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I presented a proof that (k − 1)2 ≤ R(k).

Hence we have
(k − 1)2 ≤ R(k) ≤ 22k

We want much better lower bounds.
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Restating What We Need

PROBLEM
We want to find a coloring of the edges of Kn without a mono Kk

for some large n.

We want n to be expoential.

WRONG QUESTION
I only need show that such a coloring exists.

Key This was Erdös ’s big breakthrough.
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Pick a coloring at Random! (cont)

Recap If we color the edges of Kn at random then

Prob that the coloring HAS a homog set of size k is ≤ nk

k!2k(k−1)/2 .

IF this prob is < 1 then there exists a coloring of the edges with
no homog set of size k .

So if nk

k!2k(k−1)/2 < 1 then there exists a coloring of the edges with
no homog set of size k .

We will work out the algebra of nk

k!2k(k−1)/2 < 1 on the next slide;
however, the real innovation here is that we show that a coloring
exists by showing that the prob that it does not exists is < 1.
This is The Probabilistic Method.
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Joel Spencer told me he was hoping for a better improvement.
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The Prob Method

The Prob Method Showing that an object exists by showing that
the prob that it exists is nonzero.

I Used a lot in combinatorics, algorithms, complexity theory.

I Uses very sophisticated probability and has been the
motivation for new theorems in probability.

I Origin is Ramsey Theory. Erdös developed it to get better
lower bounds on R(k) as shown here.

I I would not call the Prob Method and application of Ramsey.
(Some articles do.)

I I would say that Ramsey Theory was the initial motivation for
the Prob Method which is now used for many other things,
some of which are practical.
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