
1. A Non-HS Idea for W (x2; c)

Theorem ?? gave an enormous upper bound on W (x2; 4). The proof was

found by a computer program; however, it is a HS proof and human-verifiable.

Four colors seems to be at the limit of what computers can find. That is, we

have been unable to use a program to find a human-verifiable proof for a bound

on W (x2; 5).

There is another possible approach. Usually a HS proof gives better bounds

than a proof that uses advanced mathematics. However, our HS proof for

W (x2; 4) gives such a large bound that its possible the advanced proofs, if

looked at more carefully, will yield better bounds on W (x2; 4). It’s also possible

they will yield reasonable bounds for W (x2; c) for small value of c such as c = 5.

We summarize the literature on the following problem: find the smallest

possible function a(n) such that, for large n, any X ⊆ {1, . . . , n} of density

Ω(a(n)) (that is, |X| ≥ Ω(a(n)n )) has two numbers that are a square apart. It

is easy to see that, for large n, W (x2;O( 1
a(n) )) ≤ n (which can be used to get

a bound no W (x2; c)). The proofs are asymptotic and not HS; however, it is

possible the can be modified to give actual upper bounds on W (x2; c).

a(n) Reference

1 Furstenberg [7]

1 Lyall [18] (simpler proof but not HS)

(log logn)2/3

(logn)1/3
Sárközy [8]

(log log n)−c Green [19]

1
(logn)c log log log n Bloom & Maynard [20]
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Szemerédi’s on arithmetic progressions, Journal of d’Analyse Mathema-

tique 31 (1977) 204–256,

http://www.cs.umd.edu/~gasarch/TOPICS/vdw/furstenbergsz.pdf.
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