Discrete Probability

CMSC 250

Video #1

Axiomatic definitions, basic problems with cards

Informal definition of probability

• Probability that blah happens:

possibilities that blah happens

all possibilities

Informal definition of probability

• Probability that blah happens:

possibilities that blah happens

all possibilities

 This definition is owed to <u>Andrey Kolmogorov</u>, and assumes that all possibilities are equally likely!

• Experiment #1: Tossing the same coin 3 times.

- Experiment #1: Tossing the same coin 3 times.
 - What is the probability that I don't get any heads?

- Experiment #1: Tossing the same coin 3 times.
 - What is the probability that I don't get any heads?
 - Why?
 - Set of different *events*?
 - {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*} (8 of them)
 - Set of events with **no heads**:
 - {*TTT*} (1 of them)

• Hence the answer:
$$\frac{1}{8}$$

1	(1					
3		8					
$\frac{1}{2}$		Something					
9		eise					

- Experiment #1: Tossing the same coin 3 times.
 - What is the probability that I don't get any heads?
 - Why?
 - Set of different *events*?
 - {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*} (8 of them)
 - Set of events with **no heads**:
 - {*TTT*} (1 of them)
 - Hence the answer: $\frac{1}{8}$

Implicit assumption: all individual outcomes (HHH, HHT, HTH,) are considered equally likely (probability 1/8)

- Experiment #2: I roll two dice.
 - Probability that I hit seven = ?

- Experiment #2: I roll two dice.
 - Probability that I hit seven = ?
 - Why?
 - Set of different *events*?
 - $\{(1, 1), (1, 2), \dots, (6, 1)\}$ (36 of them)
 - Set of events where we hit 7.
 - $\{(2,5), (5,2), (3,4), (4,3), (1,6), (6,1)\}$ (6 of them)
 - Hence the answer: $\frac{6}{36} = \frac{1}{6}$

- Experiment #2: I roll two dice.
 - Probability that I hit seven = ?
 - Why?
 - Set of different *events*?
 - {(1, 1), (1, 2), ..., (6, 1)} (36 of them)
 - Set of events where we hit 7.
 - $\{(2,5), (5,2), (3,4), (4,3), (1,6), (6,1)\}$ (6 of them)
 - Hence the answer: $\frac{6}{36} = \frac{1}{6}$
 - Probability that I hit two= ?

- Experiment #2: I roll two dice.
 - Probability that I hit seven = ?
 - Why?
 - Set of different *events*?
 - {(1, 1), (1, 2), ..., (6, 1)} (36 of them)
 - Set of events where we hit 7.
 - $\{(2,5), (5,2), (3,4), (4,3), (1,6), (6,1)\}$ (6 of them)
 - Hence the answer: $\frac{6}{36} = \frac{1}{6}$
 - Probability that I hit two= ?
 - Same procedure

Poker Practice

• Full deck = 52 cards, 13 of each suit:

Poker Practice

- Full deck = 52 cards, 13 of each suit:
- Flush: 5 cards of the same suit
- What is the probability of getting a flush?

4	4			2 ‡	÷		3 ♣	÷		4 *	• •	5.	• •	6 *	* *	ŀ	7 *	. *	8 * *	*	9 * *	*	10 * *	**	J +	Q ****	K ₽
	•	÷	÷		-1-	÷		*	*		T-		*	÷	*	•	*	**	*	*	*	**	*	***		.	
			¥		*	Ż		*	Š	7	• •			š	* *	٩ġ	*	Ŧż	•	•		••6	•	ſ Ŧ Ŏ	i • 🔤 🛛	<u> ¶¶∳</u> §	Ŕ***
				2 ♠	۰		3	♠ ♠		4 ∢	•	5 .	• •	6 •	▲ 4 ▲ 4		7 ♠ ♠	*	8 ♠ ♠		9 ♠ ♠ ●		0 ♠ ●		J		K ♠
		-	¥		Ý	÷		Ŷ	₹		•		Þ 🛡	Š	Ÿ (9	Ý	¢Ž	Ý	* • *	Ŭ	• • • •	Ŭ	Í ¥ ¥	r 🏹	ð 💦	K.
	•	¥	•	2 •	*	2	3♥	*	4 S	4	•	5	*	6 •	•••	ĝ	7	•	8		9	•					K K K K K K K K K K K K K K K K K K K
		•	•	2 ◆	•	2	3 ◆	* * *	• •	4	•	5	•	6 + 5	• • • •	9	₹• • •	••	8 • •	•••	9	•					K.

• How many 5-card hands are there?

• How many 5-card hands are there? $\binom{52}{5}$

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...
 - Given suit choose any 5 cards out of 13...

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...
 - Given suit choose any 5 cards out of 13...
 - So $4 * \binom{13}{5}$

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...
 - Given suit choose any 5 cards out of 13...
 - So $4 * \binom{13}{5}$
- So, probability of being dealt a flush is

$$\frac{4 * \binom{13}{5}}{\binom{52}{5}}$$

• Probability of being dealt a flush is

$$\frac{4 * \binom{13}{5}}{\binom{52}{5}}$$

• Probability of being dealt a flush is

$$\frac{4 * \binom{13}{5}}{\binom{52}{5}}$$

• How likely is this?

• Probability of being dealt a flush is

$$\frac{4 * \binom{13}{5}}{\binom{52}{5}}$$

- How likely is this?
 - Not at all likely: $\approx 0.002 = 0.2\%$ \otimes

- Straights are 5 cards of *consecutive rank*
 - Ace can be <u>either end</u> (high or low)
 - *No wrap-arounds* (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?

- Straights are 5 cards of *consecutive rank*
 - Ace can be <u>either end</u> (high or low)
 - *No wrap-arounds* (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, #possible 5-card hands = $\binom{52}{5}$

- Straights are 5 cards of *consecutive rank*
 - Ace can be *either end* (high or low)
 - <u>No wrap-arounds</u> (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, #possible 5-card hands = $\binom{52}{5}$
- To find out the #straights:
 - Pick lower rank in 10 ways (A-10)
 - Pick a suit in 4 ways
 - Pick the 4 subsequent cards **from any suit** in 4⁴ ways

- Straights are 5 cards of *consecutive rank*
 - Ace can be *either end* (high or low)
 - *No wrap-arounds* (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, #possible 5-card hands = $\binom{52}{5}$
- To find out the #straights:
 - Pick lower rank in 10 ways (A-10)
 - Pick a suit in 4 ways
 - Pick a suft in 4 ways Pick the 4 subsequent cards from any suit in 4⁴ ways straight = $\frac{10*4^5}{\binom{52}{5}}$

That's $10 * 4^5$ ways. So, probability of a

Caveat on flushes

- <u>Wikipedia</u> says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
 - Hands like these are called straight flushes and Wikipedia does not include them.

Caveat on flushes

- <u>Wikipedia</u> says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
 - Hands like these are called straight flushes and Wikipedia does not include them.
 - How many straight flushes are there?

Caveat on flushes

- <u>Wikipedia</u> says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
 - Hands like these are called straight flushes and Wikipedia does not include them.
 - How many straight flushes are there?
 - 40. Here's why:
 - Pick rank: A through 10 (higher ranks don't allow straights) in 10 ways
 - Pick suit in 4 ways

Probability of non-straight flush...

$$\frac{4 * \binom{13}{5} - 40}{\binom{52}{5}} = 0.001965$$

• This is how Wikipedia defines the probability of a flush. 🙂

Probability of a straight flush...

$$\frac{40}{\binom{52}{5}} = 0.0000138517$$

Probability of a straight flush...

$$\frac{40}{\binom{52}{5}} = 0.0000138517$$

The expected # hands you need to play to get a straight flush is then $\left[\frac{1}{0.0000138517}\right] = 72,194$

Same caveat for straights

• From the #straights we computed we will have to subtract the 40 possible straight flushes to get...

$$\frac{10*4^5-40}{\binom{52}{5}} = 0.003925$$

Same caveat

• From the #straights we computed we will have to subtract the 40 possible straight flushes to get...

$$\frac{10*4^5 - 40}{\binom{52}{5}} = 0.003925 > 0.001965 = \text{probability of flush}$$

• Flushes, being more rare, beat straights in poker.
• Try to calculate the probability of a pair!

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
 - The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:
 - 1. First choose rank in 13 ways.
 - 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways.
 - 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
 - The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:
 - 1. First choose rank in 13 ways.
 - 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways.
 - 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

Numerator: $13 \times 6 \times \binom{50}{2}$

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
 - The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:
 - 1. First choose rank in 13 ways.

• So, probability = $\frac{13 \times 6 \times \binom{50}{3}}{\binom{52}{5}}$

- 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways.
- 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

Numerator: 13 × 6 × $\binom{50}{2}$

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
 - The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:
 - 1. First choose rank in 13 ways.
 - 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways.
 - 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.
 - So, probability = $\frac{13 \times 6 \times \binom{50}{3}}{\binom{52}{5}}$

Numerator: $13 \times 6 \times$

No

 $\binom{50}{2}$

Is this accurate?

Yes

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
 - The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:
 - 1. First choose rank in 13 ways.

3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

Don't count better hands!

- In the computation before, we included:
 - 3-of-a-kind
 - 4-of-a-kind
 - etc
- To properly compute, we would have to subtract all better hands possible with at least one pair.

END OF VIDEO #1

Video #2

Joint probability

Joint probability ("AND" of two events)

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
 - $P(A \cap B)$ (Most useful from a set-theoretic perspective; we'll be using this)
 - *P*(*A*, *B*) (One sees this a lot in Physics books)
 - *P*(*AB*) (Perhaps most convenient, therefore most common)

• Probability that the first coin toss is heads and the second coin toss is tails

• Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6
 - # outcomes of die roll is 6
 - # outcomes where first die is at most 2 is 2
 - Hence, probability of first die roll being at most 2 is $\frac{1}{3}$

- Probability that the first coin toss is heads and the second coin toss is tails
- $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6
 - # outcomes of die roll is 6
 - # outcomes where first die is at most 2 is 2
 - Hence, probability of first die roll being at most 2 is $\frac{1}{3}$
 - Similarly, probability of second die roll being 5 or 6 is $\frac{1}{3}$.
 - Hence, probability that both events happen (joint probability) is $\frac{1}{a}$.

- Jason's going to flip a coin and then pick a card from a 52-card deck.
 - Probability that the coin is heads and the card has rank 8?

- Jason's going to flip a coin and then pick a card from a 52-card deck
 - Probability that the coin is heads and the card has rank 8?

$$\frac{1}{2}$$

$$\frac{1}{26}$$

$$\frac{1}{32}$$
 Something else

• This is because $P(coin = H) = \frac{1}{2}$ and $P(card_rank = 8) = \frac{4}{52} = \frac{1}{13}$ • So their joint probability is $\frac{1}{2} \times \frac{1}{13} = \frac{1}{26}$

The law of joint probability

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = \prod_{i=1}^n P(A_i)$$

The law of joint probability

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = \prod_{i=1}^n P(A_i)$$

- Unfortunately, this "law" is not always applicable!
- It is applicable only when all the different events A_i are *independent* (sometimes called *marginally independent*) of each other.
- Let's look at an example.

• Probability that a die is even and that it is 2.

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$
 - Probability that the die is two = $\frac{1}{6}$

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$
 - Probability that the die is two = $\frac{1}{6}$
 - Probability the die is even and the die is two = $\frac{1}{12}$???

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$
 - Probability that the die is two = $\frac{1}{6}$
 - Probability the die is even and the die is two = $\frac{1}{12}$???
 - NO!
 - What is the probability that the die is even and the die is 2?

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$
 - Probability that the die is two = $\frac{1}{6}$
 - Probability the die is even and the die is two = $\frac{1}{12}$???
 - NO!
 - What is the probability that the die is even and the die is 2?

Set-theoretic interpretation

• Notice that the event A: "Die roll is even" is a superset of the event B: "Die roll comes 2"

- Die roll even Die roll comes 2

• Since $A \cap B = A$, $P(A \cap B) = P(A) = \frac{1}{6}$

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
 - Clearly, it can't be

(probability Jason gets an A) X (probability Jason gets a B) = $\frac{1}{7} \times \frac{1}{7} = \frac{1}{49}$

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
 - Clearly, it can't be

(probability Jason gets an A) \times (probability Jason gets a B) = $\frac{1}{7} \times \frac{1}{7} = \frac{1}{49}$

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
 - Clearly, it can't be

(probability Jason gets an A) \times (probability Jason gets a B) = $\frac{1}{7} \times \frac{1}{7} = \frac{1}{49}$

• It is **0**. Those two events cannot happen *jointly*!

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
 - Clearly, it can't be

(probability Jason gets an A) \times (probability Jason gets a B) = $\frac{1}{7} \times \frac{1}{7} = \frac{1}{49}$

- It is **0**. Those two events cannot happen *jointly*!
- Events such as these are called *disjoint* or *mutually disjoint*.

Set-theoretic interpretation

- A = "Jason gets an A in USND's 250"
- G="Jason gets a G in USND's 250"

- Note that $A \cap G = \emptyset$, so there are no common outcomes.
 - So $P(A \cap G) = 0$

- I have my original die again.

 - Probability that it comes up 1, 2 or $3 = \frac{1}{2}$ Probability that it comes up 3, 4 or $5 = \frac{1}{2}$
 - What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?

- I have my original die again.

 - Probability that it comes up 1, 2 or 3 = ¹/₂
 Probability that it comes up 3, 4 or 5 = ¹/₂
 - What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?

$$\begin{array}{ccc} \frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} \end{array}$$

- I have my original die again.

 - Probability that it comes up 1, 2 or 3 = ¹/₂
 Probability that it comes up 3, 4 or 5 = ¹/₂
 - What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?

• Note that the only common outcome between the two events is **3**, which can come up only once out of six possibilities.

Set-theoretic interpretation

- Let A = dice comes up 1, 2, or 3
- Let B = dice comes up 3, 4, or 5
- Let C = dice comes up 1, 2, 3, 4, 5 OR 6

Set-theoretic interpretation

- Let A = dice comes up 1, 2, or 3
- Let B = dice comes up 3, 4, or 5
- Let C = dice comes up 1, 2, 3, 4, 5 OR 6

• Then, probability that the dice comes up $3 = \frac{1}{6}$

END OF VIDEO #2

Video #3 (04-28)

Dependent and independent events

Independent events (informally)

- Two events are independent if one does not influence the other.
- Examples:
 - The event E1 = "first coin toss" and E2 = "second coin toss"
 - With the same die, the events E1 = "roll 1", E2 = "roll 2", E3 = "roll 3"
 - Jason flips a coin and then picks a card.
- Counter-examples:
 - E1 = "Die is even", E2="Die is 6"
 - E1= "Grade in 250" and "Passing 250"

Law of joint probability (*informally*)

- Two events are independent if one does not influence the other.
 - This definition is a but too informal, so mathematicians tend to avoid it.
- Formally, we define that A and B are independent if

 $P(A \cap B) = P(A) \cdot P(B)$

1. $E_1 =$ "It rains in College Park, MD today" $E_2 =$ "It rains in Athens, Greece today"

1. $E_1 =$ "It rains in College Park, MD today" $E_2 =$ "It rains in Athens, Greece today"

Disjoint Probability ("OR" of two events)

- Jason rolls two dice.
 - What is the probability that he rolls a 7 or a 9?

Disjoint Probability ("OR" of two events)

- Jason rolls two dice.
 - What is the probability that he rolls a 7 or a 9?
 - #Ways to roll a 7 is 6.
 - #Ways to roll a 9 is 4: (6, 3), (5, 4), (4, 5), (3, 6)
 - #Ways to roll a 7 OR a 9 is then 10.
 - Therefore, the probability is $\frac{10}{36} = \frac{5}{18}$
 - Key: Rolling a 7 and a 9 are disjoint events.

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
 - Are these disjoint?

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
 - Are these disjoint?
 - *NO*, for example, **Queen of hearts**
- How big is *Face_Card* U *Hearts*?

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
 - Are these disjoint?
 - *NO*, for example, **Queen of hearts**
- How big is *Face_Card* \cup *Hearts* (abbrv. *F*, *H* below)?
 - Use law of inclusion / exclusion!

 $|F \cup H| = |F| + |H| - |F \cap H| = 12 + 13 - 3 = 22$

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
 - Are these disjoint?
 - *NO,* for example, **Queen of hearts**
- How big is *Face_Card* \cup *Hearts* (abbrv. *F*, *H* below)?
 - Use law of inclusion / exclusion!

$$|F \cup H| = |F| + |H| - |F \cap H| = 12 + 13 - 3 = 22$$

• So probability
$$=\frac{22}{52}=\frac{11}{26}$$
.

Alternative viewpoint

•
$$P(F) = \frac{12}{52}$$

• $P(H) = \frac{13}{52}$
• $P(F \cap H) = \frac{3}{52}$

•
$$P(F \cup H) = P(F) + P(H) - P(F \cap H)$$

Probability of unions

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• If A and B are independent, we have

$$P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$$

• If A and B are disjoint, we have

$$P(A \cup B) = P(A) + P(B)$$

Probability of unions of 3 sets

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

-
$$P(A \cap B) - P(B \cap C) - P(A \cap C)$$

+
$$P(A \cap B \cap C)$$

• If A, B and C are pairwise independent, we have : $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A) \cdot P(B) - P(B) \cdot P(C) - P(A) \cdot P(B) - P(B) \cdot P(C) - P(B) \cdot P(B) - P(B) \cdot P(C) - P(B) - P(B) \cdot P(C) - P(B) - P($

 $P(A) \cdot P(C) + P(A \cdot B \cdot C)$

If A, B and C are pairwise disjoint (so A ∩ B = A ∩ C = B ∩ C = Ø, so clearly A ∩ B ∩ C = Ø), we have

 $P(A \cup B \cup C) = P(A) + P(B) + P(C)$

Recap: "Disjoint" vs "independent"

 Friends don't let friends get confused between "disjoint" and "independent"!

Disjoint	Independent
Has a set-theoretic interpretation!	Has a causality interpretation!
Means that $P(A \cap B) = 0$	Means that $P(A \cap B) = P(A) \cdot P(B)$
Means that $P(A \cup B) = P(A) + P(B)$	Means that $P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$

END OF VIDEO #3

Video #4 (04-28)

Conditional Probability and Bayes' Law

Conditional Probability

- If A occurs, then is B
 - a) More likely?
 - b) Equally likely?
 - c) Less likely?

Conditional Probability

- If A occurs, then is B
 - a) More likely?
 - b) Equally likely?
 - c) Less likely?
- Any of these could happen, it depends on the relationship between A and B.

Conditional Probability

- If A occurs, then is B
 - a) More likely?
 - b) Equally likely?
 - c) Less likely?
- Any of these could happen, it depends on the relationship between A and B.

- We roll two dice
 - Event A = "Sum of the dice $S \equiv 0 \pmod{4}$ "
 - Note that $P(A) = \frac{9}{36} = \frac{1}{4}$, since we have nine rolls of the dice that sum to a multiple of 4:

(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)

• Event B = "The first die comes up 3"

• Note that
$$P(B) = \frac{6}{36} = \frac{1}{6}$$

- We roll two dice
 - Event A = "Sum of the dice $S \equiv 0 \pmod{4}$ "
 - Note that $P(A) = \frac{9}{36} = \frac{1}{4}$, since we have nine rolls of the dies that sum to a multiple of 4:

(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)

• Event B = "The first die comes up 3"

• Note that
$$P(B) = \frac{6}{36} = \frac{1}{6}$$

• What is the probability of A given B?

• What is the probability of A given B?

- What is the probability of A given B?
 - Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
 - Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
 - Outcomes of rolling two dice: (1, 1), (1, 2),, (6, 5), (6, 6)

- What is the probability of A given B?
 - Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
 - Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
 - Outcomes of rolling two dice: (1, 1), (1, 2),, (6, 5), (6, 6)

- What is the probability of A given B?
 - Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
 - Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
 - Outcomes of rolling two dice: (1, 1), (1, 2),, (6, 5), (6, 6)
- As discussed, $P(A) = \frac{9}{36} = \frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have...

- What is the probability of A given B?
 - Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)

Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)

- Outcomes of rolling two dice: (1, 1), (1, 2),, (6, 5), (6, 6)
- As discussed, $P(A) = \frac{9}{36} = \frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
- What is the probability of A given B?
 - Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)

• Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)

- Outcomes of rolling two dice: (1, 1), (1, 2),, (6, 5), (6, 6)
- As discussed, $P(A) = \frac{9}{36} = \frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
 - Only **2** of them are outcomes that correspond to A.

- What is the probability of A given B?
 - Outcomes of A are (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)

• Outcomes of B are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)

- Outcomes of rolling two dice: (1, 1), (1, 2),, (6, 5), (6, 6)
- As discussed, $P(A) = \frac{9}{36} = \frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
 - Only 2 of them are outcomes that correspond to A.
 - Therefore, the probability of A given B is $\frac{2}{6} = \frac{1}{3}$

- We once again two roll dice
 - Event A = "Sum of the dice is ≥ 8 "
 - Event B = " First die is 4"

- We once again two roll dice
 - Event A = "Sum of the dice is ≥ 8 "
 - Event B = " First die is 4"
- If B happens, what is your intuition about the probability of A?

- We once again two roll dice
 - Event A = "Sum of the dice is ≥ 8 "
 - Event B = " First die is 4"
- If B happens, what is your intuition about the probability of A?

Go up	Go down	Stay the	Unknown to
		same	science

- We once again two roll dice
 - Event A = "Sum of the dice is ≥ 8 "
 - Event B = " First die is 4"
- If B happens, what is your intuition about the probability of A?

- We once again two roll dice
 - Event A = "Sum of the dice is $\geq 8" P(A) = ?$ (work on it)
 - Event B = " First die is 4"

- We once again two roll dice
 - Event A = "Sum of the dice is $\ge 8" P(A) = \frac{15}{36} = \frac{5}{12}$
 - Event B = "First die is a 4"

- We once again two roll dice
 - Event A = "Sum of the dice is $\ge 8"P(A) = \frac{15}{36} = \frac{5}{12}$
 - Event B = "First die is a 4" $P(B) = \frac{1}{6}$

- We once again two roll dice
 - Event A = "Sum of the dice is $\ge 8"P(A) = \frac{15}{36} = \frac{5}{12}$
 - Event B = "First die is a 4" $P(B) = \frac{1}{6}$
- Prob of A given B = Prob second dice is 4, 5, or $6 = \frac{3}{6} = \frac{1}{2} > \frac{5}{12}$

Conditional probability

• Let A, B be two events. The conditional probability of A *given* B, denoted P(A | B) is defined as follows:

 $P(A | B) = \frac{P(A \cap B)}{P(B)}$

Re-thinking independent events

 Alternative definition of independent events: Two events A and B will be called marginally independent, or just independent for short, if and only if

P(A|B) = P(A)

Re-thinking independent events

 Alternative definition of independent events: Two events A and B will be called marginally independent, or just independent for short, if and only if

P(A|B) = P(A)

- Applying the definition of P(A|B) we have:
 - $\frac{P(A \cap B)}{P(B)} = P(A) \Rightarrow P(A \cap B) = P(A) \cdot P(B)$, which is a relationship we had reached **earlier** when discussing the joint probability.

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- I pick either one of them with probability $\frac{1}{2}$

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- I pick either one of them with probability $\frac{1}{2}$ and roll it.
 - What's the probability that the die comes up 6? (work on this yourselves NOW)

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- I pick either one of them with probability $\frac{1}{2}$
 - What's the probability that the die comes up 6? (work on this yourselves NOW)

$$P(Roll = 6) = P(Roll = 6, Die = 6) + P(Roll = 6, Die = 10) =$$

 $= P(Roll = 6 | Die = 6) \times P(Die = 6) + P(Roll = 6 | Die = 10) \times P(Die = 10)$ =

$$= \frac{1}{6} \times \frac{1}{2} + \frac{1}{10} \times \frac{1}{2} = \frac{1}{12} + \frac{1}{20} = \frac{2}{15} \approx 0.1333 \dots$$

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...

Let's see if your intuition was correct!

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- What's the probability that I come up with a 6?

P(Roll = 6) = P(Roll = 6, Die = 6) + P(Roll = 6, Die = 10) =

 $= P(Roll = 6|Die = 6) \times P(Die = 6) + P(Roll = 6, Die = 10) \times P(Die = 10) =$

$$=\frac{1}{6} \times \frac{4}{9} + \frac{1}{10} \times \frac{5}{9} = \frac{2}{27} + \frac{1}{18} = \frac{7}{54} \approx 0.130 < 0.133$$

Bayes' Law

• Suppose A and B are events in a sample space Ω. Then, the following is an identity:

$$P(A|B) = P(B|A)\frac{P(A)}{P(B)}$$

known as **Bayes' Law**

• If P(A|B) = P(A), is it the case that P(B|A) = P(B)?

• If P(A|B) = P(A), is it the case that P(B|A) = P(B)?

Substituting P(A|B) with P(A) in the formulation of Bayes' Law, we have:

$$P(A) = P(B \mid A) \cdot \frac{P(A)}{P(B)} \Rightarrow 1 = \frac{P(B \mid A)}{P(B)} \Rightarrow P(B \mid A) = P(B)$$

• If P(A|B) = P(A), is it the case that P(B|A) = P(B)?

Substituting P(A|B) with P(A) in the formulation of Bayes' Law, we have:

$$P(A) = P(B \mid A) \cdot \frac{P(A)}{P(B)} \Rightarrow 1 = \frac{P(B \mid A)}{P(B)} \Rightarrow P(B \mid A) = P(B)$$

• If P(B) = 0, then is P(A|B) also 0?

• If P(B) = 0, then is P(A|B) also 0?

• It is **undefined**, since $P(A | B) = P(B | A) \cdot \frac{P(A)}{P(B)}$

END OF VIDEO #4