Grid Colorings that Avoid Mono Squares

Exposition by William Gasarch

June 14, 2025

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Notation

If $n \in \mathbb{N}$ then

$$[n] = \{1, \ldots, n\}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Mono L's and Mono Squares

Def Let $G \in \mathbb{N}$ and $c \in N$. Assume we have a *c*-coloring of $[G] \times [G]$

1. A mono *L* is 3 points

$$(x,y),(x+d,y),(x,y+d)$$

that are all the same color $(d \ge 1)$. (This should be called an *mono isosceles right triangle* but we just call it a *mono L*.)

Mono L's and Mono Squares

Def Let $G \in \mathbb{N}$ and $c \in N$. Assume we have a *c*-coloring of $[G] \times [G]$

1. A mono *L* is 3 points

$$(x,y),(x+d,y),(x,y+d)$$

that are all the same color $(d \ge 1)$. (This should be called an *mono isosceles right triangle* but we just call it a *mono L*.)

2. A mono Square is 4 points

$$(x, y), (x + d, y), (x, y + d), (x + d, y + d)$$

ション ふゆ アメビア メロア しょうくり

that are all the same color $(d \ge 1)$. This is a square.

Theorem There exists G such that for all 2-colorings of $[G] \times [G] \rightarrow [2]$ there exists a mono square.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Theorem There exists G such that for all 2-colorings of $[G] \times [G] \rightarrow [2]$ there exists a mono square.

1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.

ション ふゆ アメビア メロア しょうくり

Theorem There exists G such that for all 2-colorings of $[G] \times [G] \rightarrow [2]$ there exists a mono square.

- 1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.
- 2. We will first prove For all c there exists GG = GG(c) such that for all c-colorings of $[GG] \times [GG]$ there exists a mono L.

Theorem There exists G such that for all 2-colorings of $[G] \times [G] \rightarrow [2]$ there exists a mono square.

- 1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.
- 2. We will first prove For all c there exists GG = GG(c) such that for all c-colorings of $[GG] \times [GG]$ there exists a mono L.
- 3. To prove **The Square Theorem** (about 2-coloring) we need to know that GG(c) exists for a very large c.

Theorem There exists G such that for all 2-colorings of $[G] \times [G] \rightarrow [2]$ there exists a mono square.

- 1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.
- 2. We will first prove For all c there exists GG = GG(c) such that for all c-colorings of $[GG] \times [GG]$ there exists a mono L.
- 3. To prove **The Square Theorem** (about 2-coloring) we need to know that GG(c) exists for a very large c.
- 4. More Colors: For all c there exists G = G(c) such that for all c-colorings of $[G] \times [G]$ there exists a mono square.

Theorem There exists G such that for all 2-colorings of $[G] \times [G] \rightarrow [2]$ there exists a mono square.

- 1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.
- 2. We will first prove For all c there exists GG = GG(c) such that for all c-colorings of $[GG] \times [GG]$ there exists a mono L.
- 3. To prove **The Square Theorem** (about 2-coloring) we need to know that GG(c) exists for a very large *c*.
- More Colors: For all c there exists G = G(c) such that for all c-colorings of [G] × [G] there exists a mono square. Proof needs a larger c' for GG(c').

Theorem For all *c* there exists GG = GG(c) such that for all *c*-colorings of $[GG] \times [GG]$ there exists a mono *L*.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Theorem For all *c* there exists GG = GG(c) such that for all *c*-colorings of $[GG] \times [GG]$ there exists a mono *L*.

Proof We prove this for c = 2. We will set *H* later. Assume we are given 2-coloring of $[H] \times [H]$

Theorem For all *c* there exists GG = GG(c) such that for all *c*-colorings of $[GG] \times [GG]$ there exists a mono *L*.

Proof We prove this for c = 2. We will set *H* later. Assume we are given 2-coloring of $[H] \times [H]$

ション ふゆ アメビア メロア しょうくり

Go to the whiteboard.

Theorem For all *c* there exists GG = GG(c) such that for all *c*-colorings of $[GG] \times [GG]$ there exists a mono *L*.

Proof We prove this for c = 2. We will set *H* later. Assume we are given 2-coloring of $[H] \times [H]$

ション ふゆ アメビア メロア しょうくり

Go to the whiteboard.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times [H]$ as a 2⁹-coloring of the tiles.

Theorem For all *c* there exists GG = GG(c) such that for all *c*-colorings of $[GG] \times [GG]$ there exists a mono *L*.

Proof We prove this for c = 2. We will set *H* later. Assume we are given 2-coloring of $[H] \times [H]$

ション ふゆ アメビア メロア しょうくり

Go to the whiteboard.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times [H]$ as a 2⁹-coloring of the tiles.

Why This Size Tile?

Any 2-coloring of the 3 \times 3 tile will have two of the same color in the first column and hence an almost L

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Any 2-coloring of the 3 \times 3 tile will have two of the same color in the first column and hence an almost L

Goto White Board.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Take
$$H = 3(2^9 + 1)$$
.

Take $H = 3(2^9 + 1)$. View $[H] \times [H]$ grid of **points** as $[2^9 + 1] \times [2^9 + 1]$ grid of **tiles**.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Take $H = 3(2^9 + 1)$. View $[H] \times [H]$ grid of **points** as $[2^9 + 1] \times [2^9 + 1]$ grid of **tiles**. Look at the first column of tiles. Two are the same color.

ション ふゆ アメビア メロア しょうくり

Take $H = 3(2^9 + 1)$. View $[H] \times [H]$ grid of **points** as $[2^9 + 1] \times [2^9 + 1]$ grid of **tiles**. Look at the first column of tiles. Two are the same color. Go to White Board.

ション ふゆ アメビア メロア しょうくり

Work on this with your neighbor.

First take 4×4 -tiles.

First take 4×4 -tiles.

Any 3-coloring of the 4 \times 4 tile will have two of the same color in the first column and hence an **almost** L

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

First take 4×4 -tiles.

Any 3-coloring of the 4 \times 4 tile will have two of the same color in the first column and hence an **almost** L

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Goto White Board.

Take $H = 4(3^{16} + 1)$.

Take $H = 4(3^{16} + 1)$. View $[H] \times [H]$ grid of **points** as $[3^{16} + 1] \times [3^{16} + 1]$ grid of **tiles**.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Take $H = 4(3^{16} + 1)$. View $[H] \times [H]$ grid of **points** as $[3^{16} + 1] \times [3^{16} + 1]$ grid of **tiles**. Look at the first column of tiles. Two are the same color.

ション ふゆ アメビア メロア しょうくり

Take $H = 4(3^{16} + 1)$. View $[H] \times [H]$ grid of **points** as $[3^{16} + 1] \times [3^{16} + 1]$ grid of **tiles**. Look at the first column of tiles. Two are the same color. Go to White Board.

Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L's converging to the same point.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L's converging to the same point.

Go to White Board.

Full *L* Theorem

Theorem For all *c* there exists GG = GG(c) such that for all *c*-colorings of $[GG] \times [GG]$ there exists a mono *L*.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Full *L* Theorem

Theorem For all *c* there exists GG = GG(c) such that for all *c*-colorings of $[GG] \times [GG]$ there exists a mono *L*.

We won't prove this but I am sure any of you could prove it given what we have done so far. Would be messy.

ション ふゆ アメビア メロア しょうくり

Theorem There exists *G* such that for all 2-colorings of $[G] \times [G]$ there exists a mono square.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Theorem There exists *G* such that for all 2-colorings of $[G] \times [G]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Theorem There exists *G* such that for all 2-colorings of $[G] \times [G]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Go to Whiteboard.

Theorem There exists G such that for all 2-colorings of $[G] \times [G]$ there exists a mono square.

ション ふゆ アメリア メリア しょうくしゃ

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Go to Whiteboard. Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

Theorem There exists G such that for all 2-colorings of $[G] \times [G]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Go to Whiteboard. Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$ -coloring of the tiles.

Theorem There exists G such that for all 2-colorings of $[G] \times [G]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Go to Whiteboard. Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$ -coloring of the tiles.

ション ふゆ アメリア メリア しょうくしゃ

For any 2-coloring of $[G] \times [G]$:

- Every tile has a mono L
- ▶ There is a mono *L* of tiles.

Theorem There exists G such that for all 2-colorings of $[G] \times [G]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Go to Whiteboard. Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$ -coloring of the tiles.

ション ふゆ アメリア メリア しょうくしゃ

For any 2-coloring of $[G] \times [G]$:

- Every tile has a mono L
- ▶ There is a mono *L* of tiles.

Go to Whiteboard for rest of proof.

What Else is Known

For all *c* there exists *G* such that for any coloring of $G \times G$ there is a mono square.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

For all c there exists G such that for any coloring of $G \times G$ there is a mono square.

There are also multi-dim versions.

