part of the
graph; however,
we will think of later when a variable is colored T (F) then it is set
to T (F).
We will make sure that no variable is colored R

R

T F



No var is R. (x, x) is (T,F) or (F,T)

R

T F

x ¬x y ¬y z ¬z



The Clause Gadget for x ∨ y ∨¬z

Recall that x , y ,¬z are colored T or F.

1. If x , y ,¬z are all colored F then NOT 3-colorable.

2. If x , y ,¬z are anything else, then IS 3-colorable.

x T y F ¬z



Putting it All Together

C1 C2
. . . Cn

T F

R

x1 ¬x1 . . . . . . xk ¬xk



ETH and 3COL

You can check the reduction gives G of size O(n + m).

ETH Using ETH and SL 3COL requires 2Ω(v).
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4-COL, 5-COL, . . . all NPC

Erika How to show that, for k ≥ 3, kCOL is NPC?

By a reduction.

Anyone Give me the reduction 3COL ≤ 4COL.

Anyone Give me the reduction 3COL ≤ kCOL.

Question Is 4COL ≤ 3COL? Vote

YES but by an insane reduction:

4COL ≤ 3SAT ≤ 3COL.

Is there a sane reduction? Yes. Tell story about it.
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4-COL, 5-COL, . . . all NPC

Erika How to show that, for k ≥ 3, kCOL is NPC?
By a reduction.
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Sanity

We give the Sane Reduction by first giving two Gadgets.



Gadget 1: x, y both c → z is c

x y

z

Figure: GAD(x , y , z)



Gadget 2: x1, x2, x3, x4, x5 all c → z is c
2

xy

2 x4

y3 x5

x1 x

y

31

z

Figure: GAD(x1, x2, x3, x4, x5, z)



4COL ≤ 3SAT

Given G = (V ,E ) we want to construct G ′ = (V ′,E ′) such that
G is 4-Colorable iff G ′ is 3-Colorable

Create a graph G ′ as follows:
SET UP This will not involve G at all except for the number of
vertices.
For every i ∈ V and j ∈ {1, 2, 3, 4} have node vij .

Intent:
If vij is colored T in G ′ then i is colored j in G .
If vij is colored F in G ′ then i is NOT colored j in G .
We use the tri-gadget to make sure that vij is not R.

Need to make sure that, for all i ∈ V :

1. At least one of vi1, vi2, vi3, vi4 is T

2. At most one of vi1, vi2, vi3, vi4 is T

Will do this on next slide.
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4COL ≤ 3SAT SET UP

Fix i .

1. Have GAD(vi1, vi2, vi3, vi4,T ).
This ensures that at least one of vi1, vi2, vi3, vi4 is T

2. Have
GAD(vi1, vi2,F ),
GAD(vi1, vi3,F ),
GAD(vi1, vi4,F ),
GAD(vi2, vi3,F ),
GAD(vi2, vi4,F ),
GAD(vi3, vi4,F ).
This ensures that at most one of vi1, vi2, vi3, vi4 is T

Have: any 3-coloring (proper or not) of G ′ will induce a 4-coloring
(proper or not) on G .

Need: if G ′ has a proper 3-coloring then the induced 4-coloring is
proper.
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4COL ≤ 3SAT The Heart of the Construction

Need to make sure that two adjacent vertices of G have different
colors.

For all (i , j) ∈ E we have the following gadgets.
GAD(vi1, vj1,F ),
GAD(vi2, vj2,F ),
GAD(vi3, vj3,F ),
GAD(vi4, vj4,F ).

Gee, that wasn’t hard at all! The SETUP was most of the
construction!

Similar proof shows kCOL ≤ 3COL.
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NPC Problems on
Planar Graphs

Exposition by William Gasarch—U of MD



Restrict to Planar Graphs

We look at the graph problems we just proved NPC and see what
happens when restricted to planar graphs.

Testing Planarity is in P so we can assume the graph given IS
Planar.
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Clique on Planar Graphs

CLIQ: One of the following is true

1. CLIQ restricted to Planar graphs is NPC.

2. CLIQ restricted to Planar graphs is in P.

3. The status of CLIQ restricted to Planar graphs is unknown to
science.

Vote

CLIQ restricted to Planar graph is in P.
If G is planar then G DOES NOT have a clique of size ≥ 5.

{(G , k) : G is Planar and G has a clique of size k}
If k ≥ 5 just say NO.
If k ≤ 4 can do brute force in O(nk) ≤ O(n4) time.
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Ind Set and Vertex Cover on Planar Graphs

One of the following is true:

1. IS restricted to Planar graphs is NPC.

2. IS restricted to Planar graphs is in P.

3. The status of IS restricted to Planar graphs is unknown to
science.

Vote

IS restricted to Planar graph is in NPC.
There is a reduction from IS to planar-IS but we won’t be using it.
We will do something else later.
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NPC Coloring of Graphs
and Planar Graphs

Exposition by William Gasarch—U of MD



Coloring of Graphs and Planar Graphs

kCOL = {G : G is k-colorable}

PL-kCOL = {G : G is planar and k-colorable}
In breakout rooms discuss planar 3COL, 4COL, 5COL, . . ..

PL-3COL is NPC and we will show that.
PL-4COL is in P: It is known that every planar graph is
4-colorable.
Hence for all k ≥ 4, PL-kCOL is in P.
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Hence for all k ≥ 4, PL-kCOL is in P.



PL-3COL is NPC

Erika Ask the question and answer it.

Yes we will prove this by a reduction.
We show 3COL ≤ PL-3COL.

Key A crossover Gadget

For every crossing we remove it and put in a planar gadget that
has the same affect.

Gadget is on next slide and is all we need for the proof.
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Crossover Gadget

W =



How to Use Crossover Gadget

u v

⇓

u vW W W W



ETH and 3COL

Recall:
Assume ETH. Then 3COL requires 2Ω(v) time.

What about PL-3COL? Discuss.

1. We replace all crossings with O(1) vertices. Hence we care
about the number of crossings.

2. A graph with n vertices might have A LOT of crossings.

3. Bad News Kn probably requires Ω(n4) crossings.

4. Good News We are not dealing with graphs anywhere near as
complicated as Kn.
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ETH and 3COL (Cont)

1. Good News We are only dealing with graphs from
3SAT ≤ 3COL reduction.

2. 3SAT ≤ 3COL ≤ PL-3COL. φ → G → G ′.
φ n vars → G O(n) verts → G ′ O(n2) verts.

Want lower bound on PL-3COL assuming ETH. Discuss.
Thm (ETH) PL-3COL requires 2Ω(

√
v).

Can we improve the lower bound on PL-3COL to 2Ω(v) assuming
ETH? Assuming Hayes Hypothesis? Vote!

No There is a 2O(
√
v) algorithm for PL-3COL. Comes from work

on graphs of bounded treewidth.
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Do We Really Want to
Devise a New Crossover

Gadgets For Every
Problem?

Exposition by William Gasarch—U of MD



The Following Problems are NPC

1. Planar Ind Set (uses a crossover gadget).

2. Planar Vertex Cover (easily from planar ind Set).

3. Planar Dominating Set (reduce Planar VC to it).

4. Planar Hamiltonian Cycle (provably impossible to prove using
a crossover gadget, answering a question of Gasarch).

5. Others as well.

Rather than do all of these proofs and devise different crossover
gadgets, we define a planar variant of SAT.

But SAT is not a graph problem!
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Graph Associated to a CNF Formula

x0 x1 x2 x3 x4

. . .

c0 c1 c2 c3 . . . c0 = (¬x2 ∧ ¬x4)

c1 = (¬x0 ∧ x1 ∧ x2 ∧ x3)

c2 = (x1 ∧ x2 ∧ ¬x4)

c3 = (x0 ∧ ¬x2 ∧ x3)
. . .

Figure: Bipartite Graph Associated to a CNF Formula



Planar SAT

Def PL-3SAT: Given a 3CNF formula φ, whose graph is planar, is
it satisfiable?

1. PL-3SAT is NPC. This will require a crossover gadget.

2. For several graph problems X we will give reductions
3SAT ≤ X that
map φ to G , and
if φ is planar then G is planar.

3. Hence we will show many planar graph problems NPC
without having to construct a gadget for each one.
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Planar SAT

Def PL-3SAT: Given a 3CNF formula φ, whose graph is planar, is
it satisfiable?

1. PL-3SAT is NPC. This will require a crossover gadget.

2. For several graph problems X we will give reductions
3SAT ≤ X that
map φ to G , and
if φ is planar then G is planar.

3. Hence we will show many planar graph problems NPC
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PL-3SAT is NPC

Given φ in 3CNF form we will

1. Draw the graph of φ as a grid (figure 1)

2. Note what crossings look like (figure 2)

3. Have a crossover gadget (figure 3).

4. Say what we add to the formula to get that crossover gadget.



(v ∨¬w ∨ x)∧ (v ∨¬w ∨¬y)∧ (v ∨¬x ∨ z)

c3

c2

c1

v w x y z

1



The Kinds of Crossings We Will Deal With

ci

cj

x

y



Crossover Gadget For Planar SAT

z1 z2

z4 z5

z3x1

y1

x2

y2

y

x



Add to the Boolean Fml

The crossover gadget does not tell us what to add to the formula
since if C and x are connected then either x or x could be in C .

We add the following to the formula

(x2 ∨ y2 ∨ z5) ∧ (x2 ∨ z5) ∧ (y2 ∨ z5) (which is (x2 ∧ y2)↔ z5)

(x2 ∨ y1 ∨ z2) ∧ (x2 ∨ z2) ∧ (y1 ∨ z2) (which is (x2 ∧ y2)↔ z2)

(x1 ∨ y1 ∨ z1) ∧ (x1 ∨ z1) ∧ (y1 ∨ z1) (which is (x1 ∧ y1)↔ z1)

(x1 ∨ y2 ∨ z4) ∧ (x1 ∨ z4) ∧ (y2 ∨ z4) (which is (x1 ∧ y2)↔ z4)

(z1 ∨ z2 ∨ z4 ∨ z5)

(z5 ∨ z2) ∧ (z2 ∨ z1) ∧ (z1 ∨ z5)

x2 ∨ x) ∧ (x ∨ x2) ∧ (y ∨ y2) (which is x ↔ x2 and y ↔ y2)
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VC and Planar VC

Given φ we produce (G , k) such that

φ ∈ 3SAT iff (G , k) ∈ VC

The same reduction will show

φ ∈ PL-3SAT iff (G , k) ∈ PL-VC

We give an example of the key gadget on the next slide.
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(w ∨ x ∨ y)∧ (w ∨¬x ∨ z)

w x y w ¬x z

w ¬w w ¬w x ¬x x ¬x y ¬y z ¬z

1



General Construction for VC and Planar VC

Given φ = C1 ∧ · · · ∧ Ck .
1) Clause C : have a triangle connecting the literals.

2) Var x : have alt-cycle of x ,¬x of length 2×(numb of x ’s).
3) If C has x draw line from one of the x to C . Diff for each C .
4) Seek a VC of size 5k.
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DOM and Planar DOM



Example of Gadget for DOM and Planar DOM

A B C
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A B C

DE
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BE CD

ED
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G =
Vertex Cover {B,C,E}

G’ =
Dominating Set {B,E,CD}

Figure: Proof that Dominating Set is NP-Complete



General Construction for (Planar) DOM

Given VC instance (G , k) create G ′ as follows.
1) For every edge (a, b) create a new vertex ab that has an edge to
a and b.

2) G has a VC size k → G ′ as a DOM of size k : take the VC itself.
3) G ′ has a DOM of size k → G has a VC of size k : take the
DOM set but if one of the vertices of form ab just take a.
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Planar 1-in-3 SAT

Def Planar 1-in-3 SAT (PL-1-in-3SAT): Given a Planar 3CNF
formula φ, is there a satisfying assignment where every clause has
exactly 1 literal T?

Thm PL-1-in-3SAT is NPC.

We show PL-3SAT ≤ PL-1-in-3SAT.

Given φ, a planar 3CNF formula, we form φ′:
Replace every clause L1 ∨ L2 ∨ L3 in φ (the Li are literals) with

(L1 ∨ a ∨ b) ∧ (L2 ∨ a ∨ c) ∧ (L3 ∨ b ∨ d)

Left to the reader to prove the φ′ is planar and

φ ∈ PL-3SAT iff φ ∈ PL-1-in-3SAT.
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Exact Cover and Planar Exact Cover

Def [n] is the set {1, . . . , n}.
Def Exact Cover (X3C): Given n ≡ 0 (mod 3) and a set
E1, . . . ,Em of 3-subsets of [n] is does some set of n/3 of the Ei ’s
cover [n]. Note that they cannot overlap.

Def We associate to an instance of X3C a bipartite graph:
L = {E1, . . . ,Em}, R = [n],

But an edge between Ei and j if j ∈ Ei .

Def Planar Exact Cover (PL-X3C): Input is an instance of X3C
where the graph is planar.
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PL-X3C is NPC

We do 1-in-3-SAT ≤ X3C. Modifying to get
PL-1-in-3SAT ≤ PL-X3C is not automatic but not that hard.

Warning It was impossible to get this onto a slide so the proof I
am giving you is missing some parts, but the intuition is correct.
For complete proof see the paper by Dyer and Frieze.
https://www.math.cmu.edu/~af1p/Texfiles/3DM.pdf

Given C1 ∧ · · · ∧ Cm we create a instance of X3C.

Example is on next page.
Small circles ae elements.
Large circles labeled E are 3-sets. They contain what they have an
edge to.

https://www.math.cmu.edu/~af1p/Texfiles/3DM.pdf
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Example of Reduction
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Figure: Gadget for PL-1-in-3SAT ≤ PL-X3C reduction.



Formal Reduction

Given C1 ∧ · · · ∧ Cm we create a instance of X3C.

1) For every variable x , if x appears m times then have a cycle of
length 2m of E ’s and dummy elements. Then have
x ,¬x , x , . . . ,¬x m of these. The E has in it the two dummies next
to it and either x or ¬x .

2) For every clause (L1 ∨ L2 ∨ L3) there is a new set E which has in
it an L1, an 2, an L3 from above. Each clause uses diff ones.

3) Intuition: Assume there is a 1-in-3 SAT assignment. Let x be a
var set T. Then all of the x ’s in the var-gadget will be covered by
the clauses they appear in. So half of the E ’s in the var-gadget are
used. (This is not quite right since we are assuming that x appears
in exactly m clauses.)
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Planar Bipartite DOM set (PL-bi-DOM)

Thm Planar bipartite DOM set is NPC.
We show that PL-X3C ≤ PL-bi-DOM.

Given n and E1, . . . ,Em we already have a planar bipartite graph.
For each i add edges (Ei , ai ) and (ai , bi ).

Easy to show that there is a covering of size n/3 iff there is a
DOM set of size n

3 + m.
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BILL AND NATHAN, RECORD LECTURE!!!!

BILL: EITHER GO TO GRIPNP PACKET OR STOP
RECORDING LECTURE!!!


