Exposition by William Gasarch

May 28, 2025

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Def R(k) is the least *n* such that

Def R(k) is the least *n* such that for all 2-colorings of the edges of K_n there exists a mono K_k .

Def R(k) is the least *n* such that for all 2-colorings of the edges of K_n there exists a mono K_k .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

We showed $R(k) \leq \frac{4^k}{\sqrt{k}}$.

Def R(k) is the least *n* such that for all 2-colorings of the edges of K_n there exists a mono K_k .

We showed $R(k) \leq \frac{4^k}{\sqrt{k}}$. We stated $R(k) \leq (4 - \epsilon)^k$.

Def R(k) is the least *n* such that for all 2-colorings of the edges of K_n there exists a mono K_k .

We showed $R(k) \leq \frac{4^k}{\sqrt{k}}$. We stated $R(k) \leq (4 - \epsilon)^k$.

How good are these upper bounds (UB)?

Def R(k) is the least *n* such that for all 2-colorings of the edges of K_n there exists a mono K_k .

ション ふゆ アメリア メリア しょうくしゃ

We showed $R(k) \leq \frac{4^k}{\sqrt{k}}$. We stated $R(k) \leq (4 - \epsilon)^k$.

How good are these upper bounds (UB)? We show lower bounds (LB).

Def R(k) is the least *n* such that for all 2-colorings of the edges of K_n there exists a mono K_k .

We showed $R(k) \leq \frac{4^k}{\sqrt{k}}$. We stated $R(k) \leq (4 - \epsilon)^k$.

How good are these upper bounds (UB)? We show lower bounds (LB).

We compare our LBs to the UB 2^{2k} for convenience.

How to Show A Lower Bounds

To show that $R(k) \ge f(k)$ we need to construct

How to Show A Lower Bounds

To show that $R(k) \ge f(k)$ we need to construct

a 2-coloring of the edges of $K_{f(k)}$ such that there is no mono K_k .

 $R(k)) \geq (k-1)^2$

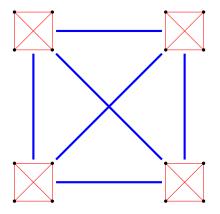
Thm
$$R(k) \ge (k-1)^2$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

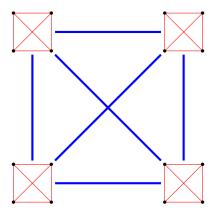
$$R(k)) \ge (k-1)^2$$

Thm $R(k) \ge (k-1)^2$. We first give an example, on the next slide.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

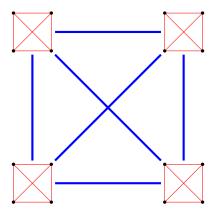


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?



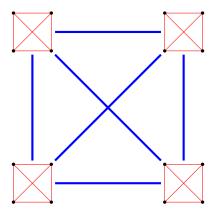
The thick **blue** lines between two K_4 's, X and Y, means that there is a blue edge between every pair $\{x, y\}$ with $x \in X$ and $y \in Y$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



The thick **blue** lines between two K_4 's, X and Y, means that there is a blue edge between every pair $\{x, y\}$ with $x \in X$ and $y \in Y$. $4 \times 4 = 16$ vertices.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



The thick **blue** lines between two K_4 's, X and Y, means that there is a blue edge between every pair $\{x, y\}$ with $x \in X$ and $y \in Y$. $4 \times 4 = 16$ vertices. No mono K_5 .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k :

・ロト・日本・ヨト・ヨト・日・ つへぐ

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

$$COL(x, y) = \begin{cases} \mathsf{RED} & \text{if } x, y \text{ are in same group} \\ \mathsf{BLUE} & \text{if } x, y \text{ are in different groups} \end{cases}$$
(1)

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

$$COL(x, y) = \begin{cases} \mathsf{RED} & \text{if } x, y \text{ are in same group} \\ \mathsf{BLUE} & \text{if } x, y \text{ are in different groups} \end{cases}$$
(1)

Look at any k vertices.

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

 $COL(x, y) = \begin{cases} \mathsf{RED} & \text{if } x, y \text{ are in same group} \\ \mathsf{BLUE} & \text{if } x, y \text{ are in different groups} \end{cases}$ (1)

Look at any k vertices.

They can't all be in one group, so it can't have RED K_k.

Here is a coloring of the edges of $K_{(k-1)^2}$ with no mono K_k : First partition $[(k-1)^2]$ into k-1 groups of k-1 each.

 $COL(x, y) = \begin{cases} \mathsf{RED} & \text{if } x, y \text{ are in same group} \\ \mathsf{BLUE} & \text{if } x, y \text{ are in different groups} \end{cases}$ (1)

Look at any k vertices.

- They can't all be in one group, so it can't have RED K_k .
- They can't all be in different groups, so it can't have BLUE K_k.

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < で</p>

So we have

$$k^2 - 2k + 1 \le R(k) \le 2^{2k-1}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

So we have

$$k^2 - 2k + 1 \le R(k) \le 2^{2k-1}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The upper and lower bounds are far apart.

So we have

$$k^2 - 2k + 1 \le R(k) \le 2^{2k-1}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

The upper and lower bounds are far apart. We will do better!