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R(a,b) ≤ R(a − 1,b) + R(a,b − 1)

We proved

Theorem R(a, b) ≤ R(a− 1, b) + R(a, b − 1)
Now lets use it
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Needed Notation

Some of you may know this, some don’t, so for now take it as
known.

There are x people in a room.

We want to form a committee of y of them.

How many ways can we do this?

This is denoted
(x
y

)
and it is (x+y)!

x!y ! .(x
y

)
is pronounced x choose y
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A Nice Lemma We Will Need

Thm (
a + b − 1

b

)
+

(
a + b − 1

b − 1

)
=

(
a + b

b

)

RHS is numb of ways to choose b elts from a set of a + b elts.

We show LHS also solves that problem. Say there are a + b people.

Ian is one of them. There are 2 ways to pick out b people.

1) Include Ian! Need to pick b − 1 from a + b − 1,
(a+b−1

b−1
)
.

2) Do NOT include Ian! Need to pick b from a + b − 1,
(a+b−1

b

)
.

So the total number of ways is
(a+b−1

b−1
)

+
(a+b−1

b

)
.
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Comment on the Proof

We showed that(
a + b − 1

b

)
+

(
a + b − 1

b − 1

)
=

(
a + b

b

)
by finding a problem that they were both the answer for.

This is often called A Combinatorial Proof

If we had written the
(x
y

)
in terms of factorials and showed they

were equal that would be An Algebraic Proof

Combintorial proofs are better!
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Better Upper Bound on R(a,b)

Thm For all a, b ≥ 2, R(a, b) ≤
(a+b

b

)
.

We prove this by induction on a + b.

Base If a + b = 4 then a = b = 2.

R(2, 2) = 1(2+2
2

)
=

(4
2

)
= 6.

1 ≤ 6.
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Induction Step

IH For all a′, b′ with a′ + b′ < a + b, R(a′, b′) ≤
(a′+b′

a′

)
.

IS

R(a, b) ≤ R(a− 1, b) + R(a, b − 1) ≤
(a+b−1

b

)
+

(a+b−1
b−1

)
.

Recall that we have
(a+b−1

b

)
+

(a+b−1
b−1

)
=

(a+b
b

)
Hence we have
R(a, b) ≤ R(a− 1, b) + R(a, b − 1) ≤

(a+b−1
b

)
+
(a+b−1

b−1
)

=
(a+b

b

)
.

R(a, b) ≤
(a+b

b

)
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So What About R(k)?

R(k) = R(k , k) ≤
(

2k

k

)
Using Stirling’s approximation: n! ∼

√
2πn

(
n
e

)n
one can show(2k
k

)
∼ 22k√

k
.

So we get R(k, k) ≤∼ 22k√
k
∼ 4k√

k
.

Best Known R(k) ≤ (4− ε)k for a very small ε.
Proof is mathematically sophisticated- beyond the scope of this
weeks mini-class on Ramsey Theory.
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weeks mini-class on Ramsey Theory.
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