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Lower Bounds on Approx
for Set Cover



Approximating Set Cover

Set Cover Given n and S1, . . . ,Sm ⊆ {1, . . . , n} find the least
number of sets Si ’s that cover {1, . . . , n}.

1. Chvatal in 1979 showed that there is a poly time approx
algorithm for Set Cover that will return (ln n)×OPTIMAL.

2. Dinur and Steurer in 2013 showed that, assuming P 6= NP,
for all ε there is no (1− ε) ln n ×OPTIMAL approx alg for
Set Cover

We will sketch a proof of a weaker lower bound on Set Cover.
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2-Prover 1-Round
Protocols



Recall PCP

A ∈ PCP(q(n), r(n), ε(n)) if there exists a q(n)-query,
r(n)-random RPOTM-BA M() such that, for all n, for all
x ∈ {0, 1}n, the following holds.

1. If x ∈ A then there exists y such that, for all τ with
|τ | = r(n), My (x , τ) accepts. In other words, the probability
of acceptance is 1.

2. If x /∈ A then for all y at most ε(n) of the τ ’s with |τ | = r(n)
make My (x , τ) accept. In other words, the probability of
acceptance is ≤ ε(n).

3. One of the two cases above must happen.
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Aspect of PCP we will Vary

View PCP as a Verifier V interacting with a Prover P.

Note that
(1) V’s queries are adaptive. Can ask one, get the answer, then ask
another one.
(2) V’s queries are bit-queries. Σ = {0, 1}.
(3) V has 1-sided error.
(4) V makes his bit-queries to ONE Prover.
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An Actual Example that Will be Relevant

Before defining our new concept formally we will do

an example!

The example points both backwards and forwards.

1. It is similar to the educational example I gave of PCP

2. We will use this protocol later in our lower bound proof for
SET COVER.
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Prepping for an Example (really!) of a . . .

Recall that we have a gap reduction from 3SAT to MAX3SAT.

φ maps to φ′ which has m′ clauses.

1. If φ ∈ 3SAT then OPT(φ′) = m′.

2. If φ /∈ 3SAT then OPT(φ′) ≤ (1− δ)m′.

It is of interest to look at formulas ψ which we are promised are
either satisfiable or far from satisfiable.
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More Prepping for an Example (really!) of a . . .

There is a gap reduction from MAX3SAT to MAX3SAT-5. (We
will see this in a later talk.)

φ′ maps to ψ which has m clauses.

1. If φ′ ∈ 3SAT then OPT(ψ) = m.

2. If φ′ /∈ 3SAT then OPT(ψ) ≤ (1− δ)m.

3. Every variable in ψ appears exactly 5 times. Important for us:
m = Θ(n).

It is of interest to look at formulas ψ which we are promised are
either satisfiable or far from satisfiable and where m = Θ(n).
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Example of a BLAH for Promise-MAX3SAT

V and two P1,P2 are looking at ψ which has m clauses.

V is promised that either OPT(ψ) = m or OPT(ψ) ≤ (1− δ)m.

1. Input 3CNF ψ: either 3SAT or far from 3SAT, m = Θ(n).

2. V picks a random clause C = (L1 ∨ L2 ∨ L3) and a random Li
from it. This takes O(logm) = O(log n) random bits.

3. V asks P1 the truth-assignment for Li (1 bit) and P2 the
truth-assignment for (L1, L2, L3) (3 bits).

4. If answers are consistent and make the clause T, then V
accepts, else V rejects.

Note
(1) Query to P2 is considered ONE query where alphabet is {0, 1}3.
(2) Two provers P1,P2 cannot communicate.
(3) When V gets the answers he will then decide if he thinks
ψ ∈ 3SAT.
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