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Lower Bounds on R(k)

Def R(k) is the least n such that

for all 2-colorings of the edges of Kn there exists a mono Kk .

We showed R(k) ≤ 4k√
k

.

We stated R(k) ≤ (4− ε)k .

How good are these upper bounds (UB)?

We show lower bounds (LB).

We compare our LBs to the UB 22k for convenience.
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How to Show A Lower Bounds

To show that R(k) ≥ f (k) we need to construct

a 2-coloring of the edges of Kf (k) such that there is no mono Kk .
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Example: The k = 5 Case

The thick blue lines between two K4’s, X and Y , means that there
is a blue edge between every pair {x , y} with x ∈ X and y ∈ Y .

4× 4 = 16 vertices. No mono K5.
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General Case

Here is a coloring of the edges of K(k−1)2 with no mono Kk :

First partition [(k − 1)2] into k − 1 groups of k − 1 each.

COL(x , y) =

{
RED if x , y are in same group

BLUE if x , y are in different groups
(1)

Look at any k vertices.

I They can’t all be in one group, so it can’t have RED Kk .

I They can’t all be in different groups, so it can’t have BLUE
Kk .
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Compare Upper and Lower Bound

So we have

k2 − 2k + 1 ≤ R(k) ≤ 22k−1

The upper and lower bounds are far apart.

We will do better!
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