Better Lower Bounds on R(k)

Exposition by William Gasarch

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Recall

<ロト < 畳 > < 三 > < 三 > のへの

I presented a proof that $(k-1)^2 \leq R(k)$.

・ロト・日本・ヨト・ヨト・日・ つへぐ

I presented a proof that $(k-1)^2 \leq R(k)$. Hence we have

$$(k-1)^2 \le R(k) \le 2^{2k}$$

(ロト (個) (E) (E) (E) (E) のへの

I presented a proof that $(k-1)^2 \leq R(k)$. Hence we have

$$(k-1)^2 \le R(k) \le 2^{2k}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We want much better lower bounds.

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for some large n.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for some large n. We want n to be exponntial.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for some large n. We want n to be exponntial.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

WRONG QUESTION

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for some large n. We want n to be expoential.

WRONG QUESTION

I only need show that such a coloring exists.

PROBLEM

We want to **find** a coloring of the edges of K_n without a mono K_k for some large n. We want n to be expoential.

WRONG QUESTION

I only need show that such a coloring exists.

Key This was Erdös 's big breakthrough.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Numb of colorings: $2^{\binom{n}{2}}$.

Numb of colorings: $2^{\binom{n}{2}}$. Numb of colorings: that have mono K_k is bounded by

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Numb of colorings: $2^{\binom{n}{2}}$. Numb of colorings: that have mono K_k is bounded by

$$\binom{n}{k} \times 2 \times 2^{\binom{n}{2} - \binom{k}{2}}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Numb of colorings: $2^{\binom{n}{2}}$. Numb of colorings: that have mono K_k is bounded by

$$\binom{n}{k} \times 2 \times 2^{\binom{n}{2} - \binom{k}{2}}$$

Prob that a random 2-coloring HAS a homog set is bounded by

$$\frac{\binom{n}{k} \times 2 \times 2^{\binom{n}{2} - \binom{k}{2}}}{2^{\binom{n}{2}}} \le \frac{\binom{n}{k} \times 2}{2^{\binom{k}{2}}} \le \frac{n^{k}}{k! 2^{k(k-1)/2}}$$

Recap If we color the edges of K_n at random then

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recap If we color the edges of K_n at random then Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k^{12k(k-1)/2}}$.

Recap If we color the edges of K_n at random then Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$. IF this prob is < 1 then **there exists** a coloring of the edges with **no homog set of size** k.

ション ふゆ アメビア メロア しょうくしゃ

Recap If we color the edges of K_n at random then Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$. IF this prob is < 1 then **there exists** a coloring of the edges with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then **there exists** a coloring of the edges with **no homog set of size** k.

Recap If we color the edges of K_n at random then

Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

IF this prob is < 1 then **there exists** a coloring of the edges with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then **there exists** a coloring of the edges with **no homog set of size** k.

We will work out the algebra of $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ on the next slide; however, the real innovation here is that we show that a coloring exists by showing that the prob that it does not exists is < 1.

Recap If we color the edges of K_n at random then

Prob that the coloring HAS a homog set of size k is $\leq \frac{n^k}{k!2^{k(k-1)/2}}$.

IF this prob is < 1 then **there exists** a coloring of the edges with **no homog set of size** k.

So if $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ then **there exists** a coloring of the edges with **no homog set of size** k.

We will work out the algebra of $\frac{n^k}{k!2^{k(k-1)/2}} < 1$ on the next slide; however, the real innovation here is that we show that a coloring exists by showing that the prob that it does not exists is < 1. This is **The Probabilistic Method**.

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k}2^{(k-1)/2} = (k!)^{1/k}\frac{1}{\sqrt{2}}2^{k/2}$

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k}2^{(k-1)/2} = (k!)^{1/k}\frac{1}{\sqrt{2}}2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} (\frac{k}{e})^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} (\frac{k}{e})^k$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k}2^{(k-1)/2} = (k!)^{1/k}\frac{1}{\sqrt{2}}2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} (\frac{k}{e})^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} (\frac{k}{e})^k$

$$n < (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right) \frac{1}{\sqrt{2}} 2^{k/2}$$
$$\sim (2\pi k)^{1/2k} \frac{1}{e\sqrt{2}} k 2^{k/2}$$

・ロト・西ト・モート ヨー うらぐ

Want
$$\frac{n^k}{k!2^{k(k-1)/2}} < 1$$

 $n < (k!)^{1/k}2^{(k-1)/2} = (k!)^{1/k}\frac{1}{\sqrt{2}}2^{k/2}$
Stirling's Fml $k! \sim (2\pi k)^{1/2} (\frac{k}{e})^k$, so $(k!)^{1/k} \sim (2\pi k)^{1/2k} (\frac{k}{e})$

$$n < (k!)^{1/k} \frac{1}{\sqrt{2}} 2^{k/2} \sim (2\pi k)^{1/2k} \left(\frac{k}{e}\right) \frac{1}{\sqrt{2}} 2^{k/2}$$
$$\sim (2\pi k)^{1/2k} \frac{1}{e\sqrt{2}} k 2^{k/2}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Want *n* large. $n = \frac{1}{e\sqrt{2}}k2^{k/2}$ works.

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Note $\frac{1}{e\sqrt{2}} \sim 0.26$.

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

・ロト・日本・モト・モト・モー うへぐ

Note $\frac{1}{e\sqrt{2}} \sim 0.26$.

Joel Spencer using sophisticated methods improved the lower bound to:

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

Note $\frac{1}{e\sqrt{2}} \sim 0.26$.

Joel Spencer using sophisticated methods improved the lower bound to:

$$\frac{\sqrt{2}}{e}k2^{k/2} \le R(k).$$

・ロト・日本・モト・モト・モー うへぐ

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

Note $\frac{1}{e\sqrt{2}} \sim 0.26$.

Joel Spencer using sophisticated methods improved the lower bound to:

$$\frac{\sqrt{2}}{e}k2^{k/2} \le R(k).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note $\frac{\sqrt{2}}{e} \sim 0.52$.

$$\frac{1}{e\sqrt{2}}k2^{k/2} \le R(k) \le \frac{2^{2k}}{\sqrt{k}}$$

Note $\frac{1}{e\sqrt{2}} \sim 0.26$.

Joel Spencer using sophisticated methods improved the lower bound to:

$$\frac{\sqrt{2}}{e}k2^{k/2} \le R(k).$$

A D > A P > A E > A E > A D > A Q A

Note $\frac{\sqrt{2}}{e} \sim 0.52$. Joel Spencer told me he was hoping for a better improvement.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▶ Used a lot in combinatorics, algorithms, complexity theory.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

▶ Used a lot in combinatorics, algorithms, complexity theory.

Uses very sophisticated probability and has been the motivation for new theorems in probability.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- ▶ Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- ▶ Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.
- I would not call the Prob Method and application of Ramsey. (Some articles do.)

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on R(k) as shown here.
- I would not call the Prob Method and application of Ramsey. (Some articles do.)
- I would say that Ramsey Theory was the initial motivation for the Prob Method which is now used for many other things, some of which are practical.