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Preface

0.1 How I Found the Muffin Problem

(The preface is written by William Gasarch, one of the co-
authors.)

While writing my prior book Problems with a Point: Explor-
ing Math and Computer Science (co-author Clyde Kruskal), my
book contact at World Scientific, Rochelle Kronzek, got me an
invitation to The Twelfth Gathering for Gardner (2016). This
was a meeting to celebrate the life and works of Martin Gardner,
who wrote a column on mathematical recreations in Scientific
American for many years. I saw many talks of interest; however,
the most interesting thing I saw was a problem in a booklet:

v
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Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles

Compiled by Nancy Bachman
On Page 2 was the following:
Begin Excerpt

The Muffin Puzzle
Invented by Recreational Mathematician Alan Frank

Described by Jeremy Copeland in
The New York Times Numberplay Online Blog

wordplay.blogs.nytimes.com/2013/08/19/cake

You have 5 muffins and 3 students. You want to
divide the muffins evenly, but no student wants a
tiny sliver. What division of muffins maximizes
the smallest piece?

Here is a picture of the muffins and a possible division:

I call the students RED, BLUE, and GREEN.

• RED gets the first muffin and 2
3

of the fourth muffin.
• BLUE gets the second muffin and 2

3
of the fifth muffin.

• GREEN gets the third muffin, 1
3

of the fourth muffin, and
1
3

of the fifth muffin.

GREEN gets a piece of size 1
3
, which she thinks is small since

she has big hands. Is there a division with a larger smallest
piece?
Here are some other questions to consider:

• How would you divide 3 muffins between 5 students?
• How would you divide 4 muffins between 7 students?

wordplay.blogs.nytimes.com/2013/08/19/cake
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I solved those three problems. That was fun! I then changed
the problem from (so called) recreational math to (so called)
serious math by replacing the numbers with variables:

You have m muffins and s students. You want to
divide the muffins evenly, but no student wants a
tiny sliver. What division of muffins maximizes
the smallest piece?

0.2 Let’s Write a Book!

Over the next three years I investigated this problem. I had help
from a lot of people (mostly students). The following sequence
of events summarizes the process:

(1) Used our techniques to solve several problems.
(2) Found a problem that our techniques do not solve.
(3) Found new techniques to solve that problem, often with

help.
(4) Added these new techniques and a co-author.
(5) Lather. Rinse. Repeat.

Out of this work came a paper [Cui et al. (2018)] and a sur-
vey [Gasarch et al. (2019)]. This work covers a small fraction of
what we have done. So a subset of my fellow researchers (Erik
Metz, Jacob Prinz, Daniel Smolyak) decided to gather up all of
our work (and some other work) on the muffin problem into a
book. As we wrote the book we realized that to keep it simple
and coherent some material would have to be omitted. We de-
cided to make a website for this extra material. The MUFFIN
Website is:

www.cs.umd.edu/users/gasarch/MUFFINS/muffins.html

There has also been some excellent work by other peo-
ple as well which we had to omit. In particular Scott Hud-
dleston has a wonderful method that seemed to solve ev-

www.cs.umd.edu/users/gasarch/MUFFINS/muffins.html
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ery muffin problem quickly, though he had no proof of this.
Richard Chatwin [Chatwin (2019)] independently discovered
Scott’s method and proved that it always works. We describe
Scott’s algorithm in Chapter 13; however, we omit Richard’s
proof that it works.

0.3 Our Intended Audience

A large proportion of this book (I would guess 121
136

) requires no
mathematics beyond elementary algebra. Hence I am tempted
to say that any high school student with an interest in mathe-
matics could read most of this book. While I believe that is true,
here are some additional thoughts:

(1) A high school student without an interest in math could
read most of this book and develop an interest in math. I’ve
heard stories of parents who give their children puzzle books
that are really math, but so long as they don’t call it math,
the children enjoy it. This book may be in that category.
Let’s hope no such children read this preface.

(2) The reader may not know some of the mathematical nota-
tion we use; however, we summarize it in Appendix A.

(3) It takes some mathematical maturity to read this book.
There is an alternative viewpoint: reading this book will
give one mathematical maturity.

There are two chapters and one Appendix that require a bit
more mathematical sophistication. They are *ed.

0.4 Fair Division: A Related Field

When I talk about this topic, I am sometimes asked how it
relates to the field of Fair Division. I would call it a close cousin
of that field. Appendix B is a summary of some of the work in
Fair Division.
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0.5 Prior Work on the Muffin Problem

While working on the problem, I searched on Google to see if
anyone else had worked on it. I never found anything. However,
in 2017, James Propp informed me that Alan Frank had orig-
inally posed The Muffin Problem within a private math email
group in 2009. You have to be a member of the group to see
their discussions, which is why my Google searches turned up
empty.

James emailed me all of the emails the group generated about
the problem. They mostly went in a different direction from our
work; however,

(1) Theorem 2.9 was proved by Erich Friedman,
(2) Theorem C.9 was proved by Veit Elser.
(3) Theorem C.14 was proved by Caleb Stanford.
(4) They conjectured that if the number of muffins is more than

the number of students, then there is a fair allocation with
smallest piece ≥ 1

3
.

The first two theorems were proven by my co-authors and I,
though 7 years after Erich Friedman and Veit Elser. The third
theorem was new to my co-authors and I. The conjecture was
proven by Erik Metz and is on the website mentioned above.
Later Richard Chatwin [Chatwin (2019)] came up with an alter-
native proof.

0.6 A Celebration

James Propp, Alan Frank, and I agreed to all meet in Boston and
arranged it for when I would give a talk on The Muffin Problem
to the MIT combinatorics seminar. Alan Frank brought five
muffins, one cut {1

2
, 1
2
} and the rest cut { 5

12
, 7
12
}. Alan, James,

and I used these pieces to give each of us 5
3
.
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Chapter 1

Five Muffins, Three Students;

Three Muffins, Five Students

1.1 Five Muffins, Three Students

You have 5 muffins and 3 students. You want to divide the
muffins evenly so that each student gets 5

3
muffins. The following

picture shows one way to do this:

• RED gets the first muffin and 2
3

of the fourth muffin.
• BLUE gets the second muffin and 2

3
of the fifth muffin.

• GREEN gets the third muffin, 1
3

of the fourth muffin, and 1
3

of the fifth muffin.

One of GREEN’s pieces is of size 1
3
, which she thinks is small

since she has big hands.

Exercise 1.1. Is there a way to divide 5 muffins into pieces,
and give the pieces to 3 students, such that (1) every student
gets 5

3
, and (2) every piece is bigger than 1

3
?

Try to solve this yourself before reading on.

1
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Solution to Exercise 1.1
The following picture shows how to divide 5 muffins to give

to 3 students so that (1) everyone gets 5
3

and (2) the smallest
piece is 5

12
:

• RED gets 1
2

of the first muffin and 7
12

of the second muffin
and third muffin.
• BLUE gets 1

2
of the first muffin and 7

12
of the fourth muffin

and fifth muffin.
• GREEN gets 5

12
of the second, third, fourth, and fifth

muffins.

End of Solution of Exercise 1.1

Is there a procedure where the smallest piece is > 5
12

? What
do you think is true? What do you hope is true? We show that
there is no procedure where the smallest piece is > 5

12
. We also

include a formal description of the procedure with smallest piece
5
12

.

Theorem 1.2. There is a procedure that divides 5 muffins
evenly among 3 students such that the smallest piece is 5

12
. There

is no procedure that yields a larger smallest piece.

Proof. Part One: There is a procedure with smallest
piece 5

12

The following procedure divides and distributes 5 muffins to
3 students such that (1) everyone gets 5

3
and (2) the smallest

piece is 5
12

:
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(1) Divide 4 muffins { 5
12
, 7
12
} (This means that 4 muffins are cut

into two pieces, one of size 7
12

, and one of size 5
12

. We will
formalize this notation later.)

(2) Divide 1 muffin { 6
12
, 6
12
}.

(3) Give 2 students { 6
12
, 7
12
, 7
12
}. (This means that 2 students

get a piece of size 6
12

and two pieces of size 7
12

. We will
formalize this notation later.)

(4) Give 1 student { 5
12
, 5
12
, 5
12
, 5
12
}.

Part Two: Every procedure has a piece ≤ 5
12

Assume that there is a procedure for dividing up 5 muffins
and distributing the pieces to 3 students such that every student
gets 5

3
muffins. We show that some piece is ≤ 5

12
.

We first modify the procedure. If some muffin is uncut then
we modify the procedure to cut that muffin {1

2
, 1
2
} and give both

halves to the intended recipient of the original uncut muffin. We
leave it to the reader to show that the original procedure, and
our modification of it, have the same sized smallest piece.

We can now assume that every muffin is cut into at least 2
pieces.
Case 1: Some muffin is cut into ≥ 3 pieces. Then some piece
is ≤ 1

3
. Note that 1

3
< 5

12
. Hence we have a piece that is < 5

12
,

so this case is done. Combined with our modification of the
procedure we can now assume every muffin is cut into exactly
two pieces.
Case 2: Some student gets ≤ 2 pieces. The two pieces add up
to 5

3
, hence some piece is ≥ 5

3
× 1

2
= 5

6
. Oh. How can a big piece

help us? Recall that each muffin is cut into two pieces. Look
at the piece of size ≥ 5

6
. Look at the muffin it came from. The

other piece of that muffin is ≤ 1 − 5
6

= 1
6
. Note that 1

6
< 5

12
.

Hence we have a piece that is < 5
12

, so this case is done.
Case 3: All 5 muffins are cut into 2 pieces. Hence there are 10
pieces distributed to 3 students. If every student got ≤ 3 pieces,
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that’s only 9 pieces, so that can’t happen. Hence some student
gets ≥ 4 pieces. So some student has 5

3
distributed among 4

pieces. One of those pieces is ≤ 5
3
× 1

4
= 5

12
.

Notation 1.3. Note the box at the end of the proof. It is our
end-of-proof sign. We use it throughout the book.

1.2 Some Conventions for the Rest of the Book

Before proceeding, we need some conventions that we use
throughout the book.

(1) Rather than say one of the students we often use Alice or
Bob. This makes the proofs and procedures less wordy and
more personal.

(2) We say a muffin is cut into pieces, and a student gets shares;
however, pieces and shares are the same thing.

(3) We identify a piece of a muffin with the size of that piece.
For example we use the following phrases:

• Divide a muffin {1
4
, 1
4
, 1
2
}.

• Give a student { 5
12
, 5
12
, 1
2
, 7
12
}.

• We assume all of the pieces are in the closed interval
[ 5
12
, 7
12

].

• If there is a piece x then it came from some muffin.
The rest of that muffin is 1− x.

1.3 Three Muffins, Five Students

We just solved the Five Muffins, Three Students Problem. Now
let’s solve the Three Muffins, Five Students Problem.

You have 3 muffins and 5 students. You want to divide the
muffins evenly so that each student gets 3

5
muffins. The following

picture shows one way to do this:
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• RED gets 3
5

of the first muffin.
• BLUE gets 3

5
of the second muffin.

• GREEN gets 3
5

of the third muffin.
• YELLOW gets 2

5
of the first muffin and 1

5
of the third muffin.

• BLACK gets 2
5

of the second muffin and 1
5

of the third muf-
fin.

For both YELLOW and BLACK, one of the pieces they re-
ceive is 1

5
. They are outraged! They think 1

5
is small since they

have big hands.

Exercise 1.4. Is there a way to divide 3 muffins into pieces,
and give the pieces to 5 students, such that (1) every student
gets 3

5
, and (2) every piece is bigger than 1

5
?

Try to solve it yourself before looking at the solution.
Solution to Exercise 1.4

The following picture shows how to divide 3 muffins for 5
students such that (1) everyone gets 3

5
and (2) the smallest piece

is 1
4
:

• RED gets 6
20

of the first and second muffin.
• BLUE gets 7

20
of the first muffin and 5

20
of the third muffin.

• GREEN gets 7
20

of the first muffin and 5
20

of the third muffin.
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• YELLOW gets 7
20

of the second muffin and 5
20

of the third
muffin.
• BLACK gets 7

20
of the second muffin and 5

20
of the third

muffin.

End of Solution to Exercise 1.4

Is there a procedure where the smallest piece is > 1
4
? What

do you think is true? What do you hope is true? We show that
there is no procedure where the smallest piece is > 1

4
. We also

include a formal description of the procedure with smallest piece
1
4
.

Theorem 1.5. There is a procedure that divides 3 muffins
evenly among 5 students such that the smallest piece is 1

4
. There

is no procedure that yields a larger smallest piece.

Proof. Part One: There is a procedure with smallest piece 1
4
.

The following procedure divides and distributes 3 muffins to
5 students such that (1) everyone gets 3

5
and (2) the smallest

piece is 1
4
:

(1) Divide 2 muffins { 6
20
, 7
20
, 7
20
}.

(2) Divide 1 muffin { 5
20
, 5
20
, 5
20
, 5
20
}.

(3) Give 4 students { 5
20
, 7
20
}.

(4) Give 1 student { 6
20
, 6
20
}.

Part Two: Every procedure has a piece ≤ 1
4
.

Assume that there is a procedure for dividing up 3 muffins
and distributing the shares to 5 students. We show that some
share is ≤ 1

4
.

Case 1: Alice gets ≥ 3 shares. Then some share is ≤ 3
5
× 1

3
=

1
5
< 1

4
.

Case 2: Alice gets 1 share. Then it is of size 3
5
. The muffin

that piece came from has 2
5

left which may or may not itself be
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cut. There are two cases:
Case 2a: The 2

5
left is cut into ≥ 2 pieces. Then there is a piece

≤ 2
5
× 1

2
= 1

5
< 1

4
.

Case 2b: The 2
5

is left intact. Bob gets it. Bob must also get
other pieces (perhaps just 1) that add up to 1

5
. Hence some piece

is ≤ 1
5
< 1

4
.

Case 3: All 5 students get 2 shares. Hence there are 10 shares.
Some muffin is cut into ≥ 4 pieces (if all muffins are cut into
≤ 3 pieces then there are ≤ 9 < 10 pieces). One of those pieces
is ≤ 1× 1

4
= 1

4
.

Exercise 1.6. (Due to Yunseo Choi and Kevin Cong.) Finish
up the following alternative proof that the Three-Muffins–Five-
student problem requires some piece to be ≤ 1

4
: Assume you

have some procedure. If some muffin is cut into ≥ 4 pieces then
clearly some piece is ≤ 1

4
. Hence you can assume that every

muffin is cut into ≤ 3 pieces. Therefore there are ≤ 9 pieces.
Determine the most and least shares that a person can get and
that will lead to some piece being ≤ 1

4
. You fill in the details.

1.4 Floors and Ceilings and Buddies

We introduce notations and easy observations that would have
made the proofs of Theorems 1.2 and 1.5 more compact and,
more importantly, will be used throughout this book.

1.4.1 Floors and Ceilings

Definition 1.7. Let x ≥ 0.

(1) The floor of x, written bxc, is x rounded down. For example,
b3.9c = 3. Note that b3c = 3.

(2) The ceiling of x, written dxe, is x rounded up. For example,
d3.1e = 4. Note that d3e = 3.
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In the proof of Theorem 1.2 we noted that if 10 shares are
given to 3 students then someone gets ≥ 4 shares. This is a case
of

the Generalized Pigeon Hole Principle.
We state this principle, in terms of muffins and students, and

leave the proof to the reader.

Notation 1.8. N is the set {0, 1, 2, . . .}. See Appendix A for
this and other examples of notations for sets of numbers.

Lemma 1.9. Let x, s ∈ N. If x shares are given to s students
then the following occurs:

(1) Some student gets

≥
⌈x
s

⌉
shares.

(2) Some student gets

≤
⌊x
s

⌋
shares.

Recall Theorem 1.2, Case 2:

Case 2: All 5 muffins are cut into 2 pieces. Hence
there are 10 pieces in total. Alice gets ≥ 4 shares (if
everyone got ≤ 3 shares then there would be ≤ 9 < 10
pieces). One of those shares is ≤ 5

3
× 1

4
= 5

12
.

We can write this more compactly:

Case 2: All 5 muffins are cut into 2 pieces. Hence
there are 10 shares. Therefore, by Lemma 1.9, Alice gets
≥
⌈
10
3

⌉
= 4 shares. One of those shares is ≤ 5

3
× 1

4
= 5

12
.

In the future we will use Lemma 1.9 without comment.
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1.4.2 Intervals

The following is a standard notation and also elaborated on in
Appendix A.

Notation 1.10. If a < b are reals then (a, b) is the set of all
reals strictly in b

(a, b) = {x : a < x < b}.

Notation 1.11. We will use (a, b) differently. We will often use
(a, b) to refer to the set of shares that are in (a, b). So we might
say

there are 5 shares in (1
2
, 3
4
).

Keep this in mind while reading the next section on Buddies.

1.4.3 Buddies

Assume that there is a procedure where every muffin is cut into
exactly 2 pieces. Let x be one of those pieces. Obviously x came
from some muffin. Look at the other piece from that muffin. It
is 1− x. We call that other piece the buddy of x. We formalize
this concept.

Definition 1.12. Assume that there is a procedure where every
muffin is cut into exactly 2 pieces. Let x be a piece. The buddy
of x, denoted B(x), is 1 − x. This definition extends naturally
to sets of pieces. Recall from Notation 1.11 that we take (a, b)
to mean the set of shares in that interval. Keeping that in mind,
the buddy of (a, b) is (1−b, 1−a). We denote this B(a, b) rather
than the more proper B((a, b)). Similarly we use B[a, b]. Note
that B is a bijection (see Appendix A for the definition of a
bijection).

We leave the proof of the following lemma to the reader:

Lemma 1.13. Assume that there is a procedure where every
muffin is cut into two pieces. If (x, y) has c shares in it then
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B(x, y) = (1 − y, 1 − x) has c shares in it. The same holds for
[x, y].

Recall that in Section 1.1 we had the phrase:

Alice cannot get ≤ 2 shares: If she does then there is a
share ≥ 5

3
× 1

2
= 5

6
. Oh. How can a big share help us?

Look at the muffin that big share came from. The other
piece of that muffin is ≤ 1− 5

6
= 1

6
< 5

12
.

We can now write this more compactly:

Alice cannot get ≤ 2 shares: If she does then there is a
share ≥ 5

3
× 1

2
= 5

6
. Its buddy is ≤ 1− 5

6
= 1

6
< 5

12
.

1.5 A Meta Problem

The reasoning for the Five-Muffins, Three-Students problem,
and the Three-Muffins, Five-Students problem were strikingly
similar. We place the procedures side by side:

5 muffins, 3 students 3 muffins, 5 students

1) Divide 4 muffins into { 5
12
, 7
12
}. 1) Divide 2 muffins { 6

20
, 7
20
, 7
20
}.

2) Divide 1 muffin into { 6
12
, 6
12
}. 2) Divide 1 muffin { 5

20
, 5
20
, 5
20
, 5
20
}.

3) Give 2 students { 6
12
, 7
12
, 7
12
}. 3) Give 4 students { 5

20
, 7
20
}.

4) Give 1 student { 5
12
, 5
12
, 5
12
, 5
12
}. 4) Give 1 student { 6

20
, 6
20
}.

Notice the following example of a disturbing duality:

• In the 5-Muffins,3-student procedure we give 2 students
{ 6
12
, 7
12
, 7
12
}.

• In the 3-Muffins,5-Students procedure we divide 2 muffins
{ 6
20
, 7
20
, 7
20
}.

Is there a general connection between the x-Muffins, y-
Students problem and the y-Muffins, x-Students problem?
Spoiler Alert: Yes. We will return to this point in Section 2.4.
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One Student! Two Students!

Some Basic Theorems!

2.1 Definitions and Notation

We now define the main problem formally.

Definition 2.1. Let m, s ∈ N. An (m, s)-procedure is a proce-
dure to cut m muffins into pieces and then distribute them to
the s students so that each student gets m

s
muffins. An (m, s)-

procedure is optimal if it maximizes the size of the smallest piece
of any procedure. Let f(m, s) be the size of the smallest piece
in an optimal (m, s)-procedure.

Note the following:

• Theorem 1.2 can be restated as f(5, 3) = 5
12

.
• Theorem 1.5 can be restated as f(3, 5) = 1

4
.

It is not obvious that f(m, s) exists. It is not obvious that
f(m, s) is always rational. Maybe it involves π (or pie). Is there
a program that will, on input m, s ∈ N, output the rational
f(m, s)? Note that we could not even ask this question until
we knew that f(m, s) exists and is rational. It is not obvious
that such a program exists. However, the answer to all three
questions is Yes. The proofs that f(m, s) exists, is rational,
and computable, are in Appendix C.

Note 2.2. Let m, s ∈ N and α ∈ R.

11
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(1) f(m, s) ≥ α means that there is an (m, s)-procedure with
smallest piece ≥ α.

(2) f(m, s) ≤ α means that every (m, s)-procedure has a piece
≤ α.

2.2 Easy Facts about f

We will need some facts about f . Here are some exercises to
motivate them.

Exercise 2.3.

(1) What is f(21, 7)?
(2) What is f(7, 21)?
(3) Recall from Theorem 1.2 that f(5, 3) = 5

12
. Use both this

fact, and the proof of this fact, to determine f(10, 6).

Solution to Exercise 2.3

(1) f(21, 7) ≥ 1. Procedure: Give all 7 students 3 muffins. No
muffin is cut so the smallest piece is of size 1. f(21, 7) ≤ 1.
Actually, for all m, s, f(m, s) ≤ 1 since there can’t be any
piece bigger than an entire muffin.

(2) f(7, 21) = 1
3
. Procedure: Cut every muffin {1

3
, 1
3
, 1
3
} and

give everyone 1
3
. Clearly can’t do any better than 7

21
= 1

3
.

(3) We look at f(10, 6).
Part One: The Upper Bound
To show f(10, 6) ≤ 5

12
, we mimic the proof that f(5, 3) ≤ 5

12
.

Assume that there is a procedure for dividing up 10 muffins
and distributing the shares to 6 students such that every
student gets 10

6
= 5

3
muffins. As in the proof of Theorem 1.2

(where we proved f(5, 3) ≤ 5
12

) we can assume that no muf-
fin is uncut.
Case 1: Some muffin is split into ≥ 3 pieces. Then some
piece is ≤ 1

3
< 5

12
.
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Case 2: All muffins are cut into 2 pieces, so there are 20
pieces. Alice gets ≥ 4 shares. By Lemma 1.9 one of those
shares is ≤ 5

3
× 1

4
= 5

12
.

Part Two: The Lower Bound
We show f(10, 6) ≥ 5

12
by just using f(5, 3) ≥ 5

12
. We do

not need to use any details of the actual procedure.
Let M1 be the first 5 muffins and M2 be the next 5 muffins.
Let S1 be the first 3 students and S2 be the next 3 students.
Use the procedure that showed f(5, 3) ≥ 5

12
on M1 and S1.

Then use the procedure that showed f(5, 3) ≥ 5
12

on M2 and
S2. Everyone gets 5

3
= 10

6
and the smallest piece is 5

12
.

End of Solution to Exercise 2.3

The solution to Exercise 2.3 inspired the following theorem,
whose proof we leave to the reader:

Theorem 2.4. Let k,m, s ∈ N.

(1) s divides m if and only if f(m, s) = 1.
(2) m divides s if and only if f(m, s) = m

s
.

(3) For all k ∈ N, f(m, s) ≤ f(km, ks).
(4) If s does not divide m then f(m, s) ≤ 1

2
.

(5) f(m, s) ≥ 1
s
.

Note that Theorem 2.4 does not have
For all k ∈ N, f(km, ks) = f(m, s).

However, this is true:

Theorem 2.5. For all k,m, s ∈ N, f(km, ks) = f(m, s).

This was proven by Richard Chatwin [Chatwin (2019)]. The
proof is beyond the scope of this book.

Theorem 2.6. Let m, s ∈ N.

(1) Assume s does not divide m. If there is an (m, s)-procedure
with smallest piece α then there is an (m, s)-procedure with
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smallest piece α where every muffin is cut into ≥ 2 pieces.
(2) Assume s does not divide m. If there is an (m, s)-procedure

with smallest piece α > 1
3

then there is an (m, s)-procedure
with smallest piece α where every muffin is cut into 2 pieces.

Proof. (1) By Theorem 2.4, since s does not divide m,
f(m, s) < 1. Clearly f(m, s) ≤ 1

2
since if there is a piece of

size x there is a piece of size 1 − x. Hence if we have a new
protocol with additional pieces of size 1

2
that will not affect the

size of the smallest piece.
If Alice got an uncut muffin then modify the procedure to

have that muffin cut {1
2
, 1
2
} and give both pieces to Alice. Do

this for all students who got an uncut muffin.
(2) By Part 1 there is an (m, s)-procedure where every muffin is
cut into ≥ 2 pieces. If any muffin was cut into ≥ 3 pieces then
there would be a piece of size ≤ 1

3
< α, which contradicts the

premise.

2.3 One Student! Two Students!

The following theorem, whose proof we leave to the reader, takes
care of the s = 1 and s = 2 cases:

Theorem 2.7. For all m ≥ 1 the following hold:

(1) f(m, 1) = 1.
(2) If m is even, then f(m, 2) = 1.
(3) If m is odd, then f(m, 2) = 1

2
.

2.4 The Duality Theorem

We will relate f(a, b) to f(b, a). But first an example.

Theorem 2.8. f(14, 5) ≥ 11
25

.
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Proof. We give a (14,5)-procedure.

(1) Divide 10 muffins {11
25
, 14
25
}.

(2) Divide 4 muffins {12
25
, 13
25
}.

(3) Give 2 students {14
25
, 14
25
, 14
25
, 14
25
, 14
25
}.

(4) Give 1 student {11
25
, 11
25
, 11
25
, 11
25
, 13
25
, 13
25
}.

(5) Give 2 students {11
25
, 11
25
, 11
25
, 12
25
, 12
25
, 13
25
.}.

In Section 1.5 the (3, 5) procedure looks like the (5, 3) procedure
but with the muffins and students swapped. We just showed a
procedure for f(14, 5) with smallest piece 11

25
. Can we use this

to get a procedure for f(5, 14)? We swap muffins and students
and see what happens. We take the last instruction and make
it into the first instruction.

Give 2 students {11
25
, 11
25
, 11
25
, 12
25
, 12
25
, 13
25
}

becomes:
Divide 2 muffins {11

25
, 11
25
, 11
25
, 12
25
, 12
25
, 13
25
}.

OH – that won’t work since the numbers do not add up to 1.
AH – let’s scale them so that they do. Since they add up to 14

5
,

let’s multiply each number by 5
14

to get
Divide 2 muffins {11

70
, 11
70
, 11
70
, 12
70
, 12
70
, 13
70
}.

Similarly, since we are going to replace muffin-cutting with
student-giving, and each muffin is worth 1 and each student gets
5
14

, we multiply by 5
14

. Hence we have the following proof that
f(5, 14) ≥ 11

70
:

(1) Divide 2 muffins {11
70
, 11
70
, 11
70
, 12
70
, 12
70
, 13
70
}.

(2) Divide 1 muffin {11
70
, 11
70
, 11
70
, 11
70
, 13
70
, 13
70
}.

(3) Divide 2 muffins {14
70
, 14
70
, 14
70
, 14
70
, 14
70
}.

(4) Give 10 students {11
70
, 14
70
}.

(5) Give 4 students {12
70
, 13
70
}.
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We now present the Duality Theorem which was discovered
independently by Erich Friedman and ourselves. We will rarely
refer to it again explicitly; however, because of it, we only need
to consider the case of m ≥ s.

Theorem 2.9. Let m, s ∈ N. Then f(s,m) = s
m
f(m, s).

Proof. Assume we have the optimal (m, s)-procedure. Note
that the smallest piece will be of size f(m, s). We show how
to transform it into an (s,m)-procedure with smallest piece
s
m
f(m, s).

• Replace every instruction of the form

Give t students {a1, . . . , aL}
with

Divide t muffins {a1s
m
, . . . , aLs

m
}.

• Replace every instruction of the form

Divide t muffins {b1, . . . , bL}
with

Give t students { b1s
m
, . . . , bLs

m
}.

We leave it to the reader to prove that applying these rules
yields an (s,m)-procedure with smallest piece s

m
f(m, s).

We have shown (with your help) that f(s,m) ≥ s
m
f(m, s).

By a change of variables we get: f(m, s) ≥ m
s
f(s,m).

Hence

f(s,m) ≥ s

m
f(m, s) ≥ s

m
× m

s
f(s,m) = f(s,m).

Therefore f(s,m) = s
m
f(m, s).
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Chapter 3

Our Plan

We would like an algorithm that will, given m and s, output:

(1) f(m, s).
(2) An (m, s)-procedure with smallest piece f(m, s).
(3) A proof that there is no better procedure.

We do not achieve this; however, we do develop many interesting
techniques and determine many f(m, s) (more on that later).
We illustrate the structure of most of the chapters by presenting
the structure of Chapter 6.

(1) Our techniques so far do not suffice to determine f(11, 5).
(2) We present a new technique to determine f(11, 5).
(3) The new technique determines other unknown values of

f(m, s).
(4) We measure our progress.

We measure our progress as follows: Let A be the set of all (m, s)
with 3 ≤ s ≤ 100, s < m ≤ 110, m, s relatively prime. (This
choice of A pushes our computing resources to the limit.) A has
3520 pairs. Our first general technique for upper bounds will be
the Floor-Ceiling method. We later assert that the Floor-Ceiling
method gives the correct value of f(m, s) for 2301 of these pairs.
This was found by a computer program. More generally, for each
method, we will assert for how many pairs in A it was able to

17
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determine the correct value of f(m, s), that had not been known
by prior methods. This is our measure of progress.

Chapters 4, 6, 8, 9 present a sequence of methods to obtain
upper bounds on f(m, s): FC (Floor-Ceiling), Half, INT (Inter-
val), and MID (Midpoint). These four techniques build on each
other.

Chapter 5 presents an algorithm FINDPROC (for Find Pro-
cedure) that will, given m, s, α, try to find an (m, s)-procedure
with smallest piece≥ α, hence verifying that f(m, s) ≥ α. These
algorithms suggest a technique to find f(m, s): First find the
best upper bound α using FC, Half, INT, and MID, and then
run FINDPROC on (m, s, α) to (hopefully) verify that α is a
lower bound. If so then we know that f(m, s) = α. This de-
termines f(m, s) for around 88% of the ordered pairs (m, s) in
A.

So what cases are not covered? Many (though not all) of
the cases not covered are when

⌈
2m
s

⌉
= 3. Chapters 10 and 11

present the EBM (Easy Buddy Match) and HBM (Hard Buddy
Match) methods. They only work when

⌈
2m
s

⌉
= 3. Using FC,

Half, INT, MID, EBM, HBM to get an upper bound, and then
FINDPROC to verify that it’s a lower bound, we determine
f(m, s) for around 93% of the ordered pairs in A.

Chapter 12 presents the Gap method, which uses both tech-
niques from the MID method and the buddy-match methods.
The Gap method solves almost all the remaining cases in A.
The Train method, which takes care of the remaining cases in
A, is mentioned; however, it is not in the book. It is on the
MUFFINS website. In Chapter 12 we present an algorithm that
uses all of the methods above and, for all of the ordered pairs
in A, determines f(m, s). So . . . are we done? Will our meth-
ods solve every muffin problem? No. There are cases, not in A,
where our methods do not suffice.

Chapter 13 presents the wonderful method of Scott Huddle-
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ston and Richard Chatwin which solves every muffin problem
quickly. We do not present the proof of correctness.
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Chapter 4

Three Students! Four Students!

The Floor-Ceiling Theorem!

4.1 Goals for this Chapter

We determine, for all m, f(m, 3) and f(m, 4). On the way,
we will obtain a general theorem, The Floor-Ceiling Theorem,
which is used throughout the book.

4.2 Three Students, Four-Five-Six-Seven Muffins

Exercise 4.1. For 4 ≤ m ≤ 7 find f(m, 3).

Solution to Exercise 4.1
In all of the solutions below except f(6, 3) we have that s

does not divide m and that we are trying to prove an upper
bound ≥ 1

3
. Hence, by Theorem 2.6.2 we can assume that any

procedure, except the one for (6, 3), cuts every muffin into two
pieces.

(1) f(4, 3) = 1
3
: f(4, 3) ≥ 1

3
by Theorem 2.4. Assume, by way of

contradiction, that we have a (4, 3)-procedure with smallest
piece > 1

3
. By Theorem 2.6 we can assume every muffin is

cut into two pieces, so there are 8 pieces.

• If Alice gets ≥ 4 shares, then there is a share ≤ 4
3
× 1

4
=

1
3
.

• If Alice gets ≤ 2 shares, then there is a share ≥ 4
3
× 1

2
=

2
3

whose buddy is ≤ 1− 2
3

= 1
3
.

21
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• If everyone has 3 shares, then there are 9 shares. This
contradicts that there are 8 shares.

(2) f(5, 3) = 5
12

. This is Theorem 1.2. Recall that there is a
student Alice who gets≥ 4 shares, so some piece is≤ 5

3
× 1

4
=

5
12

.
(3) f(6, 3) = 1 is easy.
(4) f(7, 3) = 5

12
.

Here is a procedure for f(7, 3) ≥ 5
12

.

(a) Divide 4 muffins { 5
12
, 7
12
}.

(b) Divide 3 muffins { 6
12
, 6
12
}.

(c) Give 2 students { 5
12
, 5
12
, 6
12
, 6
12
, 6
12
}.

(d) Give 1 student { 7
12
, 7
12
, 7
12
, 7
12
}.

We show that f(7, 3) ≤ 5
12

.
Assume, by way of contradiction, that there is a (7, 3)-
procedure with smallest piece > 5

12
. By Theorem 2.6 we

can assume that every muffin is cut into 2 pieces. Hence
there are 14 pieces, so Bob gets ≤

⌊
14
3

⌋
= 4 shares. Some

share is ≥ 7
3
× 1

4
= 7

12
. Its buddy is ≤ 1− 7

12
= 5

12
.

4.3 The Floor-Ceiling Theorem

The proof that f(5, 3) ≤ 5
12

involved looking at Alice who had
many shares. The proof that f(7, 3) ≤ 5

12
involved looking at

Bob who had few shares. In the Floor-Ceiling Theorem we use
both a student who has many shares and a student who has few
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shares.

Theorem 4.2. (The Floor-Ceiling Theorem) Let m, s ∈ N, s
does not divide m, and s ≤ 2m. Then

f(m, s) ≤ max

{
1

3
,min

{
m

s
× 1⌈

2m
s

⌉ , 1− m

s
× 1⌊

2m
s

⌋}}.
(The condition s ≤ 2m prevents the denominator

⌊
2m
s

⌋
from

ever being 0.)

Proof. Assume that there is an (m, s)-procedure. Since s does
not divide m, by Theorem 2.6 all muffins are cut into ≥ 2 pieces.
So there are 2m pieces.
Case 1: If some muffin is cut into ≥ 3 pieces, then there is a
piece ≤ 1

3
.

Case 2: All muffins are cut into 2 pieces. The following both
occur:

• Alice gets ≥
⌈
2m
s

⌉
shares. Hence some share is ≤ m

s
× 1

d 2ms e
.

• Bob gets ≤
⌊
2m
s

⌋
shares. Hence some share is ≥ m

s
× 1

b 2ms c
Its buddy is ≤ 1− m

s
× 1

b 2ms c
.

The result follows.

We define the function FC (Floor-Ceiling) to encompass both
Theorem 4.2 and the trivial case where s divides m. This will
make later exposition smoother without special cases.

Notation 4.3. Assume s ≤ m.

(1) If s divides m then FC(m, s) = 1.
(2) If s does not divide m then

FC(m, s) = max

{
1

3
,min

{
m

s
× 1⌈

2m
s

⌉ , 1− m

s
× 1⌊

2m
s

⌋}}.
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By the Floor-Ceiling Theorem, f(m, s) ≤ FC(m, s). How
good a bound is this? Informally, f(m, s) = FC(m, s) most of
the time (when m ≥ s). Formally:

Theorem 4.4. If s ≥ 3, m ≥ s, and m ≥ s3+2s2+s
2

, then
f(m, s) = FC(m, s).

The proof of this theorem is beyond the scope of this book;
however, there is a proof on the MUFFIN website.

The FC theorem cannot give an upper bound that is < 1
3
.

Are there any (m, s) with m ≥ s such that f(m, s) < 1
3
? No:

Theorem 4.5. For all m ≥ s, f(m, s) ≥ 1
3
.

There is one proof on the MUFFIN Website and a different
proof due to Richard Chatwin [Chatwin (2019)] in his paper.

Theorems 4.4 and 4.5 indicate that f(m, s) = FC(m, s)
happens quite often. Is it the case that, for all m ≥ s,
f(m, s) = FC(m, s)? No. If the answer had been Yes, then
this book would have been shorter. Many chapters of the book
begin with an (m, s) where f(m, s) < FC(m, s) and devise a
new technique for upper bounds.

Definition 4.6. Fix s. If f(m, s) < FC(m, s) then we call m an
exception. The value of s is always understood. For example,
if we had the sentence 11 is an exception then a prior sentence
will have made it clear that we are considering (say) s = 5.

On the MUFFIN website is an extensive analysis of the ex-
ceptions. We summarize the results of it in Section 4.9.

4.4 Notation for a Student Having Many Shares

We will need the following notation for the next exercise and
throughout this book:

Notation 4.7. If we want to give Alice L1 shares of size a1 and
L2 shares of size a2, and L3 shares of size a3 we denote this by:
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Give Alice {L1 : a1 || L2 : a2 || L3 : a3}

4.5 Three Students

Note the following (if you do not know mod notation, then see
Appendix A).

• If m ≡ 0 (mod 3), then there exists k such that m = 3k.
• If m ≡ 1 (mod 3), then there exists k such that m = 3k+1.
• if m ≡ 2 (mod 3), then there exists k such that m = 3k+2.

Exercise 4.8.

(1) Compute FC(m, 3) for m = 4, 7, 10, 13, 16, . . . and try to
spot a pattern so that you get a formula for FC(m, 3) when
m ≡ 1 (mod 3). Prove that, for all m ≡ 1 (mod 3) with
m ≥ 4, f(m, 3) = FC(m, 3). This will entail finding proce-
dures. (Hint: Get procedures for (4, 3), (7, 3), (10, 3), and
try to spot a pattern.)

(2) Compute FC(m, 3) for m = 5, 8, 11, 14, 17, . . . and try to
spot a pattern so that you get a formula for FC(m, 3) when
m ≡ 2 (mod 3). Prove that, for all m ≡ 2 (mod 3) with
m ≥ 5, f(m, 3) = FC(m, 3). This will entail finding proce-
dures. (Hint: Get procedures for (5, 3), (8, 3), (11, 3), and
try to spot a pattern.)

(3) State and prove a theorem that gives, for every m, f(m, 3).

Solution to Exercise 4.8
We just do Part 3. We give the theorem and the proof to-

gether.

Theorem 4.9.
Case 0: m ≡ 0 (mod 3). If k ≥ 1, clearly f(3k, 3) = 1.

For the rest of the cases the upper bound is obtained by the
Floor-Ceiling Theorem. Hence we just give the procedure.
Case 1: m ≡ 1 (mod 3). If k ≥ 1, f(3k + 1, 3) = 3k−1

6k
:
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(1) Divide 2k muffins {3k−1
6k

, 3k+1
6k
}.

(2) Divide (k + 1) muffins {1
2
, 1
2
}.

(3) Give 1 student {2k : 3k+1
6k
}.

(4) Give 2 students {k : 3k−1
6k
|| k + 1 : 1

2
}.

Case 2: m ≡ 2 (mod 3). If k ≥ 1, f(3k + 2, 3) = 3k+2
6k+6

:

(1) Divide 2k + 2 muffins {3k+2
6k+6

, 3k+4
6k+6
}.

(2) Divide k muffins {1
2
, 1
2
}.

(3) Give 1 student {2k + 2 : 3k+2
6k+6
}.

(4) Give 2 students {k + 1 : 3k+4
6k+6

|| k : 1
2
}.

4.6 Four Students

Note the following:

• If m ≡ 0 (mod 4), then there exists k such that m = 4k.
• If m ≡ 1 (mod 4), then there exists k such that m = 4k+1.
• If m ≡ 2 (mod 4), then there exists k such that m = 4k+2.
• If m ≡ 3 (mod 4), then there exists k such that m = 4k+3.

Exercise 4.10. State and prove a theorem that gives, for ev-
ery m, f(m, 4). (Hint: There are four cases: m ≡ 0, 1, 2, 3
(mod 4).)

Solution to Exercise 4.10
We present the theorem and proof together.

Theorem 4.11. Cases 1 and 3 both use the upper bound
from the Floor-Ceiling Theorem. Hence, in those cases, we only
present the lower bound (the procedure).
Case 0: m ≡ 0 (mod 4). If k ≥ 1, then clearly f(4k, 4) = 1.
Case 1: m ≡ 1 (mod 4). If k ≥ 1,

(1) Divide 4k muffins {4k−1
8k

, 4k+1
8k
}.
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(2) Divide 1 muffin {1
2
, 1
2
}.

(3) Give 2 students {2k : 4k−1
8k
|| 1

2
}.

(4) Give 2 students {2k : 4k+1
8k
}.

Case 2: m ≡ 2 (mod 4). If k ≥ 1, then clearly f(4k+2, 4) = 1
2
.

Case 3: m ≡ 3 (mod 4). If k ≥ 1, f(4k + 3, 4) = 4k+1
8k+4

:

(1) Divide 4k + 2 muffins {4k+1
8k+4

, 4k+3
8k+4
}.

(2) Divide 1 muffin {1
2
, 1
2
}.

(3) Give 2 students {2k + 1 : 4k+3
8k+4
}.

(4) Give 2 students {2k + 1 : 4k+1
8k+4

|| 1
2
}.

4.7 The Floor-Ceiling Theorem when m < s

The Floor-Ceiling Theorem has a condition s ≤ 2m. We only
use it when s ≤ m since we only every look at the case s ≤ m.
There is a version of the Floor-Ceiling Theorem that works when
m ≥ 2s. Had this book been written to only deal with the m ≤ s
case, we would have used this version. We present it but leave
the proof to the reader. Hint: Look at the proof of Theorem 1.5.

Theorem 4.12. If m, s ∈ N, m does not divide s, and m ≤ 2s
then

f(m, s) ≤ max

{
m

s
× 1

3
, 1− m

s
,min

{
1⌈
2s
m

⌉ , m
s
− 1⌊

2s
m

⌋}}.
4.8 Progress Report

We will provide statistics on how well the Floor-Ceiling method
works later, in Section 5.9.
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4.9 Exceptions

On the MUFFIN website we have extensive data about excep-
tions. We use the values of f(m, s) where 3 ≤ s ≤ 100, and
s < m ≤ 110 (the same values specified in Chapter 3). We are
confident that if we used more data we would get similar results
since the patterns revealed themselves early on and persisted.

What is the Maximum Exception? By Theorem 4.4 we
know that, for all s, there are no exceptions m ≥ s3+2s2+s

2
. Can

this bound be lowered? The empirical evidence indicates the
following:

(1) If s ≡ 1 (mod 2) then the maximum exception is

≤ 0.63s2 − 8.31.

(2) If s ≡ 0 (mod 4) then the maximum exception is

≤ 0.16s2 − 0.03s− 3.16.

(3) If s ≡ 2 (mod 4) then the maximum exception is

≤ 0.31s2 + 0.11s− 5.33.

Conjecture 4.13. There is a constant c such that, for all s, for
all m ≥ cs2, f(m, s) = FC(m, s).

How many Exceptions are There?
We have no theorem on the number of exceptions; however,

we do not think there are many of them. The empirical evidence
indicates the following:

(1) If s ≡ 1 (mod 2) and s ≥ 9 then the number of exceptions
will be

≤ 2s− 17.08.

(2) If s ≡ 0 (mod 4) and s ≥ 16 then the number of exceptions
will be

≤ 1.21s− 16.10.
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(3) If s ≡ 2 (mod 4) and s ≥ 14 then the number of exceptions
will be

≤ 1.75s− 18.75.

Conjecture 4.14. There is a constant c such that, for all s, the
number of exceptions is ≤ cs.

Where are the Exceptions?
We have no theorems about where the exceptions are. Look-

ing at limited data Alan Frank noticed that most of the excep-
tions tended to be in two regions: (1) when m (mod s) is around
0.25s, and (2) when m (mod s) is around 0.75s. The empirical
evidence indicates he was correct.

Since we do not quantify the notion of most or around we
refrain from making a conjecture.
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Chapter 5

Finding Procedures*

5.1 Recap and Goals for this Chapter

If s ≤ m, then f(m, s) ≤ FC(m, s). But what about lower
bounds? In Chapters 1,2, and 4, we obtained some lower bounds
for f(m, s) by finding (m, s)-procedures. However, the proce-
dures were obtained for particular cases. The methods used
there do not extend to other cases.

In this chapter we do the following:

(1) Find a (5,3)-procedure for f(5, 3) ≥ 5
12

systematically.
(2) Find a (13,5)-procedure for f(13, 5) ≥ 13

30
systematically.

(3) Find a (17,15)-procedure for f(17, 15) ≥ 7
20

systematically.
This one has an unusual aspect to it.

(4) Give an algorithm FINDPROC that, given m, s, α, tries to
find an (m, s)-procedure with smallest piece ≥ α to verify
f(m, s) ≥ α.

(5) Clarify what try means and what we know about the algo-
rithm’s correctness.

(6) Present a program that uses FINDPROC and the Floor-
Ceiling Theorem to try to find f(m, s). We then report
progress on how many f(m, s)’s we can compute from our
target set of pairs (see Chapter 3).

See Appendix A for information about sets, multisets, and

31
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subsets.

Definition 5.1. Let A = {a1 < a2 < · · · < aL} and let S be
a multisubset of A (so an element of A can appear many times
in S). The vector representation of S is a vector (n1, n2, . . . , nL)
where ni is the number of times that the ai appears in S.

Notation 5.2. We will often call a multisubset of A just a sub-
set of A.

Definition 5.3. The sum of a multiset simply means the sum
of the elements in the multiset.

Example 5.4. Let A = {19, 20, 21, 22, 23, 24}

(1) The multiset

{19, 19, 20}

is a subset of A. We represent it by the vector

(2, 1, 0, 0, 0, 0).

It sums to 19 + 19 + 20 = 58.
(2) The multiset

{20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20}

is a subset of A. We represent it by the vector

(0, 11, 0, 0, 0, 0).

It sums to 20× 11 = 220.
(3) The multiset

{20, 21, 22, 23, 24}

is a subset of A. We represent it by the vector

(0, 1, 1, 1, 1, 1).

It sums to

20 + 21 + 22 + 23 + 24 = 110.
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5.2 Example of Systematic Lower Bounds

The reader is urged to look up systems of linear equations. The
keyword matrix will help.

In Theorem 1.2 we showed f(5, 3) ≥ 5
12

by using intuition and
guesswork to find a (5,3)-procedure. Similar for f(13, 5) ≥ 13

30
.

In this section we derive the procedures for both systematically.
We also consider f(17, 15) ≥ 7

20
which has an unusual feature.

We will need the following definition.

Definition 5.5. If S(x1, . . . , xn) is a system of linear equations
then an N-solution to S is a vector (a1, . . . , an) ∈ Nn such that
S(a1, . . . , an) is satisfied.

5.2.1 f(5, 3) ≥ 5
12

Systematically

1) Suppose we know that the only piece sizes we need for this
procedure are

A =

{
5

12
,

6

12
,

7

12

}
.

Each muffin will be split into two piece sizes from A. We can
represent this with a multiset of piece sizes. For example, if a
muffin is split into two halves, then we may represent it with
the multiset { 6

12
, 6
12
} or with the vector representation (0, 2, 0).

We leave it to the reader to show that every student gets 3
or 4 shares.

In order to avoid cluttering the page with denominators, we
will multiply all piece sizes by 12. So instead, let

B = {5, 6, 7}.

If we want to know all ways to cut a muffin into 2 pieces
rather than say
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We need all 2-subsets of A that sum to 1.
we say

We need all 2-subsets of B that sum to 1× 12 = 12.

If we want to know all ways to give Alice her share, rather
than say

We need all 3-subsets and 4-subset of A that sum to 5
3
.

we say
We need all 3-subsets and 4-subsets of B that sum to 5

3
× 12 = 20.

2) Find all vectors that correspond to how a muffin can be cut.
We need all subsets of B that sum to 12 (since 1 = 12

12
). While

this is easy to guess we do it systematically. Let x5 be the
number of 5’s, x6 be the number of 6’s and x7 be the number of
7’s. Then we need all N-solutions to the system of equations

5x5 + 6x6 + 7x7 = 12
x5 + x6 + x7 = 2

By multiplying the second equation by 5 and subtracting we
get

x6 + 2x7 = 2.

We use this to get that the only N-solutions are (x6, x7) =
(2, 0) and (x6, x7) = (0, 1) to obtain that the only N-solutions of
the original set of equations is

• (x5, x6, x7) = (0, 2, 0).
• (x5, x6, x7) = (1, 0, 1)

These translate to the following ways to cut a muffin:

• {6, 6} which is (0, 2, 0). Let m1 be the number of muffins
cut this way.
• {5, 7} which is (1, 0, 1). Let m2 be the number of muffins

cut this way.
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3) Find all vectors that correspond to a student getting 3 shares
(we later do 4 shares).

Let xi be the number of shares of size i. The ways a student
can get 3 shares can be found by solving this system of equations:

5x5 + 6x6 + 7x7 = 20
x5 + x6 + x7 = 3

The ways a student can get 4 shares can be found by solving
a modified system of equations where 3 is replaced by 4.

We leave it to the reader to solve both sets of equations and
find the following are the only ways a student can get shares:

• {6, 7, 7} which is (0, 1, 2). Let s1 be the number of students
who get these shares.
• {5, 5, 5, 5} which is (4, 0, 0). Let s2 be the number of stu-

dents who get these shares.

4) Set up equations to find m1,m2, s1, s2.
The number of each piece size that the muffins give is equal to

the number of each share size that the students receive. There-
fore, we get the equation:

m1(0, 2, 0) +m2(1, 0, 1) = s1(0, 1, 2) + s2(4, 0, 0).

This equation implies:

m2 = 4s2
2m1 = s1
m2 = 2s1.

Since there are 5 muffins and 3 students:
m1 +m2 = 5
s1 + s2 = 3.

5) The 5 equations have one N-solution: m1 = 1, m2 = 4, s1 = 2,
s2 = 1.

6) Take the N-solutions and make a procedure out of it.
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(1) (m1 = 1) Divide 1 muffin { 6
12
, 6
12
}.

(2) (m2 = 4) Divide 4 muffins { 5
12
, 7
12
}.

(3) (s1 = 2) Give 2 students { 6
12
, 7
12
, 7
12
}.

(4) (s1 = 1) Give 1 student { 5
12
, 5
12
, 5
12
, 5
12
}.

5.2.2 f(13, 5) ≥ 13
30

Systematically

In Section 1.1 we took you through our general approach in
the case of f(5, 3) ≥ 5

12
. In this section you will prove that

f(13, 5) ≥ 13
30

.

Exercise 5.6. In this exercise you will show f(13, 5) ≥ 13
30

. As-
sume that there is a (13, 5)-procedure. Assume that:

• All of the pieces are in

A =

{
13

30
,
14

30
,
15

30
,
16

30
,
17

30
.

}
• By Theorem 2.6, all of the muffins are cut into two pieces.

(1) Find all subsets of piece sizes that correspond to how a muf-
fin can be cut. Represent them as vectors.

(2) Find all subsets of piece sizes that correspond to what a
student can get. Represent them as vectors.

(3) Set up equations like the ones in Section 5.2.1 which will
equate the muffin-view with the student-view.

(4) Solve those equations (use a software package).
(5) Give a procedure for f(13, 5) ≥ 13

30
using the last part.

Solution to Exercise 5.6
We clear fractions. The pieces are in

B = {13, 14, 15, 16, 17}.
A muffin is of size 1×30 = 30, and each students gets 13

5
×30 =

78.
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1) Find all vectors that correspond to how a muffin can be cut.
We need all 2-subsets of B that sum to 30. Hence we need all
N-solutions to:

13x13 + 14x14 + 15x15 + 16x16 + 17x17 = 30
x13 + x14 + x15 + x16 + x17 = 2

Here they are:

• {13, 17}, which is (1, 0, 0, 0, 1). Let m1 be the number of
muffins cut this way.
• {14, 16}, which is (0, 1, 0, 1, 0). Let m2 be the number of

muffins cut this way.
• {15, 15}, which is (0, 0, 2, 0, 0). Let m3 be the number of

muffins cut this way.

2) Find all vectors that correspond to what a student can get.
We need all subsets of B that sum to 78.

We leave it to the reader to show that Alice can’t get ≥ 6
pieces or ≤ 4 pieces. Hence we need 5-subsets and 6-subsets of
B that sum to 78. Hence we need to all N-solutions to

13x13 + 14x14 + 15x15 + 16x16 + 17x17 = 78
x13 + x14 + x15 + x16 + x17 = 5

and to

13x13 + 14x14 + 15x15 + 16x16 + 17x17 = 78
x13 + x14 + x15 + x16 + x17 = 6

Here they are:

• {13, 13, 13, 13, 13, 13} which is (6, 0, 0, 0, 0).
Let s1 be the number of students who get these shares.
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• {15, 15, 16, 16, 16} which is (0, 0, 2, 3, 0).
Let s2 be the number of students who get these shares.

• {15, 15, 15, 16, 17} which is (0, 0, 3, 1, 1).
Let s3 be the number of students who get these shares.

• {14, 16, 16, 16, 16} which is (0, 1, 0, 4, 0). Let s4 be the num-
ber of students who get these shares.

• {14, 15, 16, 16, 17} which is (0, 1, 1, 2, 1). Let s5 be the num-
ber of students who get these shares.

• {14, 15, 15, 17, 17} which is (0, 1, 2, 0, 2). Let s6 be the num-
ber of students who get these shares.

• {14, 14, 16, 17, 17} which is (0, 2, 0, 1, 2). Let s7 be the num-
ber of students who get these shares.

• {13, 16, 16, 16, 17} which is (1, 0, 0, 3, 1). Let s8 be the num-
ber of students who get these shares.

• {13, 15, 16, 17, 17} which is (1, 0, 1, 1, 2). Let s9 be the num-
ber of students who get these shares.

• {13, 14, 17, 17, 17} which is (1, 1, 0, 0, 3). Let s10 be the num-
ber of students who get these shares.

4) Equate the muffin pieces with the student shares:

m1(1, 0, 0, 0, 1) +m2(0, 1, 0, 1, 0) +m3(0, 0, 2, 0, 0)

=

s1(6, 0, 0, 0, 0) + s2(0, 0, 2, 3, 0) + s3(0, 0, 3, 1, 1) + s4(0, 1, 0, 4, 0)

+ s5(0, 1, 1, 2, 1) + s6(0, 1, 2, 0, 2) + s7(0, 2, 0, 1, 2)

+ s8(1, 0, 0, 3, 1) + s9(1, 0, 1, 1, 2) + s10(1, 1, 0, 0, 3).

This equation implies:
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m1 = 6s1 + s8 + s9 + s10
m2 = s4 + s5 + s6 + 2s7 + s10

2m3 = 2s2 + 3s3 + s5 + 2s6 + s9
m2 = 3s2 + s3 + 4s4 + 2s5 + s7 + 3s8 + s9
m1 = s3 + s5 + 2s6 + 2s7 + s8 + 2s9 + 3s10.

Since there are 13 muffins and 5 students we have:

m1 +m2 +m3 = 13
s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10 = 5.

5) There are 13 N-solutions to the 7 equations. We present 5 of
them. We convert one of them to a procedure. The reader is
invited to find the other N-solutions and to convert any or all of
them to procedures.
Solution One:

• m1 = 6, m2 = 7, m3 = 0
• s1 = 1, s4 = 1, s7 = 3, all other si’s are 0.

This N-solution yields the following procedure:

(1) (m1 = 6) Divide 6 muffins {13
30
, 17
30
}.

(2) (m2 = 7) Divide 7 muffins {14
30
, 16
30
}.

(3) (s1 = 1) Give 1 student {13
30
, 13
30
, 13
30
, 13
30
, 13
30
, 13
30
}.

(4) (s4 = 1) Give 1 student {14
30
, 16
30
, 16
30
, 16
30
, 16
30
}.

(5) (s7 = 3) Give 3 students {14
30
, 14
30
, 16
30
, 17
30
, 17
30
}.

Solution Two:

• m1 = 6, m2 = 6, m3 = 1
• s1 = 1, s2 = 1, s7 = 3, all other si’s are 0.

Solution Three:
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• m1 = 6, m2 = 5, m3 = 2
• s1 = 1, s2 = 1, s6 = 1, s7 = 2, all other si’s are 0.

Solution Four:

• m1 = 6, m2 = 4, m3 = 3
• s1 = 1, s2 = 1, s6 = 2, s7 = 1, all other si’s are 0.

Solution Five:

• m1 = 6, m2 = 3, m3 = 4
• s1 = 1, s2 = 1, s6 = 3, all other si’s are 0.

5.2.3 f(17, 15) ≥ 7
20

Systematically

We want to show that f(17, 15) ≥ 7
20

. This is unusual in that
the denominator of the answers is not a multiple of s. These
cases are rare but they do happen. Should we assume the pieces
all have denominator 15? 20? Neither. We assume the pieces
all have denominator 60, the least common multiple of 15 and
20. Hence all pieces are in

A =

{
21

60
,
22

60
, . . . ,

39

60
.

}
Note that there are 19 elements in A.

Exercise 5.7.

(1) Find all subsets of A that correspond to how a muffin can
be cut. These are 2-subsets that sum to 60.

(2) Find all subsets of A that correspond to what a student can
get. These are 2-subsets or 3-subsets that sum to 68.

(3) Set up equations like the ones in Section 5.2.1 that equate
the muffin-view and the student-view.

(4) Solve those equations (use a software package).
(5) Give a procedure for f(17, 15) ≥ 21

60
using the last part.
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5.3 The Algorithm FINDPROC

We describe the algorithm FINDPROC that has the following
input-output behavior:

(1) Input: (m, s, α) where α is rational.
(2) Output: Either a procedure that shows f(m, s) ≥ α or DK.

If there is an N-solution then output f(m, s) ≥ α and go to
the next step. (DK stands for Don’t Know since we don’t
know if f(m, s) ≥ α (though we have never seen a case
where f(m, s) = α and the program outputs DK).

Here is a description of the algorithm.

(1) Input(m, s, α). Let α = c
d

in lowest terms.
(2) If α = 1

3
then use Theorem 4.5. Henceforth we assume

α > 1
3
.

(3) Let b be the least common multiple of s and d. (Usually
b = d.)

(4) Let a = bc
d

. Note that a ∈ N since b is a multiple of d. Note
that α = a

b
and 1 − α = b−a

b
. We assume the pieces are all

of sizes: {
a

b
,
a+ 1

b
, . . . ,

b− a
b

}
.

(See Conjecture 5.9 for why we can assume it.) We clear
fractions and think of the piece sizes as

B = {a, a+ 1, . . . , b− a}.
With this in mind (1) every muffin is of size 1× b = b, and
(2) every student gets m

s
×b = bm

s
(since s divides b, bm

s
∈ N).

(5) Find all 2-subsets of B that sum to b. Represent them by
vectors. Let M be the set of all these vectors. The vectors in
M represent all ways to divide a muffin. (We can find these
vectors either using equations, as described in Section 5.4,
or using “recursion” as described in Section 5.6. You will
see why the word is in quotes later.)
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(6) Let V =
⌈
2m
s

⌉
(in Section 6.9 we discuss this choice). Find

all V -subsets and (V − 1)-subsets of B that sum to bm
s

.
Represent them by vectors. Let S be the set of all these
vectors. The vectors in S represent all ways to give shares to
students. (We can find these vectors either using equations,
as described in Section 5.4, or again using “recursion”.)

(7) Find all N-solutions of the following system of linear equa-
tions:
The variables are

{m~v : ~v ∈M} ∪ {s~u : ~u ∈ S}.

We equate the muffin-viewpoint and the student-viewpoint:

∑
~v∈M

m~v~v =
∑
~u∈S

s~u~u.

(The equation above yields |B| = b−2a+1 linear equations.)
Since there are m muffins and s students, we have:

∑
~v∈M

m~v = m

∑
~u∈S

s~u = s.

(8) If there is an N-solution then output f(m, s) ≥ α and go to
the next step. If not, then output DK.

(9) Use the N-solution found to generate a procedure showing
f(m, s) ≥ α. Each m~v tells the number of muffins which are
split into pieces according to the vector ~v. Likewise, each s~u
tells the number of students who receive shares according to
their vector ~u.
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5.4 How to Find the Vectors: Equations Approach

There are two ways to find the vectors. We describe one in detail
here that we have seen in our examples. We also describe some
shortcuts.

Here is the problem we often face: we are given a set

B = {a, a+ 1, . . . , b− a}

along with c, V − 1, V, T1, T2 and need to find

• All 2-subsets of B that sum to T1.
• All (V − 1)-subsets of B that sum to T2.
• All V -subsets of B that sum to T2.

More generally we need all W -subsets of B that sum to T .
For a ≤ i ≤ b− a let xi be the number of times we use i. Then
we need to find all N-solutions to the system

axa + · · ·+ (b− a)xb−a = T
xa + · · ·+ xb−a = W

Every N-solution to this system corresponds to a W -subset
of B that sums to T . All such W -subsets of B can be obtained
this way.

In future chapters we will find that (1) the (V − 1)-subsets
only use the larger elements in B, and (2) the V -subsets only
use the smaller elements in B. We may also find other numbers
that are forbidden. When coding this up one can use this to get
equations with less variables.

5.5 Recursion, Dynamic Programming, and “Re-
cursion”

This section is a brief aside about three techniques one could use
for a recurrence. We discuss them since the last technique, “Re-
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cursion”, will be used in the next section. We give an example
that is not connected to muffins.

Consider the recurrence:
a0 = 1
a1 = 5
a2 = 10
(∀n ≥ 3)[an = ab√nc + ab2 log2(n)c−1]

I want a program that will, on input n, return an.
The following program does the problem recursively.

Program A

(1) Input(n)
(2) If n = 0 return 1. If n = 1 return 5.
(3) Otherwise return A(b

√
nc) + A(b2 log2(n)− 1c).

The program is elegant but it computes more than it needs
to. Consider what happens when n = 1000.

• The program calls A(31) and A(17).
• The call of A(31) calls A(5) and A(7)
• The call of A(17) calls A(4) and A(7).

We stop here and make our point. Note that A(7) was called
twice. More generally, there may be a lot of unneeded recompu-
tation.

Hence we look at another approach, called Dynamic Program-
ming. We do the recursion bottom up rather than top down.
Program A

(1) Input(n). We have an array A.
(2) A[0]← 1. If n = 0 return A[0].
(3) A[1]← 5. If n = 1 return A[1].
(4) A[2]← 10. If n = 2 return A[2].
(5) For i = 3 to n A[i]← A[

⌊√
i
⌋
] + A[b2 log2(i)− 1c].

(6) Return A[n].
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The key to this program is that when you are computing
(say) A[18], you have all the prior A[i]’s that you need. Also
note that in the end you have A[0], . . ., A[n], more than you
want. Hence we did some unneeded computation.

Is there a way to do this problem with less unneeded compu-
tation? Yes. We combine the two techniques. We keep an array
of already-computed values. The array is global. It exists and
is updated through all calls to the function. Whenever we call
the function we first check if the answer is already in the array.
If so we return it.
Initialize Array

(1) A[0]← 1.
(2) A[1]← 5.
(3) A[2]← 10.

Program A

(1) Input(n). If n = 0 or n = 1 or n− 2 then return A[n].
(2) Check if A[n] is defined. If so then return it.
(3) Return A(b

√
nc)+A(b2 log2(n)− 1c) and put it in the array.

(Recall that these calls to A first checked the to see if the
value was already known.)

We call this last approach “Recursion”. In the literature it
is called memoization. This name is so unintuitive that I refuse
to use it. Hence I use “Recursion”.

We will use “Recursion” to find the vectors.

5.6 How to Find the Vectors: “Recursion” Ap-
proach

We solve a more general problem than the one we need.

Definition 5.8. Let B = {x1, . . . , xL}, T ∈ Z, and k ∈ N. We
assume all xi ≥ 1. Let F (i, T, k) be the set of all k-subsets of
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{x1, . . . , xi} that sum to T . Note that F (0, T, k) is looking at
subsets of ∅ (the empty set) that sum to T . (The case of T ≤ −1
is an edge case that we rarely need.)

How will F (i, T, k) help us? Henceforth let

B = {a, a+ 1, . . . , b− a}.

For the algorithm FINDPROC we need to compute the fol-
lowing:

• The 2-subsets of {a, . . . , b− 1} that sum to b. This is F (b−
2a+ 1, b, 2).
• The V -subsets and (V − 1)-subsets of {a, . . . , b − a} that

sum to bm
s

is F (b− 2a+ 1, bm
s
, V − 1)∪F (b− 2a+ 1, bm

s
, V ).

We will end up computing more values of F (i, T, k) then we
need; however, this turns out to be the best way to do it.

Below you will see that sometimes we have F (i, T, k) = ∅ and
sometimes F (i, T, k) = {∅}. This is not a typo. We describe the
difference:

• F (i, T, k) = ∅ means that there are no subsets of

{a, . . . , a+ i− 1}

of size k that sums to T .
• F (i, T, k) = {∅} means that the empty set is a subset of

{a, . . . , a+ i− 1}

of size k that sums to T . (In this case T = 0 and k = 0.)

(1) For all i, with i ≥ 1, F (i, 0, 0) = {∅}. The sum of the
elements of ∅ is 0.

(2) For all i, for all k ≥ 1, T (i, 0, k) = ∅. There are no k-subsets
that sum to 0 since k ≥ 1.

(3) For all T, k with T ≥ 1, F (0, T, k) = ∅. There are no k-
subsets of ∅ that sum to T .
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(4) For all T, i with T ≥ 1, F (i, T, 0) = ∅. There are no 0-
subsets that sum to T .

(5) For all i, T, k with T ≤ −1, F (i, T, k) = ∅. There are no i-
subsets of {x1, . . . , xi} that sum to a negative number. We
will need this in a recursion.

(6) For all k, F (1, kx1, k) = {{x1, . . . , x1}} (there are k x1’s).
We seek all k-subset of {x1} that sums to kx1. There only
one is {x1, . . . , x1} (k x1’s).

(7) For all k, for all T 6= kx1, F (1, T, k) = ∅. We seek a k-subset
of {x1} that sums to T . There is only one k-subset of {x1}
which is {x1, . . . , x1} (k times). This subset does not sum
to T . Hence there is no such k-subset.

(8) Let 1 ≤ j ≤ i ≤ L. F (i, xj, 1) = {{xj}}. We seek a 1-subset
of {x1, . . . , xi} that sums to xj. The only such set is {xj}.

(9) Let 1 ≤ i ≤ L. Let T /∈ {x1, . . . , xi}. F (i, T, 1) = ∅.
We seek a 1-subset of {x1, . . . , xi} that sums to T . Since
T /∈ {x1, . . . , xi}, there is no such set.

The first case not covered is F (2, T, 2). This will reduce to
one of the cases above.

Let Y ∈ F (2, T, 2). So Y is a 2-subset of {x1, x2} that sums
to T . There are cases depending on if x2 is in Y or not.

• x2 /∈ Y . Then Y is a 2-subset of {x1} that sums to T . That
means Y ∈ F (1, T, 2). Great!
• x2 ∈ Y . What is Y − {x2}? It is a 1-subset of {x1, x2} that

sums to T − x2. That means Y − {x2} ∈ F (2, T − x2, 1).
Hence Y is of the form {x2}∪X where X ∈ F (1, T −x2, 1).
Note that if x2 > T , then T − x2 < 0 and this is taken care
of above.

More succinctly:

F (2, T, 2) = F (1, T, 2) ∪ {{x2} ∪X | X ∈ F (1, T − x2, 1)}
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We now generalize. We want to find all Y ∈ F (i, T, k). There
are two cases depending on xi in Y .

• xi /∈ Y . Then Y is a k-subset of {x1, . . . , xi−1} that sums to
T . That means Y ∈ F (i− 1, T, k). Great!
• xi ∈ Y . What is Y − {xi}? It is a (k − 1)-subset of
{x1, . . . , xk} that sums to T − xi. That means Y − {xi} ∈
F (i, T − x2, k − 1). Hence Y is of the form {xi} ∪X where
X ∈ F (i, T −xi, k−1). Note that if xi > T , then T −xi < 0
and this is taken care of in the list of easy cases.

More succinctly:

F (i, T, k) = F (i− 1, T, k)∪{{xi}∪X | X ∈ F (i, T − xi, k− 1)}

We give the algorithm for F . Note that while trying to com-
pute F (i, T, k), it will compute other F (i′, T ′, k′) along the way.

Let B = {x1, . . . , xi} be given. We do not regard it as part
of the input.

We will keep array A(i, T, k) in storage of already-known val-
ues of F (i, T, k). The idea is that if we are trying to determine
F (i, T, k) and need to know some F (i′, T ′, k′) with either i′ < i,
T ′ < T or k′ < k then we will either already have that value
in storage or we will try to compute it. Hence, the first two
things we do are (1) see if i, T, k are an easy case, and (2) check
if F (i, T, k) has already been computed and stored.
F (i, T, k)

(1) If (i, T, k) is one of the easy cases discussed above, then
output the answer noted above.

(2) Check if A(i, T, k) has an answer. If so, then output it.
(3) (If you got to this step then (i, T, k) is not an easy case and

is not already known.) Compute F (i − 1, T, k). (This is a
recursive call to F . Note that if the answer has already been
computed and is in the array A then this step will be fast.)
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(4) Compute F (i, T − xi, k − 1). (This is a recursive call to F .
Note that if the answer has already been computed and is
in the array A then this step will be fast.)

(5) Output (and put in A(i, T, k))

F (i− 1, T, k) ∪ {{xi} ∪X | X ∈ F (i, T − xi, k − 1)}.

5.7 Comments On Speed

In our experience the equations approach is faster when m is
small (say less than 50) and the “recursion” method is faster
when m is large. However, both approaches tend to be slow
when m, s ≥ 100. FINDPROC is the main bottleneck in our
programs. Either algorithm is exponential in m, s.

5.8 There is No Try, Only Do

If the algorithm FINDPROC(m, s, α) outputs a procedure, then
great! We know f(m, s) ≥ α and have a proof of that.

If the algorithm outputs We could not prove that f(m, s) ≥ α
then we do not know that there is no (m, s)-procedure with
smallest piece α. All we know is that there is no such procedure
with denominator

b = lcm{denominator of α, s}.

We have never seen a case where FINDPROC(m, s, c
d
) re-

turned DK and yet there was an (m, s)-procedure with smallest
piece ≥ c

d
. We conjecture that we never will see such a case:

Conjecture 5.9. If f(m, s) = c
d

and b is the least common
multiple of s and d, then there is a procedure showing f(m, s) ≥
c
d

where all of the pieces are of the form i
b

where i ∈ N.
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5.9 Program and Progress

Using FC and FINDPROC we have the following attempt at an
algorithm to find f(m, s):

(1) Input(m, s).
(2) α = FC(m, s).
(3) Run FINDPROC(m, s, α).
(4) If it outputs a procedure P then output α. Otherwise output

DK (for Don’t Know).

There are 3520 pairs (m, s) we are considering (see Chap-
ter 3).

• For 2301 of them f(m, s) = FC(m, s). That is ∼ 65.37%.
• For 1219 of them the functions FC and FINDPROC did not

suffice to find f(m, s). That is ∼ 34.63%.
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Chapter 6

The Half Method

6.1 Recap and Goals for this Chapter

From Chapter 4 we know that for 1 ≤ s ≤ m,

f(m, s) ≤ FC(m, s)

Is it the case that, for all m ≥ s, f(m, s) = FC(m, s)? No.
The counterexample with the smallest s is f(11, 5):

f(11, 5) =
13

30
<

11

25
= FC(11, 5).

The proof of the upper bound uses a new technique which
we call The Half method. We develop an algorithm Half(m, s)
which, given m, s outputs α such that f(m, s) ≤ α.

Definition 6.1. Let m, s, V ∈ N. Assume that there is an
(m, s)-procedure.

(1) A V -student is a student who gets V shares.
(2) A share that goes to a V -student is a V -share.

6.1.1 Five Students, Six, Seven,. . .,Thirteen
Muffins

Exercise 6.2. For 6 ≤ m ≤ 13, find f(m, 5). Hint: First use
the Floor-Ceiling Theorem to get an upper bound and then try

51
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to show that its a lower bound. Warning: This approach will
fail when m = 11.

Solution to Exercise 6.2
• f(6, 5) = 2

5
:

f(6, 5) ≤ 2
5

by the Floor-Ceiling Theorem. We leave it to the
reader to come up with a procedure.
Hint: Every muffin is divided {2

5
, 3
5
}.

• f(7, 5) = 1
3
:

f(7, 5) ≤ 1
3

by the Floor-Ceiling Theorem. We leave it to the
reader to come up with a procedure.
Hint: Assume that everyone gets either { 5

15
, 8
15
, 8
15
} or

{ 7
15
, 7
15
, 7
15
}

• f(8, 5) = 2
5
.

f(8, 5) ≤ 2
5

by the Floor-Ceiling Theorem. We leave it to the
reader to come up with a procedure.
Hint: Every muffin is divided {2

5
, 3
5
}.

• f(9, 5) = 2
5
.

f(9, 5) ≤ 2
5

by the Floor-Ceiling Theorem. We leave it to the
reader to come up with a procedure.
Hint: Every muffin is divided {2

5
, 3
5
}.

• f(10, 5) = 1. This is easy.

• f(11, 5).
By the Floor-Ceiling Theorem f(11, 5) ≤ 11

25
. We will try to

prove f(11, 5) ≥ 11
25

. Let’s narrow down what such a procedure
will look like. (We could run FINDPROC; however, we prefer
to essentially do that by hand and see what happens.)
MUFFINS:

Since 11
25
> 1

3
, by Theorem 2.6 every muffin is cut into exactly

2 pieces. Hence there are 22 pieces.
STUDENTS:
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(1) If Alice has ≥ 6 shares, then one of them is ≤ 11
5
× 1

6
= 11

30
<

11
25

.
(2) If Bob has≤ 3 shares, then one of the shares is≥ 11

5
× 1

3
= 11

15
.

Its buddy is ≤ 1− 11
15

= 4
15
< 11

25
.

Hence everyone is either a 4-student or 5-student. Let s4 (s5)
be the number of 4-students (5-students). The total number of
pieces is 4s4 + 5s5. It’s also 2× 11 = 22. Hence

4s4 + 5s5 = 22.

The total number of students is 5, hence

s4 + s5 = 5.

These two equations have only one solution: s4 = 3, s5 = 2.
Every student gets 11

5
= 11×5

5×5 = 55
25

. We make a leap and
assume that every share is in the set

A =

{
11

25
,
12

25
,
13

25
,
14

25

}
.

We list all sets of 4-subsets and 5-subsets of A that sum up
to 55

25
. There are only 2:{

13

25
,
14

25
,
14

25
,
14

25

}
and

{
11

25
,
11

25
,
11

25
,
11

25
,
11

25

}
Hence the three 3-students get the first set and the two 5-

students get the second set. Therefore the following must be
the last two steps of the procedure:

(1) Give 2 students {11
25
, 11
25
, 11
25
, 11
25
, 11
25
}.

(2) Give 3 students {13
25
, 14
25
, 14
25
, 14
25
}.

Because of the last step there are 12 pieces that are ≥ 13
25
> 1

2
.

This cannot happen. There were originally 11 muffins, each
cut into 2 pieces, so there are at most 11 pieces > 1

2
. What’s

going on? Is our assumption all of the pieces have denominator
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25 wrong? Or is there no (11,5)-procedure with smallest piece
≥ 11

25
? In Section 6.2, we will describe a new technique to bound

f(11, 5). The bound will be 13
30
< 11

25
.

• f(12, 5) = 2
5
.

f(12, 5) ≤ 2
5

by the Floor-Ceiling Theorem. We leave it to
the reader to come up with a procedure.
Hint: Every muffin is divided {2

5
, 3
5
}.

• f(13, 5) = 13
30

.
By the Floor-Ceiling Theorem f(13, 5) ≤ 13

30
. We will try to

prove f(13, 5) ≥ 13
30

. Let’s narrow down what such a procedure
will look like.

We leave it to the reader to derive that there are four 5-
students and one 6-student.

Let’s make a leap and assume that every share is in the set

A =

{
13

30
,
14

30
,
15

30
,
16

30
,
17

30

}
.

There is one 6-student. The only way 6 shares can add up to
13
5

= 78
30

is

{
13

30
,
13

30
,
13

30
,
13

30
,
13

30
,
13

30

}
Since one student must get this set of shares, there must

be 6 muffins cut {13
30
, 17
30
}. Hence we have the following partial

procedure:

(1) Divide 6 muffins {13
30
, 17
30
}.

(2) Give 1 student {13
30
, 13
30
, 13
30
, 13
30
, 13
30
, 13
30
}.

We leave it to the reader to complete the procedure. Start
with the fact that there are 6 muffins of size 17

30
that need to be

used.
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6.2 A New Technique

By the Floor-Ceiling Theorem we have f(11, 5) ≤ 11
25

. We proved
that there is no (11, 5)-procedure with smallest piece ≥ 11

25
where

all of the pieces had denominator 25. We use the ideas in that
proof to derive a better upper bound.

Theorem 6.3. f(11, 5) = 13
30

.

Proof. We leave the proof that f(11, 5) ≥ 13
30

to the reader.
Alternatively the reader can run FINDPROC(11, 5, 13

30
).

We derive the upper bound during the proof. We will denote
it α.
Assume, by way of contradiction, that there is an (11, 5)-
procedure with every piece > α. We assume α ≥ 1

3
. By The-

orem 2.6 every muffin is cut into exactly 2 pieces. Hence there
are 22 pieces. Note that there can be at most 11 pieces > 1

2
.

This will be a key to getting a contradiction.
We follow the lead of the attempt at proving f(11, 5) ≤ 11

25

by assuming that everyone is a 4-student or 5-student. But we
turn that around: we use that assumption to lower bound α.
Case 1: If Alice gets ≥ 6 shares then some share is

≤ 11

5× 6
=

11

30
≤ α.

We will need 11
30
≤ α to get a contradiction.

Case 2: If Alice gets ≤ 3 shares then some share is

≥ 11

5× 3
=

11

15
.

Its buddy is

≤ 1− 11

15
=

4

15
≤ α.

We will need 4
15
≤ α to get a contradiction.

Case 3: Everyone is either a 4-student or a 5-student.
Let s4 (s5) be the number of 4-students (5-students). Since

every muffin is cut into 2 pieces there are 11× 2 = 22 pieces.
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Hence:

4s4 + 5s5 = 22
s4 + s5 = 5.

Hence s4 = 3 and s5 = 2. So there are twelve 4-shares and ten
5-shares. Since there are 11 muffins, each cut in half, there are
at most 11 pieces > 1

2
. In particular not all 12 of the 4-shares

can be > 1
2
. We will derive what α needs to be to ensure that

all the 4-shares are > 1
2
. This will be our contradiction.

We want α such that there are no 4-shares ≤ 1
2
. Assume, by

way of contradiction, that there is a 4-share ≤ 1
2
. The remaining

3 shares add up to ≥ 11
5
− 1

2
= 17

10
; hence some share is ≥ 17

10
× 1

3
=

17
30

. Its buddy is ≤ 1− 17
30

= 13
30

.
We will need 13

30
≤ α to get a contradiction.

Putting it all together we need

α = max

{
11

30
,

8

30
,
13

30

}
=

13

30

to get a contradiction. We have just proved f(11, 5) ≤ 13
30

.

6.3 The Half method

In Theorem 6.3 we proved f(11, 5) ≤ 13
30

. A brief review:

(1) Since 13
30
> 1

3
, by Theorem 2.6, every muffin is cut into 2

pieces, so there are 2m pieces.
(2) Since each muffin is cut into 2 pieces that are buddies, there

are at most 11 pieces that are > 1
2
.

(3) We showed that any procedure with smallest piece > 13
30

would have at least 12 shares> 1
2
. This gave a contradiction.

We generalize this technique, which we call The Half method.
It works just as well if we end up with more than m shares < 1

2
.

There are many cases of the Half method. Therefore we give
4 more examples of what can happen when it is applied:

• f(45, 26) ≤ 32
78
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• f(29, 17) ≤ 27
68

• f(23, 13) ≤ 11
26

• f(13, 11) ≤ 1
3

These results may look mysterious; however, after proving
them we will speculate on how they could have been derived.
This speculation will come to fruition when we describe the al-
gorithm Half.

6.4 f(45, 26) ≤ 32
78

by The Half method

Theorem 6.4. f(45, 26) = 32
78

.

Proof. We leave the proof that f(45, 26) ≥ 32
78

to the reader.
Alternatively the reader can run FINDPROC(45, 26, 32

78
).

Assume, by way of contradiction, that there is a (45, 26)-
procedure with smallest piece > 32

78
. By Theorem 2.6 every muf-

fin is cut into exactly 2 pieces. Hence there are 90 pieces. Note
that there can be at most 45 pieces < 1

2
. We show that there is

a piece ≤ 32
78

.
Every student gets 45

26
= 45×3

26×3 = 135
78

.
Case 1: Alice gets ≥ 5 shares. Then one of them is < 135

78
× 1

5
=

27
78
< 32

78
.

Case 2: Bob gets ≤ 2 shares. Then one of the shares is >
135
78
× 1

2
= 67.5

78
. Its buddy is < 1− 67.5

78
= 10.5

78
< 32

78
.

In the subsequent cases we assume the negation of Cases 1
and 2. Hence everyone is either a 3-student or a 4-student. Let
s3 (s4) be the number of 3-students (4-students). Since there
are 90 pieces and 26 students,

3s3 + 4s4 = 90
s3 + s4 = 26.

Hence s3 = 14 and s4 = 12. So there are fourteen 3-students,
twelve 4-students, forty-two 3-shares, and forty-eight 4-shares.
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Since 48 > 45, if all of the 4-shares are < 1
2
, that will be a

contradiction. Indeed, this will be our contradiction.
We now look at intervals.

Case 3: Alice has a 4-share ≥ 39
78

. Alice’s other three 4-shares
add up to ≤ 135

78
− 39

78
= 96

78
, hence one of them is ≤ 96

78
× 1

3
= 32

78
.

Case 4: Bob has a 3-share ≤ 43
78

. Bob’s other two 3-shares add
up to ≥ 135

78
− 43

78
= 92

78
, hence one of the shares is ≥ 92

78
× 1

2
= 46

78
.

Its buddy is ≤ 1− 46
78

= 32
78

.
Case 5: The following picture captures the negation of cases
1,2,3, and 4.

( 48 4-shs )[ 0 ]( 42 3-shs )
32
78

39
78

43
78

46
78

The midpoint is 1
2

= 39
78

. Note that all forty-eight 4-shares are
< 1

2
. This is a contradiction.

We show how one could derive the upper bound f(45, 26) ≤
32
78

. Let α be the upper bound. We derive conditions on α that
will make the proof of f(45, 26) ≤ α work. We assume α > 1

3
.

We guess everyone is either a 3-student or a 4-student. (Later
Theorem 6.14 will tell us what to guess.)

In the proof that f(45, 26) ≤ 32
78

we deduced that there are
forty-two 3-shares and forty-eight 4-shares. This calculation did
not use that the goal was 32

78
. Hence we can use that reasoning.

We have the following picture, though we do not know x or y.

( 48 4-shs )[ 0 ]( 42 3-shs )
α x y 1− α

What are x and y?

• x is the least number such that every 4-share is < x. Hence
3α + x = 135

78
, so x = 135

78
− 3α.
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• y is the largest number such that every 3-share is > y. Hence
2(1− α) + y = 135

78
, so y = 2α− 7

26
.

Hence we have:

( 48 4-shs )[ 0 ]( 42 3-shs )
α 135

78
− 3α 2α− 7

26
1− α

If x ≤ 1
2
≤ y then there will be 48 > 45 shares to the left of

1
2

which is a contradiction. We look at setting x = 1
2

and y = 1
2
.

If x = 1
2

then

α =
135
78
− 1

2

3
=

16

39
.

If y = 1
2

then

α =
1
2

+ 7
26

2
=

5

13
.

You would think we should take the lower value, α = 5
13

.
But, alas, if you try to do the proof with this value you get that
y < x so the proof would not work. Hence we take x = 16

39
.

6.5 f(29, 17) ≤ 27
68

by The Half method

In the proof of Theorem 6.4, the intervals containing the 3-shares
and the intervals containing the 4-shares did not overlap. (This
is the most common case for the Half method.) Is there a case
where the intervals overlap and the Half method still works?
Yes. We present one.

Theorem 6.5. f(29, 17) = 27
68

.

Proof. We leave the proof that f(29, 27) ≥ 27
68

to the reader.
Alternatively the reader can run FINDPROC(29, 27, 27

68
).
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Assume, by way of contradiction, that there is a (29, 17)-
procedure with smallest piece > 27

68
. By Theorem 2.6 every muf-

fin is cut into exactly 2 pieces. Hence there are 58 pieces. Note
that there can be at most 29 pieces > 1

2
.

Every student gets 29
17

= 29×4
17×4 = 116

68
.

We leave as an exercise to show that (1) if Alice has ≥ 5
shares then she has a share < 27

68
, (2) if Bob has a ≤ 2 shares then

one of them has a buddy that is < 27
68

, hence (3) everyone is a 3-
student or a 4-student, and (4) there are ten 3-students, seven 4-
students, thirty 3-shares, and twenty-eight 4-shares. Since 30 >
29, if all of the 3-shares are > 1

2
, that will be a contradiction.

Indeed, this will be our contradiction.
We now look at intervals.

Case 1: Alice has a 4-share ≥ 35
68

. Alice’s other three 4-shares
sum to ≤ 116

68
− 35

68
= 81

68
, hence one of them is ≤ 81

68
× 1

3
= 27

68
.

Case 2: Bob has a 3-share ≤ 34
68

. Bob’s other two 3-shares sum
to ≥ 116

68
− 34

68
= 82

68
, hence one of the shares is ≥ 82

68
× 1

2
= 41

68
. Its

buddy is ≤ 1− 41
68

= 27
68

.
Case 3: The negation of cases 1 and 2. I know what you are
thinking. We’ll just draw the picture and have a good sense of
what is going on. But the picture is hard to draw. Why? Let’s
draw the 4-share and 3-share pictures separately.
The 4-shares:

( 28 4-shs )( 0 4-shs )
27
68

35
68

41
68

The 3-shares:

( 0 3-shs )( 30 3-shs )
27
68

34
68

41
68

They overlap. The interval (34
68
, 35
68

) can contain both 3-shares
and 4-shares. Can our proof proceed anyway? Yes.
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All thirty 3-shares are bigger than 1
2
. This is a contradiction.

Hence this case cannot occur. (There may also be some 4-shares
in (34

68
, 35
68

) but this does not affect the argument.)

Exercise 6.6. Derive that the upper bound for f(29, 17) using
the Half method is 27

68
. (Hint: See the paragraphs after the proof

of Theorem 6.4.)

6.6 f(23, 13) ≤ 11
26

by The Half method

In the proof that f(45, 26) ≤ 16
39

we had an interval of 3-shares
and an interval of 4-shares. Both were nonempty. There are
cases such that when you try to use the Half method, one of the
intervals is empty. In our experience, when this happens f(m, s)
is smaller than the upper bound given by the Half method (hence
other methods are needed to get the correct bound). Neverthe-
less, when using the method one must be aware of edge cases.
We give an example and discuss how to handle it.

Theorem 6.7. f(23, 13) ≤ 11
26

.

Proof. Assume, by way of contradiction, that there is a (23, 13)-
procedure with smallest piece > 11

26
. By Theorem 2.6 every muf-

fin is cut into exactly 2 pieces. Hence there are 46 pieces. Note
that there can be at most 23 pieces < 1

2
. We show that there is

a piece ≤ 11
26

.
Every student gets 23

13
= 23×2

13×2 = 46
26

.
We leave as an exercise to show that there are six 3-students,

seven 4-students, eighteen 3-shares, and twenty-eight 4-shares.
Since 28 > 23, if all of the 4-shares are < 1

2
, that will be a

contradiction. Indeed, this will be our contradiction.
We now look at intervals.

4-shares: If Alice has a 4-share ≥ x
26

(we want to determine x)
then her three other 4-shares sum to ≤ 46−x

26
, hence one of them
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is (46−x)/3
26

. We need to know what values of x will yield a piece
that is ≤ 11

26
. Hence we determine when x satisfies

(46− x)/3

26
≤ 11

26
.

Any x ≥ 13 suffice. We take x = 13 to minimize the interval of
4-shares. Hence all of Alice’s 4-shares are in (11

26
, 13
26

).
3-shares: If Bob has 3-shares ≤ y

26
(we want to determine y)

then his two other shares sum to ≥ 46−y
26

, hence one of the shares

is ≥ 1
2
× 46−y

26
. Its buddy is ≤ 1 − 1

2
× 46−y

26
= (y+6)/2

26
. We need

to know what values of y will yield a piece ≤ 11
26

. Hence we
determine when y satisfies

(y + 6)/2

26
≤ 11

26
.

Any y ≤ 16 works. Oh. Since the entire interval is (11
26
, 15
26

) and
there are no 3-shares ≤ 16

26
there are no 3-shares! We will soon

see that this does not affect the Half method; however, it is a
sign that the Half method does not yield the best upper bound.

The following picture captures what we know:

( 28 4-shs )[ 0 ]
11
26

13
26

15
26

All twenty-eight 4-shares are smaller than 1
2
. This is a contra-

diction. Hence this case cannot occur.

In the proof that f(23, 13) ≤ 11
26

the Half method worked
since all that was needed is that all the 4-shares are < 1

2
. We

did not have to care about the 3-shares.
Another case that could occur (though we’ve never seen it)

is that (say) the 4-shares are the entire interval. This would
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happen if the right-endpoint of the 4-shares was ≥ 15
26

. In this
case we would consider the interval of 4-shares to be (11

26
, 15
26

).

Exercise 6.8. Prove that f(23, 13) ≤ 32
78

. (Hint: Follow the
proof of f(23, 13) ≤ 11

26
; however, do not do the Half method.

Instead use that there are no 3-shares.)

Since f(23, 13) ≤ 32
78

we wonder if f(23, 13) = 32
78

. No. In
Theorem 9.3 we will show f(23, 13) ≤ 53

130
in Chapter 9 using

the MID technique. And yes, f(23, 13) = 53
130

.

6.7 f(13, 11) ≤ 1
3

By The Half method

In Theorems 6.4 and Theorem 6.7 the right endpoint of the
4-share interval was 1

2
. In Theorem 6.5 the right endpoint of

the 3-share interval was 1
2
. In all of these cases it was important

where 1
2

was. Can the Half method work if 1
2

is not an endpoint?
Yes. We give an example.

Theorem 6.9. f(13, 11) = 1
3
.

Proof. We leave the proof that f(13, 11) ≥ 1
3

to the reader.
Alternatively the reader can run FINDPROC(11, 5, 13

30
) or use

Theorem 4.5.
f(13, 11) ≥ 1

3
by Theorem 4.5. The proof of this theorem is

on the MUFFIN website; however, the reader should be able to
work out the procedure for f(13, 11) ≥ 1

3
themselves.

Assume, by way of contradiction, that there is a (13, 11)-
procedure with smallest piece > 1

3
. By Theorem 2.6 every muffin

is cut into exactly 2 pieces. Hence there are 26 pieces. Note that
there can be at most 13 pieces > 1

2
. We show that there is a

piece ≤ 1
3
.

Every student gets 13
11

= 13×3
11×3 = 39

33
.

We leave as an exercise to show that there are seven 2-
students, four 3-students, fourteen 2-shares, and twelve 3-shares.
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Since 14 > 13, if all of the 2-shares are > 1
2
, that will be a con-

tradiction. Indeed, this will be our contradiction.
We leave as an exercise to show that the following picture

captures what we know so far:

( 12 3-shs )( 14 2-shs )
11
33

17
33

22
33

All fourteen 2-shares are bigger than 17
33
> 16.5

33
= 1

2
. This is a

contradiction. Note that the fact that 1
2

was within the 3-share
interval did not matter.

We show how to derive the upper bound f(13, 11) ≤ 1
3
.

Let α be the upper bound. We assume α ≥ 1
3
. We guess ev-

eryone is either a 2-student or a 3-student. (Later Theorem 6.14
will tell us what to guess.) By the same reasoning used in the
proof above there are fourteen 2-shares and twelve 4-shares. So
we want α such that all the 2-shares are in (1

2
, 1−α). That will

be a contradiction since there are at most 13 shares > 1
2
.

Assume Alice has a 2-share ≤ 1
2
. Alice’s other share is ≥

13
11
− 1

2
= 15

22
. Its buddy is ≤ 7

22
. Suppose we take α = 7

22
. OH,

that does not work since we need α ≥ 1
3
. Or does it work after

all?
What we actually showed is that
if α ≥ 7

22
AND every muffin is cut into 2 pieces then there is

no procedure with smallest piece > α.
This statement is true, but does not give us an upper bound
of 7

22
since a procedure with smallest piece 7

22
may well have a

muffin cut into 3 pieces. But note that (1) 1
3
> 7

22
and (2) by

Theorem 2.6 if the smallest piece is > 1
3

then every muffin is cut
into two pieces. Hence we have α = 1

3
.

What happened above will be part of our algorithm: If our
formula gives a value < 1

3
then the answer is 1

3
.
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6.8 Exercises on Deriving and Verifying

Exercise 6.10.

(1) Prove each of the following using the Half method. Hint:
You will need a V such that everyone is either a V -student
or a (V − 1)-student. Try V =

⌈
2m
s

⌉
. Advice: There are a

lot of problems here. Work on them until they stop being
fun.

(a) f(7, 6) ≤ 1
3

(b) f(8, 7) ≤ 5
14

(c) f(19, 7) ≤ 25
56

(d) f(11, 9) ≤ 13
36

(e) f(29, 9) ≤ 41
90

(f) f(38, 9) ≤ 59
126

(g) f(17, 10) ≤ 2
5

(h) f(19, 11) ≤ 9
22

(i) f(41, 11) ≤ 61
132

(j) f(52, 11) ≤ 83
176

(k) f(15, 13) ≤ 9
26

(l) f(22, 13) ≤ 21
52

(m) f(29, 13) ≤ 45
104

(n) f(55, 13) ≤ 85
182

(o) f(19, 16) ≤ 1
3

(p) f(20, 17) ≤ 1
3

(q) f(69, 41) ≤ 67
164

(2) For the above exercise pretend the upper bound you can get
from the Half method was not given. Derive what it should
be. Then see if you are correct.
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(3) Write a program that will, given m, s (m ≥ s and m, s)
determine the smallest α such that f(m, s) ≤ α can be
proven using the Half method.

Solution to Exercise 6.10
We sketch the solutions to some of the problems by giving

the relevant pictures:

• f(7, 6) ≤ 1
3
.

( 6 3-shs )( 8 2-shs )
2
6

3
6

4
6

• f(8, 7) ≤ 5
14

.

( 6 3-shs )[ 0 ]( 10 2-shs )
5
14

6
14

7
14

9
14

• f(20, 17) ≤ 1
3
.

( 18 3-shs )( 22 2-shs )
17
51

26
51

34
51

Note that 1
2

= 25.5
51

.

• f(69, 41) ≤ 67
164

.

( 60 4-shs )[ 0 ]( 78 3-shs )
67
164

75
164

82
164

97
164

Note 6.11. For every f(m, s) ≤ α that you verified in Exer-
cise 6.10 it turns out that f(m, s) = α. We leave it to the
reader to show this.
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6.9 The V -Conjecture

We have the following conjecture:

Conjecture 6.12. (The V -Conjecture.) Let m ≥ s. Let V =⌈
2m
s

⌉
. There is an optimal (m, s)-procedure such that everyone

is either a V -student or a (V − 1)-student.

Note 6.13. We are not conjecturing that in every optimal pro-
cedure everyone is either a (V − 1)-student or a V -student, just
that some optimal procedure has this property. The stronger
statement is false. f(15, 8) ≤ 3

8
by the Floor-Ceiling Theorem.

Note that V =
⌈
30
8

⌉
= 4. f(15, 8) ≥ 3

8
by the following two

procedures, one of which uses 3-student and 4-students but the
other one uses 3-students and 5-students. This example is due
to Scott Huddleston.

Procedure One

(1) Divide 6 muffins { 3
164
, 5
164
}.

(2) Divide 9 muffins { 4
164
, 4
164
}.

(3) Give 2 students { 5
164
, 5
164
, 5
164
}.

(4) Give 6 students { 3
164
, 4
164
, 4
164
, 4
164
}.

Procedure Two

(1) Divide 15 muffins { 3
164
, 5
164
}.

(2) Give 3 students { 5
164
, 5
164
, 5
164
}.

(3) Give 5 students { 3
164
, 3
164
, 3
164
, 3
164
, 3
164
}.

Using the V -Conjecture we will use the Half method to obtain
an α such that f(m, s) ≤ α. We then show f(m, s) ≤ α without
using the V -Conjecture.
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6.10 Algorithms We Will Need

In the proof of Theorem 6.4 we needed to do the following:

(1) Find the V such that everyone is a (V − 1)-student or a
V -student.

(2) Find sV−1, the number of (V − 1)-students.
(3) Find sV , the number of V -students.
(4) Find the interval that contains the (V − 1)-students.
(5) Find the interval that contains the V -students.

We describe algorithms to find the five items above. We
will then use them to describe two programs: (1) VHalf(m, s, α)
which will, given m, s, α, determine if f(m, s) ≤ α can be proven
with the Half method, and (2) Half(m, s) which will produce the
smallest α such that one can show f(m, s) ≤ α with the Half
method.

6.10.1 An Algorithm that Finds V, sV , sV −1 Given
the V -Conjecture

Assume m > s, f(m, s) > 1
3
, and s does not divide m. Assume

that there is an (m, s)-procedure. By Theorem 2.6 every muffin
is cut into exactly 2 pieces. Hence there are 2m pieces. We
assume that everyone gets either V − 1 or V shares, but we do
not know what V is. Let sV−1 (sV ) be the number of students
who get V − 1 (V ) shares. Hence:

(V − 1)sV−1 + V sV = 2m
sV−1 + sV = s.

The solution is:

sV−1 = V s− 2m
sV = 2m− s(V − 1).

If V ≥
⌈
2m
s

⌉
+1 then sV < 0. If V ≤

⌈
2m
s

⌉
−1 then sV−1 < 0.

Hence
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• V =
⌈
2m
s

⌉
.

• sV−1 = V s− 2m.
• sV = 2m− s(V − 1).
• The number of (V − 1)-shares is (V − 1)sV−1.
• The number of V -shares is V sV .

With this in mind we can write an algorithm, named SV ,
that, given m, s, finds V, sV−1, sV :
SV (m,s)

(1) Input(m, s)
(2) V ←

⌈
2m
s

⌉
(3) sV−1 ← V s− 2m
(4) sV ← 2m− s(V − 1)

By the above calculations we have the following theorem:

Theorem 6.14. Assume m > s, s does not divide m, and
f(m, s) > 1

3
. If the V -Conjecture is true, then V =

⌈
2m
s

⌉
.

6.10.2 An Algorithm that Finds the Intervals

Assume that there is an (m, s)-procedure with smallest piece
> α. We will assume α ≥ 1

3
. From Section 6.10.1, V , sV−1, and

sV can be found. We derive the intervals for the (V − 1)-shares
and the V -shares.

Assume Alice has V − 1 shares. Let y be the largest number
that is smaller than any (V − 1)-share. Assume, by way of
contradiction (actually we will be setting y as large as possible
to get a contradiction) that there is a (V − 1)-share of size y. If
y is removed then the V − 2 shares left add up to m

s
− y. One

of those V − 2 shares is ≥
m
s
−y

V−2 . Its buddy is

≤ 1−
m
s
− y

V − 2
.

We get a contradiction if 1 −
m
s
−y

V−2 ≤ α. We get the smallest y
by setting:
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α = 1−
m
s
− y

V − 2

y =
m

s
− (1− α)(V − 2).

Hence the (V − 1)-shares are in(
m

s
− (1− α)(V − 2), 1− α

)
.

Assume Bob has V shares. Let x be the smallest number
that is larger than any V -share. We leave it to the reader to
show that

x =
m

s
− α(V − 1).

Hence the V -shares are in(
α,
m

s
− α(V − 1)

)
.

We can now write the algorithm to find these intervals. The
algorithm also accounts for strange cases like when x or y is not
in the interval.
FINDEND (m,s,α,V )

(1) Input(m, s, α)
(2) y ← m

s
− (1− α)(V − 2).

(3) If y ≥ 1 − α then y ← 1 − α. If y ≤ α then y ← α. (It is
quite likely that y will remain m

s
− (1− α)(V − 2). )

(4) x← m
s
− α(V − 1).

(5) If x ≤ α then x ← α. If x ≥ 1 − α then x ← 1 − α. (It is
quite likely that x will remain m

s
− α(V − 1).)

(6) Output ((α, x), (y, 1− α)).

The following picture captures the typical case:

( V sV V -shs )[ 0 ]( (V − 1)sV−1 (V − 1)-shs )
α x y 1− α
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6.11 The Algorithm VHalf

The algorithm VHalf(m, s, α) tries to verify that f(m, s) ≤ α

can be proven by the Half method.

VHalf (m,s,α):

(1) Input(m, s, α)
(2) If α < 1

3
then output Bad Input

(3) (V, sV , sV−1)← SV(m, s)
(4) If m

s
× 1

V+1
> α or 1 − m

s
× 1

V−2 > α then output DK and
stop. (If this happens then the V -conjecture did not hold.
This has never occurred.)

(5) ((α, x), (y, 1− α))← FINDEND(m, s, α, V ).
(6) If x ≤ 1

2
and V sV > m then output Yes and stop.

(In this case there are more than m shares that are ≤ 1
2
.)

(7) If y ≥ 1
2

and (V − 1)sV−1 > m then output Yes and stop.
(In this case there are more than m shares that are ≥ 1

2
.)

(8) If you get here, then output DK and stop.

6.12 The Half method When the Answer is Not
Known

From Sections 6.10.1 and 6.10.2 we can, given m, s, α, find
V, sV , sV−1, x, y such that

(1) There are sV−1 (V −1)-students, hence (V −1)sV−1 (V −1)-
shares.

(2) There are sV V -students, hence V sV V -shares.
(3) The (V − 1)-shares are all in (y, 1− α).
(4) The V -shares are all in (α, x).

In this section we turn this around. We want to have either
x = 1

2
or y = 1

2
so that we can use the Half method. We will

derive the value of α that makes that happen.
To make x = 1

2
we need:
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x =
m

s
− α(V − 1) =

1

2

α =
m
s
− 1

2

V − 1

To make y = 1
2

we need:

y =
m

s
− (1− α)(V − 2) =

1

2

1− α =
m
s
− 1

2

V − 2

α = 1−
m
s
− 1

2

V − 2

The two possible values of α above look promising. But there
are two (minor) snags: (1) what if the 1

2
is between x and y?

(2) what if α < 1
3
? It turns out these happen at the same time.

If α < 1
3

then we can just take α = 1
3
, as in Theorem 6.9. This

is the only time that 1
2

is between x and y.
Half (m,s):

(1) Input(m, s)
(2) If s divides m then output 1 and stop.
(3) (V, sV , sV−1)← SV (m, s).

(4) If (V − 1)sV−1 > V sV then α← 1−
m
s
− 1

2

V−2 .
(5) If α < 1

3
then α← 1

3
.

(6) If VHalf(m, s, α) =Yes then output α.

(7) If (V − 1)sV−1 < V sV then α←
m
s
− 1

2

V−1 .

(8) If α < 1
3

then α← 1
3
.

(9) If VHalf(m, s, α) =Yes then output α.
(10) If none of the above hold then output 1 (this is a way of

saying that the Half method does not produce a useful an-
swer).
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While the algorithm was originally assuming the V -
conjecture, the VHalf step ensures that the algorithm works in
any case. We have never seen a case where Half(m, s) produced
α and VHalf(m, s, α) failed to verify.

Theorem 6.15. For all m ≥ s, f(m, s) ≤ Half(m, s).

Exercise 6.16. Write programs for all of the algorithms in this
section.

6.13 Program and Progress

Using the techniques presented so far we have the following at-
tempt at an algorithm to find f(m, s):

(1) Input(m, s)
(2) α is the min of FC(m, s), Half(m, s)
(3) Run FINDPROC(m, s, α). If it outputs a procedure P then

output α, else output DK.

There are 3520 pairs (m, s) we are considering (see Chap-
ter 3). There were 329 pairs that FC was unable to solve but
Half did. Here are the full statistics so far. When we state that
(say) for 329 cases f(m, s) = Half(m, s) it is implicit that the
prior techniques (in the case of Half its just FC) did not obtain
the upper bound.

• For 2301 of them f(m, s) = FC(m, s). That is ∼ 65.37%.
• For 329 of them f(m, s) = Half(m, s). That is ∼ 9.35%.
• For 890 of them the functions FC, Half, and FINDPROC

did not suffice to find f(m, s). That is ∼ 25.28%
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Chapter 7

A Formula for f(m, 5)

7.1 Goals

We would like formulas for f(m, 5) similar in spirit to the for-
mulas for f(m, 3) and f(m, 4) in Theorems 4.9 and 4.11. For
f(m, 3) we did the following (in retrospect):

(1) For m ≡ 1 (mod 3) find a formula for FC(m, 3).
(2) Prove that for all m ≡ 1 (mod 3), m ≥ 4, f(m, 3) =

FC(m, 3).
(3) Do the same for f(m, 3) where m ≡ 2 (mod 3).
(4) The case of f(m, 3) where m ≡ 0 (mod 3) is easy.
(5) Use the above to get a formula for f(m, 3) with three cases.

For f(m, 4) we went through a similar process with m ≡ 1, 3
(mod 4) being the hard cases and m ≡ 0, 2 (mod 4) being the
easy cases.

For f(m, 5) we hope to do the following:

(1) For m ≡ 1 (mod 5) find a formula for FC(m, 5).
(2) Prove that for all m ≡ 1 (mod 5), f(m, 5) = FC(m, 5).
(3) Do the same for f(m, 5) where m ≡ 2, 3, 4 (mod 5).
(4) The case of m ≡ 0 (mod 5) is easy.
(5) Put together the cases to get a formula for f(m, 5) with five

cases.

75
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That would be great! But there is one problem. Or maybe
two. From Exercise 6.2 we saw that, for m = 6, 7, 8, 9, 12, 13, 14,
f(m, 5) = FC(m, 5), but:

• f(7, 5) = 1
3

= FC(7, 5). However, this is one of those rare
cases where FC(7, 5) = 1

3
instead of

min

{
m

s
× 1⌈

2m
s

⌉ , 1− m

s
× 1⌊

2m
s

⌋},
so 1

3
might not fit into a nice pattern.

• f(11, 5) = 13
30
< FC(11, 5). Hence this will clearly not fit the

FC-pattern.

What do we do about these (m, s) which will likely upset the
pattern? Let’s turn this lemon into lemonade! We will come up
with formulas and proofs that (usually) work; however, we will
note what happens for f(7, 5) and f(11, 5). The proof of the
formula should not work there, and it will be interesting to see
why.

We use Notation 4.7 for when students get shares of different
sizes. We give an example of its use.

Give 2 students{
8k + 1 :

30k + 4

60k + 5
|| 1 :

30k + 2

60k + 5
|| 2k − 1 : 1

}
means that the 2 students get 8k+1 shares of size 30k+4

60k+5
, 1 share

of size 30k+2
60k+5

, and 2k−1 shares of size 1 (so 2k−1 muffins). This
notation generalizes in the obvious way.

7.2 Finding the Formula for f(m, 5)

Exercise 7.1.

(1) For 1 ≤ i ≤ 4 find a formula for FC(5k + i, 5). Note that
f(5k+ i, 5) ≤ FC(5k+ i, 5). For future parts of this section
let fi(k) = FC(5k + i, 5).
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(2) For 1 ≤ i ≤ 4 prove that f(5k + i, 5) = fi(k) except for
f(7, 5) and f(11, 5). Point out why your proof fails in those
places. Hint: Get procedures for (say) f(8, 5), f(13, 5),
f(18, 5) and try to see similarities. Hint: The formulas
are mod 5; however, some parts of the proof are mod 30.
For example, the case of f(5k + 1, 5) divides into subcases
f(30k + 1, 5), f(30k + 6, 5), f(30k + 11, 5), f(30k + 16, 5).
f(30k + 21, 5), f(30k + 26, 5). Advice: Once this problem
stops being fun, stop working on it and skip to the solution.

Solution to Exercise 7.1
The following theorem includes the formulas. We also include

f(5k, 5) for completeness.

Theorem 7.2. If m = 5k + i, where 0 ≤ i ≤ 4, then f(m, 5)
depends only on k, i via a formula, given below, with 2 exceptions
(we will note the exceptions).
Case 0: m ≡ 0 (mod 5), so m = 5k + 0 with k ≥ 1. Then
f(5k, 5) = 1.
Case 1: m ≡ 1 (mod 5), so m = 5k + 1 with k ≥ 1, k 6= 2.
Then f(5k + 1, 5) = 5k+1

10k+5
. (Exception: f(11, 5) = 13

30
< 11

25
.)

Case 2: m ≡ 2 (mod 5), so m = 5k + 2 with k ≥ 2. Then
f(5k + 2, 5) = 5k−2

10k
. (Exception: f(7, 5) = 1

3
> 3

10
.)

Case 3: m ≡ 3 (mod 5), so m = 5k + 3 with k ≥ 1. Then
f(5k + 3, 5) = 5k+3

10k+10
.

Case 4: m ≡ 4 (mod 5), so m = 5k + 4 with k ≥ 1. Then
f(5k + 4, 5) = 5k+1

10k+5
.

Proof. All of the upper bounds are by the Floor-Ceiling Theo-
rem. We give the lower bounds by giving procedures. We allow
some muffins to be uncut in the procedures. The mantra that all
muffins are cut into exactly 2 pieces is needed for upper bounds,
not lower bounds.
Case 1: m = 5k + 1 with k ≥ 1, k 6= 2. Then f(5k + 1, 5) =
5k+1
10k+5

. There are cases mod 30.
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• m = 30k + 1 with k ≥ 1, f(30k + 1, 5) = 30k+1
60k+5

.

(1) Divide 24k + 2 muffins {30k+1
60k+5

, 30k+4
60k+5

}.
(2) Divide 2 muffins {30k+2

60k+5
, 30k+3
60k+5

}.
(3) Leave 6k − 3 muffins uncut.

(4) Give 2 students {12k + 1 : 30k+1
60k+5

}.
(5) Give 2 students {8k+ 1 : 30k+4

60k+5
|| 1 : 30k+2

60k+5
|| 2k− 1 : 1}.

(6) Give 1 student {8k : 30k+4
60k+5

|| 2 : 30k+3
60k+5

|| 2k − 1 : 1}.

• m = 30k + 6 with k ≥ 0, f(30k + 6, 5) = 30k+6
60k+15

.

(1) Divide 24k + 6 muffins { 30k+6
60k+15

, 30k+9
60k+15

}.
(2) Leave 6k muffins uncut.

(3) Give 2 students {12k + 3 : 30k+6
60k+15

}.
(4) Give 3 students {8k + 2 : 30k+9

60k+15
|| 2k : 1}.

• m = 30k + 11 with k ≥ 1, f(30k + 11, 5) = 30k+11
60k+25

.

(1) Divide 24k + 10 muffins {30k+11
60k+25

, 30k+14
60k+25

}.
(2) Divide 2 muffins {30k+12

60k+25
, 30k+13
60k+25

}.
(3) Leave 6k − 1 muffins uncut.

(4) Give 2 students {12k + 5 : 30k+11
60k+25

}.
(5) Give 2 students {8k + 3 : 30k+14

60k+25
|| 1 : 30k+13

60k+25
|| 2k : 1}.

(6) Give 1 student {8k+4 : 30k+14
60k+25

|| 2 : 30k+12
60k+25

|| 2k−1 : 1}.

Note 7.3. When looking at f(30k + 11, 5), the k = 0 case
should not work since we know f(11, 5) = 13

30
< 11

25
. Hence

the above prove should fail when k = 0. Indeed it does. Note
the last line, when k = 0, would involve giving someone −1
muffins. Nobody deserves −1 muffins!

• m = 30k + 16 with k ≥ 0, f(30k + 16, 5) = 30k+16
60k+35

.

(1) Divide 24k + 14 muffins {30k+16
60k+35

, 30k+19
60k+35

}.
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(2) Divide 2 muffins {30k+17
60k+35

, 30k+18
60k+35

}.
(3) Leave 6k muffins uncut.

(4) Give 2 students {12k + 7 : 30k+16
60k+35

}.
(5) Give 2 students {8k + 5 : 30k+19

60k+35
|| 1 : 30k+17

60k+35
|| 2k : 1}.

(6) Give 1 student {8k + 4 : 30k+19
60k+35

|| 2 : 30k+18
60k+35

|| 2k : 1}.

• m = 30k + 21 with k ≥ 0, f(30k + 21, 5) = 10k+7
20k+15

.

(1) Divide 24k + 18 muffins { 10k+7
20k+15

, 10k+8
20k+15

}.
(2) Leave 6k + 3 muffins uncut.

(3) Give 2 students {12k + 9 : 10k+7
20k+15

}.
(4) Give 3 students {8k + 6 : 10k+8

20k+15
|| 2k + 1 : 1}.

• m = 30k + 26 with k ≥ 0, f(30k + 26, 5) = 30k+26
60k+55

.

(1) Divide 24k + 22 muffins {30k+26
60k+55

, 30k+29
60k+55

}.
(2) Divide 2 muffins {30k+27

60k+55
, 30k+28
60k+55

}.
(3) Leave 6k + 2 uncut.

(4) Give 2 students {12k + 11 : 30k+26
60k+55

}.
(5) Give 2 students {8k+7 : 30k+29

60k+55
|| 1 : 30k+28

60k+55
|| 2k+1 : 1}.

(6) Give 1 student {8k + 8 : 30k+29
60k+55

|| 2 : 30k+27
60k+55

|| 2k : 1}.

Case 2: m = 5k + 2 with k ≥ 2. Then f(5k + 2, 5) = 5k−2
10k

.
There are cases mod 10.

• m = 10k + 2 with k ≥ 1, f(10k + 2, 5) = 10k−2
20k

.

(1) Divide 4k muffins {10k−2
20k

, 10k+2
20k
}.

(2) Divide 6k + 2 muffins {1
2
, 1
2
}.

(3) Give 1 student {4k : 10k+2
20k
}.

(4) Give 4 students {k : 10k−2
20k
|| 3k + 1 : 1

2
}.
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• m = 10k + 7 with k ≥ 1, f(10k + 7, 5) = 10k+3
20k+10

.

(1) Divide 4k + 2 muffins { 10k+3
20k+10

, 10k+7
20k+10

}.
(2) Divide 4k + 2 muffins { 10k+4

20k+10
, 10k+6
20k+10

}.
(3) Divide 2k + 3 muffins {1

2
, 1
2
}.

(4) Give 1 student {4k + 2 : 10k+7
20k+10

}.
(5) Give 2 students {2k+1 : 10k+3

20k+10
|| 2k+1 : 10k+6

20k+10
|| 1 : 1

2
}.

(6) Give 2 students {2k + 1 : 10k+4
20k+10

|| 2k + 2 : 1
2
}.

Note 7.4. When looking at f(10k+ 7), the k = 0 case does
work. Hence, by the above, we can deduce f(7, 5) ≥ 3

10
. This

is true, but not optimal. Recall that Solution 6.2 showed
f(7, 5) = 1

3
.

Case 3: m = 5k + 3 with k ≥ 1. Then f(5k + 3, 5) = 5k+3
10k+10

.
There are 3 cases.

• m = 10k + 3 with k ≥ 1, f(10k + 3, 5) = 10k+3
20k+10

.

(1) Divide 4k + 2 muffins { 10k+3
20k+10

, 10k+7
20k+10

}.
(2) Divide 3 muffins { 10k+4

20k+10
, 10k+6
20k+10

}.
(3) Divide 6k − 2 muffins {1

2
, 1
2
}.

(4) Give 1 student {4k + 2 : 10k+3
20k+10

}.
(5) Give 3 students { 10k+4

20k+10
|| k + 1 : 10k+7

20k+10
|| 3k − 1 : 1

2
}.

(6) Give 1 student {3 : 10k+6
20k+10

|| k− 1 : 10k+7
20k+10

|| 3k− 1 : 1
2
}.

• m = 20k + 8 with k ≥ 1, f(20k + 8, 5) = 5k+2
10k+5

.

(1) Divide 20k + 8 muffins { 5k+2
10k+5

, 5k+3
10k+5

}.
(2) Give 1 student {8k + 4 : 5k+2

10k+5
}.

(3) Give 4 students {3k + 1 : 5k+2
10k+5

|| 5k + 2 : 5k+3
10k+5

}.

• m = 20k + 18 with k ≥ 1, f(20k + 18, 5) = 10k+9
20k+20

.
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(1) Divide 8k + 8 muffins { 10k+9
20k+20

, 10k+11
20k+20

}.
(2) Divide 12k + 10 muffins {10k+10

20k+20
, 10k+10
20k+20

}.
(3) Give 1 student {8k + 8 : 10k+9

20k+20
}.

(4) Give 4 student {6k + 5 : 10k+10
20k+20

, 2k + 2 : 20k+11
20k+20

}.

Case 4: m = 5k + 4 with k ≥ 1. Then f(5k + 4, 5) = 5k+1
10k+5

.
There are cases mod 30.

• m = 30k + 4 with k ≥ 1, f(30k + 4, 5) = 30k+1
60k+5

.

(1) Divide 24k + 2 muffins {30k+1
60k+5

, 30k+4
60k+5

}.
(2) Divide 2 muffins {30k+2

60k+5
, 30k+3
60k+5

}
(3) Leave 6k muffins uncut.

(4) Give 2 students {12k + 1 : 30k+4
60k+5

}.
(5) Give 2 students {8k + 1 : 30k+1

60k+5
|| 1 : 30k+3

60k+5
|| 2k : 1}.

(6) Give 1 student {8k : 30k+1
60k+5

|| 2 : 30k+2
60k+5

|| 2k : 1}.

• m = 30k + 9 with k ≥ 0, f(30k + 9, 5) = 10k+2
20k+5

.

(1) Divide 24k + 6 muffins {10k+2
20k+5

, 10k+3
20k+5

}.
(2) Leave 6k + 3 muffins uncut.

(3) Give 2 students {12k + 3 : 10k+3
20k+5

}.
(4) Give 3 students {8k + 2 : 10k+2

20k+5
|| 2k + 1 : 1}.

• m = 30k + 14 with k ≥ 0, f(30k + 14, 5) = 30k+11
60k+25

.

(1) Divide 24k + 10 muffins {30k+11
60k+25

, 30k+14
60k+25

}.
(2) Divide 2 muffins {30k+12

60k+25
, 30k+13
60k+25

}.
(3) Leave 6k + 2 muffins uncut.

(4) Give 2 students {12k + 5 : 30k+14
60k+25

}.
(5) Give 2 students {8k+3 : 30k+11

60k+25
|| 1 : 30k+12

60k+25
|| 2k+1 : 1}.
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(6) Give 1 student {8k + 4 : 30k+11
60k+25

|| 2 : 30k+13
60k+25

|| 2k : 1}.

• m = 30k + 19 with k ≥ 0, f(30k + 19, 5) = 30k+16
60k+35

.

(1) Divide 24k + 14 muffins {30k+16
60k+35

, 30k+19
60k+35

}.
(2) Divide 2 muffins {30k+17

60k+35
, 30k+18
60k+35

}.
(3) Leave 6k + 3 muffins uncut.

(4) Give 2 students {12k + 7 : 30k+19
60k+35

}.
(5) Give 2 students {8k+5 : 30k+16

60k+35
|| 1 : 30k+18

60k+35
|| 2k+1 : 1}.

(6) Give 1 student {8k+4 : 30k+16
60k+35

|| 2 : 30k+17
60k+35

|| 2k+1 : 1}.

• m = 30k + 24 with k ≥ 0, f(30k + 24, 5) = 10k+7
20k+15

.

(1) Divide 24k + 18 muffins { 10k+7
20k+15

, 10k+8
20k+15

}.
(2) Divide 6k + 6 muffins uncut.

(3) Give 2 students {12k + 9 : 10k+8
20k+15

}.
(4) Give 3 students {8k + 6 : 10k+7

20k+15
|| 2k + 2 : 1},

• m = 30k + 29 with k ≥ 0, f(30k + 29, 5) = 30k+26
60k+55

.

(1) Divide 24k + 22 muffins {30k+26
60k+55

, 30k+29
60k+55

}.
(2) Divide 2 students {30k+27

60k+55
, 30k+28
60k+55

}.
(3) Leave 6k + 5 muffins uncut.

(4) Give 2 students {12k + 11 : 30k+29
60k+55

}.
(5) Give 2 students {8k+7 : 30k+26

60k+55
|| 1 : 30k+27

60k+55
|| 2k+2 : 1}.

(6) Give 1 student {8k+8 : 30k+26
60k+55

|| 2 : 30k+28
60k+55

|| 2k+1 : 1}.

7.3 Formulas for Six, Seven, Eight, Nine

Ken Tan, a high school student interested in muffins (both eating
them and working out formulas for them) spent the summer of
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2018 working out the formulas for f(m, 6), f(m, 7), f(m, 8), and
f(m, 9). He did it by hand. The formulas are too long to be in
this book; however, they will be at the MUFFIN website.

7.4 Why Stop Here?

In the summer of 2019 I had another student, Alex Kwang, work
on the case of f(10k+i, 10). We know all of the answers from FC
and our data. Even so, it seemed like proving the answer (that
is, getting procedures) would be mod. . . a very large number.
So it looks like f(9k + i, 9) is a good place to stop.

Alex then worked on f(m, s) where m− s is a constant. We
discuss upper bounds for such problems in Chapter 10. Alex
obtained many lower bounds. His paper is on the MUFFIN
website.
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Chapter 8

The Interval Method

8.1 Recap and Goals for this Chapter

From Chapter 4 and 6, we know that, for 1 ≤ s ≤ m,

f(m, s) ≤ min{FC(m, s),Half(m, s)}.
Just for now we will refer to the min of those quantities

as minf(m, s). Is it the case that, for all m ≥ s, f(m, s) =
minf(m, s)? No. The counterexample with the smallest s is
f(10, 9).

We show the following:

f(10, 9) ≤ 1

3
< minf(10, 9).

f(24, 11) ≤ 19

44
< minf(24, 11).

f(16, 13) ≤ 14

39
< minf(16, 13).

The proofs of the upper bounds uses a technique which we
call The Interval Method (INT method for short). We develop
an algorithm INT(m, s) which, on input m, s gives an α such
that f(m, s) ≤ α.

Exercise 8.1. For (m, s) = (10, 9), (24, 11), (16, 13):

(1) Compute α = minf(m, s).
(2) Compute FINDPROC(m, s, α). (You should get a DK

which means that minf(m, s) is unlikely to be f(m, s).)

85
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8.2 Ten Muffins, Nine Students

Theorem 8.2. f(10, 9) = 1
3

Proof. We leave the proof that f(10, 9) ≥ 1
3

to the reader.
Alternatively the reader can run FINDPROC(10, 9, 1

3
) or use

Theorem 4.5.
We now show f(10, 9) ≤ 1

3
. Assume, by way of contradiction,

that there is a (10, 9)-procedure with smallest piece > 1
3
. By

Theorem 2.6 every muffin is cut into exactly 2 pieces. Hence
there are 20 pieces.

We leave it to the reader to show that there are seven 2-
students, two 3-students, fourteen 2-shares, six 3-shares, and
that the following picture captures what we know:

( 6 3-shs )( 14 2-shs )
3
9

4
9

6
9

Note that the Half method won’t work here since 1
2

= 4.5
9

which
is inside the interval with more shares.

There is no share of size 4
9
. Can we use that? The following

is important and we will use this kind of reasoning often:
Since there is no share of size 4

9
, there is no share of size 5

9
,

by buddying.
We will justify the following picture after presenting it.

( 6 3-shs )( 8 2-shs )( 6 2-shs )
3
9

4
9

5
9

6
9

• (3
9
, 4
9
) contains all six 3-shares.

• Since (3
9
, 4
9
) and (5

9
, 6
9
) are buddies, and (3

9
, 4
9
) has 6 shares,

(5
9
, 6
9
) contains 6 shares. They are 2-shares.

• There are fourteen 2-shares. Six of them are in (5
9
, 6
9
), hence

the remaining eight of them are in (4
9
, 5
9
).
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The 2-shares are in 2 open intervals: (4
9
, 5
9
), and (5

9
, 6
9
). We

examine how many shares a 2-student can have from each inter-
val.

If a 2-student has both shares from (4
9
, 5
9
) then she has

< 2× 5

9
=

10

9
.

Hence this cannot occur. We now know that each of the seven
2-student takes at least one 2-share from (5

9
, 6
9
). But (5

9
, 6
9
) only

has six shares. This is a contradiction.

8.3 Twenty Four Muffins, Eleven Students

We show f(24, 11) = 19
44

Theorem 8.3. f(24, 11) = 19
44

.

Proof. We leave the proof that f(24, 11) ≥ 19
44

to the reader.
Alternatively the reader can run FINDPROC(24, 11, 19

44
).

We derive the upper bound pretending we do not know it. Let
α be the upper bound. We assume α > 1

3
. By Theorem 2.6 every

muffin is cut into 2 pieces; hence there are 48 pieces. Assuming
the V -conjecture we guess everyone is either a 4-student or a 5-
student. We leave it to the reader to show that there are seven
4-students, four 5-students, twenty-eight 4-shares and twenty
5-shares.

By buddying, since the smallest share is > α, the largest
share is < 1− α. If the smallest 4-share is of size y then

3(1− α) + y >
24

11

so y > 3α− 9
11

. Hence 3α− 9
11

is the left endpoint of the 4-share
interval. If the largest 5-share is of size x then

4α + x <
24

11

so x < 24
11
− 4α.
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The following picture captures what we know:

( 20 5-shs )[ 0 ]( 28 4-shs )
α 24

11
− 4α 3α− 9

11
1− α

Since there are no shares in [24
11
− 4α, 3α− 9

11
], by buddying,

there are no shares in [20
11
− 3α, 4α − 13

11
]. Since there are more

shares on the right, we will guess that 3α − 9
11
≤ 1

2
so this

new empty interval is within the 4-shares. Hence the following
picture represents what we know:

( 20 5-shs )[ 0 ]( 8 4-shs )[ 0 ]( 20 4-shs )
α 24

11
− 4α 3α− 9

11
20
11
− 3α 4α− 13

11
1− α

We call the shares in the first interval of 4-shares small and
the shares in the second interval of 4-shares large. Note that
Alice, a 4-student, has either (1) 4 small shares and 0 large
shares, or · · · , or (5) 0 small shares and 4 large shares. We
want that Alice needs at least 3 large shares. Why? Because
if Alice (and hence any 4-student) needs at least 3 large shares,
and there are seven 4-students, there will have to be 21 large
shares. Since there are 20 this will cause a contradiction.

We find α such that Alice has to have ≥ 3 large shares. If
she had ≤ 2 large shares then she has

< 2×
(

20

11
− 3α

)
+ 2(1− α) ≤ 24

11

α ≥ 19

44
.

Hence we have derived the bound f(24, 11) ≤ 19
44

.
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8.4 f(16, 13) ≤ 14
39

In Theorem 8.2 we proved f(10, 9) = 1
3
. The procedure used 2-

shares and 3-shares, and the proof concentrated on the 2-shares.
In Theorem 8.3 we proved f(24, 11) = 19

44
. The procedure used 4-

shares and 5-shares, and the proof concentrated on the 4-shares.
Do we always use the V -shares? No, as the following proof
demonstrates:

Theorem 8.4. f(16, 13) = 14
39

.

Proof. We leave the proof that f(16, 13) ≥ 14
39

to the reader.
Alternatively the reader can run FINDPROC(16, 13, 14

39
).

Let α be the upper bound. We assume α > 1
3
. By Theo-

rem 2.6 every muffin is cut into two pieces; hence there are 32
pieces. We assume the V -conjecture hence we guess everyone is
either a 2-student or a 3-student. We leave it to the reader to
show that there are seven 2-students, six 3-students, fourteen
2-shares, and eighteen 3-shares.

By buddying, since the smallest share is> α, the largest share
is < 1−α. If the smallest 2-share is of size y then (1−α)+y > 16

13
,

so y > 3
13

+ α. Hence 3
13

+ α is the left endpoint of the 2-share
interval. If the largest 3-share is of size x then 2α + x < 16

13
, so

x < 16
13
− 2α.

The following picture captures what we know:

( 18 3-shs )[ 0 ]( 14 2-shs )
α 48

39
− 2α α + 9

39
1− α

Since there are no shares in [48
39
− 2α, α + 9

39
], by buddying,

there are no shares in [30
39
− α, 2α− 9

39
].

Is the gap [30
39
−α, 2α− 9

39
] going to be within the 2-shares or

within the 3-shares? There are 2 cases:
Case 1: The gap is in the 2-shares. Then
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α +
9

39
≤ 30

39
− α

2α ≤ 21

39

α ≤ 10.5

39
<

1

3
<

14

39
.

Case 2: The gap is within the 3-shares.
The following picture captures what we know:

( 14 3-shs )[ 0 ]( 4 3-shs )[ 0 ]( 14 2-shs )
α 30

39
− α 2α− 9

39
48
39
− 2α α + 9

39
1− α

We (as usual) call the shares in the first interval of 3-shares
small and the shares in the second interval of 3-shares large.
Note that Alice, a 3-student, has either (1) 3 small shares and
0 large shares, or . . . (4) 0 small shares and 3 large shares. We
want that Alice needs at least 1 large share. Why? Because
if Alice (and hence any 3-student) needs at least 1 large share,
and there are six 3-students, there will be at least 6 large shares.
Since there are only 4, this will cause a contradiction.

We find α such that Alice has to have ≥ 1 large share. If she
had ≤ 0 large shares then she has

3×
(

30

39
− α

)
≤ 48

39

α ≥ 14

39

We have derived the upper bound f(16, 13) ≤ 14
39

.
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8.5 Where Will the New Gap Be?

In the proofs of f(10, 9) ≤ 1
3
, f(24, 11) ≤ 19

44
, and f(16, 13) ≤ 14

39
,

we did the following:

(1) Let V =
⌈
2m
s

⌉
. We assume the V -conjecture; hence everyone

is either a V -student or (V − 1)-student. Find how many
students there are of each type and hence how many shares
there are of each type.

(2) Find the intervals that contain the (V −1)-shares and the V -
shares. If they are not disjoint then quit and output DK.
(In this case it is likely that the FC method or the Half
method can be used to prove the upper bound).

(3) By buddying, we found another gap. We call this the new
gap.

(4) The new gap was either within the (V − 1)-shares or the
V -shares. Whichever interval the gap was in, there are now
two intervals.

(5) We show that one of the intervals needs to have more shares
than it does, hence getting a contradiction.

We need to know which set of shares the new gap will be
within.

Notice the following:

(1) In the proof of f(10, 9) ≤ 1
3

the new gap was in the 2-shares.
There were more 2-shares than 3-shares. (The new gap was
only one point, but this is not important here.)

(2) In the proof of f(24, 11) ≤ 19
44

the new gap was in the 4-
shares. There were more 4-shares than 5-shares.

(3) In the proof of f(16, 13) ≤ 14
39

the new gap was in the 3-
shares. There were more 3-shares than 2-shares.

We have also observed the following empirically:

The only cases where there are equal numbers of (V −1)-
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shares and V -shares is when there exists a k such that
m = k2+3k+8

2
and s = 2k + 1. In these cases f(m, s) =

FC(m, s) = k+1
2k+3

.

Conjecture 8.5. (The V V -conjecture.) Assume m > s and
f(m, s) > 1

3
. There is an optimal (m, s)-procedure such that the

following holds:

(1) There is a V such that everyone is either a (V − 1)-student
or a V -student. (This is the V -conjecture.)

(2) Assume that the V -interval and the (V − 1)-interval are
disjoint.

(a) If there are more V -shares than (V −1)-shares, then the
new gap will be within the V -shares.

(b) If there are more (V −1)-shares than V -shares, then the
new gap will be within the (V − 1)-shares.

(c) If there are the same number of V -shares as (V − 1)-
shares then f(m, s) = FC(m, s), and hence, we do not
need to use the INT method.

8.6 Exercises on Deriving or Verifying

Exercise 8.6. Prove each of the following statements of the
form f(m, s) ≤ α using the techniques of this chapter. Alter-
natively try to not look at the upper bounds and instead derive
it.

(1) f(24, 11) ≤ 19
44

(2) f(59, 14) ≤ 131
280

(3) f(17, 15) ≤ 7
20

(4) f(19, 17) ≤ 1
3

(5) f(21, 17) ≤ 6
17

(6) f(21, 19) ≤ 13
38
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(7) f(61, 19) ≤ 313
684

(8) f(33, 20) ≤ 41
100

Note 8.7. All of the upper bounds in Exercise 8.6 are actually
lower bounds. Hence we know, for example, that f(33, 20) = 41

100
.

8.7 Algorithms for INT: You Write It

Exercise 8.8.

(1) Let VINT take as input m, s, α and try to verify f(m, s) ≤ α
via the INT method. Write an algorithm for VINT. It
should output (1) Yes if f(m, s) ≤ α can be proven with
the INT method, and (2) DK if f(m, s) ≤ α cannot be
established with the INT method.

(2) Let INT take as input (m, s), derive a good candidate α for
the INT method, and then apply VINT. Hence it will either
(1) output an α and verify it and output alpha (2) output
1 if VINT(m, s, α) is DK.

8.8 The INT Theorem

Definition 8.9. INT(m, s) is defined as:

(1) if s divides m then output 1.
(2) If not then run the program INT(m, s). If it outputs that

the α it produces does not work then output 1. If it outputs
that the α it produces does work, output α.

Theorem 8.10. If m ≤ s then f(m, s) ≤ INT(m, s).

8.9 Program and Progress

Using the techniques presented so far we have the following at-
tempt at an algorithm to find f(m, s):
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(1) Input(m, s)
(2) α is the min of

{FC(m, s),Half(m, s), INT(m, s)}.

(3) Run FINDPROC(m, s, α). If it outputs a procedure P then
output α, else output DK.

There are 3520 pairs (m, s) we are considering (see Chap-
ter 3). There were 186 pairs that neither FC nor Half were able
so solve, but INT was. Here are the full statistics so far. When
we state that (say) for 329 cases f(m, s) = Half(m, s) it is im-
plicit that the prior techniques (in the case of Half its just FC)
did not obtain the upper bound.

• For 2301 of them, f(m, s) = FC(m, s). That is ∼ 65.37%.
• For 329 of them, f(m, s) = Half(m, s). That is ∼ 9.35%.
• For 186 of them, f(m, s) = INT(m, s). That is ∼ 5.28%.
• For 704 of them, FC, Half, INT did not suffice to find
f(m, s). That is ∼ 20.00%.
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Chapter 9

The Midpoint Method

9.1 Recap and Goals for this Chapter

From Chapter 4, 6, and 8 we know that, for m ≥ s,

f(m, s) ≤ min{FC(m, s),Half(m, s), INT(m, s)}.
Just for now we will refer to the min of those quantities

as minf(m, s). Is it the case that, for all m ≥ s, f(m, s) =
minf(m, s)? No. The counterexample with the smallest s is
f(13, 12); however it is more illustrative to show the following:

f(23, 13) ≤ 53

130
< minf(23, 13).

This proof uses a new technique which we call The Midpoint
Method (MID method for short). We develop it fully and create
a program MID(m, s) which, given m, s, outputs α such that
f(m, s) ≤ α. MID is an extension of INT.

Exercise 9.1. For (m, s) = (13, 12), (14, 13), (23, 13), (23, 14):

(1) Compute α = minf(m, s).
(2) Compute FINDPROC(m, s, α). (You should get a DK

which means that minf(m, s) is unlikely to be f(m, s).)

9.2 Twenty-Three Muffins, Thirteen Students

We use the following notation in the rest of the book.

95
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Notation 9.2. If (a, b) is an interval then |(a, b)| is the number
of shares in that interval. Note that this is not standard.

Theorem 9.3. f(23, 13) = 53
130

.

Proof. We leave the proof that f(23, 13) ≥ 53
130

to the reader.
Alternatively the reader can run FINDPROC(23, 13, 53

130
).

We begin the proof that f(23, 13) ≤ 53
130

as if we are using
the INT method.

Assume, by way of contradiction, that there is a (23, 13)-
procedure with smallest piece > 53

130
. By Theorem 2.6, every

muffin is cut into exactly 2 pieces. Everyone gets 23
13

= 230
130

.
there are six 3-students, seven 4-students, eighteen 3-shares, and
twenty-eight 4-shares, and that that the following picture cap-
tures what we know:

( 28 4-shs )[ 0 ]( 18 3-shs )
53
130

71
130

76
130

77
130

Since [ 71
130
, 76
130

] is empty, by buddying, [ 54
130
, 59
130

] is empty.
Hence the following picture captures what we know:

( 18 4-shs )[ 0 ]( 10 4-shs )[ 0 ]( 18 3-shs )
53
130

54
130

59
130

71
130

76
130

77
130

We call the first interval of 4-shares small shares and the second

interval of 4-shares large shares. Let Alice be a 4-student.

• If Alice has 4 small shares and 0 large shares then she has
< 4× 54

130
= 216

130
< 230

130
. So this is impossible.

• If Alice has 3 small shares and 1 large share then she has
< 3× 54

130
+ 71

130
= 233

130
. So she does get enough. Does she get

too much? She gets ≥ 3 × 53
130

+ 59
130

= 218
130
. That is not too

much. This kind of student is possible.
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• If Alice has 2 small shares and 2 large shares then by the
last case she has enough. Does she have too much? She has
> 2× 53

130
+ 2× 59

130
= 224

130
. This is not too much. This kind

of student is possible.
• If Alice has 1 small share and 3 large shares then she has
> 53

130
+ 3× 59

130
= 230

130
. This is not possible.

So Alice must have at least 1 large share and at least 2 small
shares. The following scenario is possible:

• Four 4-students get 3 small shares and 1 large share.
• Three 4-students get 2 small shares and 2 large shares.

We leave it to the reader to show why the INT method cannot
be used to obtain the upper bound. We need more information.
1
2

= 65
130

is in the middle of the interval ( 59
130
, 71
130

). The number
of shares in ( 59

130
, 65
130

) and ( 65
130
, 71
130

) is the same by buddying.
The following picture captures what we know about the 4-

shares:

( 18 4-shs )[ 0 ]( z 4-shs | z 4-shs )
53
130

54
130

59
130

65
130

71
130

We define the following intervals:

• I1 = ( 53
130
, 54
130

) (|I1| = 18)

• I2 = ( 59
130
, 65
130

)

• I3 = ( 65
130
, 71
130

) (|I2| = |I3| = 5)

This set of intervals does not quite capture all possible shares
since 65

130
is not in I2 or I3. We will address this point later in

Convention 9.5. For now, we will put half of the 65
130

shares in
I2 and half in I3 (there will be an even number of them since
65
130

= 1
2

and pieces of size 1
2

have buddies of size 1
2
).
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We need a finer classification of 4-students. We need to know
how many shares from I1, I2, and I3 a 4-student has.

Notation 9.4.

(1) If 1 ≤ i ≤ 3 then an Ii-share is a share from Ii.
(2) Let 1 ≤ j1 ≤ j2 ≤ j3 ≤ j4 ≤ 3. A (j1, j2, j3, j4)-student is a

student who has an Ij1-share, an Ij2-share, an Ij3-share, and
an Ij4-share. The j’s could be equal. We also refer to such
a student as a student of type (j1, j2, j3, j4).

(3) yj1,j2,j3,j4 is the number of students of type (j1, j2, j3, j4).
(4) We often show that a student is impossible by showing that

there is a β ≤ m
s

such that the student gets < β muffins.
If β = m

s
then we just barely showed that the student is

impossible. This is usually a good sign. In these cases we
put a * on it. Similarly for showing that a student has too
much muffins.

(5) Note that this notation can be extended to W -students
and L intervals I1, . . . , IL. Every W -student is an
(j1, . . ., . . ., jW )-student for some 1 ≤ j1 ≤ · · · ≤ jW (and
again some of the ji’s may be equal). When dealing with
2-students we will use zj1,j2 to denote the number of such
students. (This won’t come up until Section 11.3.)

Some types of students are impossible. For example, a
(1, 1, 1, 1)-student has

< 4× 54

130
=

216

130
<

230

130
.

Similarly, a (3, 3, 3, 3)-student will have too much.
An interesting case is that of a (1, 1, 2, 3)-student. She will

have

> 2× 53

130
+

59

130
+

65

130
=

230

130
∗ .

Although the student’s I3-share could be 65
130

, the students I1-
shares are both > 53

130
. Hence the student gets strictly more than
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230
130

. Because the bound is tight we will put a * on the inequality.
Recall that the ∗ is a sign we are on the right track.

We now return to the problem of 65
130

not being in any interval.
There can be shares of that size. So how is our proof going to
work? We describe a rigorous convention that we use here and
throughout the rest of the book.

Convention 9.5. We state how having shares of size 65
130

is not
a problem for this proof; however, the points we make apply to
many later proofs. We will later refer to this convention rather
than restate the general points made obvious by this example.

• Above we showed that there are no (1, 1, 2, 3)-students since

2× 53

130
+

59

130
+

65

130
=

230

130
.

Since the I1 shares are > 53
130

it is not a problem that the I3
share is ≥ 65

130
. Takeaway for the future: the fact that there

really could be shares of size 65
130

does not matter if there
are other shares that are endpoints of open intervals. This
is a common case. There will be a case where this matters
in Theorem 12.4.
• Above we claimed that |I2| = |I3| = 5. We obtain this by

taking the shares of size 65
130

and arbitrarily assigning half
to I2 and half to I3. Recall that there is an even number of
such shares since they buddy each other.

We determine which students are possible.
Claim: The following are the only types of students who are
possible:

(1) (1, 1, 1, 3) (y1,1,1,3 denotes the number of such students.)
(2) (1, 1, 2, 2) (y1,1,2,2 denotes the number of such students.)

Proof of Claim:
We establish that some students are impossible.
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A (1, 1, 1, 2)-student has < 3× 54
130

+ 65
130

= 227
130

< 230
130

. Hence
there are no (1, 1, 1, 2)-students.

A (1, 1, 2, 3)-student has > 2× 53
130

+ 59
130

+ 65
130

= 230
130
∗. Hence

there are no (1, 1, 2, 3)-students.
A (1, 2, 2, 2)-student has > 53

130
+ 3× 59

130
= 230

130
∗. Hence there

are no (1, 2, 2, 2)-students.
The result follows from the set of impossible students.

End of Proof of Claim
The (1, 1, 1, 3)-students do not use any I2-shares. The

(1, 1, 2, 2)-students each use two I2-shares. Hence |I2| = 2y1,1,2,2.
The (1, 1, 1, 3)-students use one I3-share. The (1, 1, 2, 2)-

students do not use any I3-shares. Hence |I3| = y1,1,1,3.

Since |I2| = |I3|:
Eq 1: 2y1,1,2,2 = y1,1,1,3.

Since s4 = 7:
Eq 2: y1,1,1,3 + y1,1,2,2 = 7.

Using the expression for y1,1,1,3 from Eq 1 in Eq 2 we get:

3y1,1,2,2 = 7

y1,1,2,2 =
7

3
.

Recall that y1,1,2,2 is the number of (1, 1, 2, 2)-students and
hence is a natural. We can’t have 7

3
students of any type (un-

less the tables are turned and the muffins begin to cut up the
student). Hence we have a contradiction.

We show how one could derive the upper bound f(23, 13) ≤
53
130

. Let α be the upper bound. We derive conditions on α that
will make the proof of f(23, 13) ≤ α work. We assume α > 1

3
.

Using the V -Conjecture we guess everyone is either a 3-student
or a 4-student.
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The reasoning used in the proof above, that there are eighteen
3-shares and twenty-eight 4-shares, did not use that the goal was
53
130

. Hence we can use that reasoning. We have the following
picture, though we do not know x or y.

( 28 4-shs )[ 0 ]( 18 3-shs )
α x y 1− α

What are x and y?

• x is the least number such that every 4-share is < x. Hence
3α + x = 230

130
, so x = 230

130
− 3α.

• y is the largest number such that every 3-share is > y. Hence
2(1− α) + y = 230

130
, so y = 2α− 30

130
.

The following picture captures what we know.

( 28 4-shs )[ 0 ]( 18 3-shs )
α 230

130
− 3α 2α− 30

130
1− α

Since [230
130
− 3α, 2α − 30

130
] = ∅, by buddying, [160

130
− 2α, 3α −

100
130

] = ∅.
We will assume that this new empty interval is within the

4-shares. This guess is based on the fact that there are more 4-
shares than 3-shares. The following heuristic has always worked:
when deciding which of the two intervals the buddy of the empty
interval will be within, guess the interval with more shares.
4-shares

( 18 4-shs )[ 0 ]( 10 4-shs )[ 0 ]
α 160

130
− 2α 3α− 100

130
230
130
− 3α 2α− 30

130

3-shares
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( 18 3-shs )
2α− 30

130
1− α

The interval (3α− 100
130
, 230
130
−3α) has 1

2
is in the middle interval.

By buddying, this interval will have the same number of shares
to the left and to the right of 1

2
. The following picture captures

what we know about the 4-shares (we do not know z).

( 18 4-shs )[ 0 ]( z 4-shs | z 4-shs )
α 160

130
− 2α 3α− 100

130
65
130

230
130
− 3α

We define the following intervals:

• I1 = (α, 160
130
− 2α) (|I1| = 18)

• I2 = (3α− 100
130
, 65
130

)

• I3 = ( 65
130
, 230
130
− 3α) (|I2| = |I3| = 5)

There are 15 possible types of 4-students: (1, 1, 1, 1),
(1, 1, 1, 2), . . ., (3, 3, 3, 3). For each type we can find what val-
ues of α makes this type of student impossible. We give two
examples

(1, 1, 1, 1)-student Alice is impossible if one of the following
occurs:

• Alice has < 230
130

, so we need 4 × (160
130
− 2α) < 230

130
which is

equivalent to α > 41
104

.
• Alice has > 230

130
, so we need 4α > 230

130
which is equivalent to

α > 23
52

.

We view this calculation as making both 41
104

and 23
52

candidates
for α.

(1, 1, 2, 3)-student Bob is impossible if one of the following
occurs:
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• Bob has < 230
130

, so we need 2×(160
130
−2α)+ 65

130
+ 230

130
−3α < 230

130

which is equivalent to α > 55
130

.
• Bob has > 230

130
, so we need 2α+(3α− 100

130
)+ 65

130
> 230

130
which

is equivalent to α > 53
130

.

We view this calculation as making both 55
130

and 53
130

can-
didates for α. Note that these are merely candidates; some of
them will not work.

To actually find the smallest α, find all 30 α’s (two for each
possible student types) and do a binary search to find the small-
est one that works. In practice many of the candidates you gen-
erate are the same. Hence this method is not computationally
intensive.

9.3 Exercises on Verifying

Exercise 9.6.
Prove each of the following statements of the form f(m, s) ≤

α using the techniques of this chapter. Alternatively try to not
look at the upper bounds and instead derive it.

(1) f(23, 14) ≤ 17
42

(2) f(43, 16) ≤ 50
112

(3) f(33, 20) ≤ 49
120

(4) f(37, 21) ≤ 103
252

(5) f(59, 14) ≤ 131
280

Note 9.7. All of the upper bounds in Exercise 9.6 are actually
lower bounds. So, for example, we know f(59, 14) = 131

280
.
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9.4 The VMID Program

The proof that f(23, 13) = 53
130

(Theorem 9.3) and the proofs in
Exercise 9.6 all go as follows:

(1) Assume, by way of contradiction, that there is an (m, s)-
procedure that shows f(m, s) > α.

(2) Let V =
⌈
2m
s

⌉
. Assume the V -conjecture, so everyone is

either a V -student or a (V − 1)-student. This assumption
will be correct.

(3) Find out how many (V − 1)-students, V -students, (V − 1)-
shares, and V -shares there are.

(4) Find the intervals that contain the (V −1)-shares and the V -
shares. If they are not disjoint then quit and output DK.
(In this case it is likely that the FC method or the Half
method can be used to prove the upper bound).

(5) Use buddying to get that the W -shares (W will be V − 1
if there are more (V − 1)-shares, and V if there are more
V -shares) are split into two intervals.

(6) (This step is where this method diverges from the INT
method.) One of those two intervals has 1

2
smack dab in

the middle of it. We now create two intervals—the left half
and the right half. These two intervals have the same num-
ber of shares in them.

(7) Determine which types of students are possible.
(8) Use that information to form a set of linear equations. If the

system has no N-solution then output Yes (so f(m, s) ≤ α
has been verified) else output DK. (See Definition 5.5 to
remind yourself that an N-solution is a solution where all
of the variables are in N. Oh, looks like you don’t have to
remind yourself since I just did.)

We call this the VMID method.
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9.5 Algorithms for MID: You Write It

The algorithms we ask you to write can use the algorithms in
Chapter 6.

Exercise 9.8.

(1) Let VMID take as inputm, s, α and try to verify f(m, s) ≤ α
via the MID method. Write an algorithm for VMID. It
should output (1) Yes if f(m, s) ≤ α can be proven with
the VMID method, and (2) DK if f(m, s) ≤ α cannot be
established with the VMID method.

(2) Let MID take as input (m, s), derive good candidates α for
the MID method, and then do a binary search to find the
smallest α such that VMID(m, s, α) = Yes. If no candi-
date works output 1, indication that no upper bound can
be derived using the MID method.

9.6 The MID Theorem

Definition 9.9. MID(m, s) is defined as:

(1) If s divides m then output 1.
(2) If not then run the program MID(m, s) and output its out-

put.

Theorem 9.10. If m ≤ s then f(m, s) ≤ MID(m, s).

9.7 Program and Progress

Using the techniques presented so far we have the following at-
tempt at an algorithm to find f(m, s):

(1) Input(m, s)
(2) α is the min of

{FC(m, s),Half(m, s), INT(m, s),MID(m, s)}
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(3) Run FINDPROC(m, s, α). If it outputs a procedure P then
output α, else output DK.

There are 3520 pairs (m, s) we are considering (see Chap-
ter 3). There were 111 pairs that neither FC nor Half nor INT
were able so solve, but MID was. Here are the full statistics so
far. When we state that (say) for 329 cases f(m, s) = Half(m, s)
it is implicit that the prior techniques (in the case of Half its just
FC) did not obtain the upper bound.

• For 2301 of them, f(m, s) = FC(m, s). That is ∼ 65.37%.
• For 329 of them, f(m, s) = Half(m, s). That is ∼ 9.35%.
• For 186 of them, f(m, s) = INT(m, s). That is ∼ 5.28%.
• For 111 of them, f(m, s) = MID(m, s). That is ∼ 3.15%.
• For 593 of them, none of FC, Half, INT, or MID suffices to

find f(m, s). That is ∼ 16.84%.
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The Easy Buddy-Match Method

10.1 Recap and Goals for this Chapter

From Chapter 4, 6, and 8 we know that, for m ≥ s,
f(m, s) is ≤ the min of

{FC(m, s),Half(m, s), INT(m, s),MID(m, s).

Just for now we will refer to the min of those quantities
as minf(m, s). Is it the case that, for all m ≥ s, f(m, s) =
minf(m, s)? No. The counterexample with the smallest s is
f(16, 15); however it is more illustrative to show the following:

f(13, 12) ≤ 1

3

f(14, 13) ≤ 9

26

f(29, 27) ≤ 37

108

(The first two results can be obtained by MID.)
The proofs of the upper bounds use a technique we call

Easy Buddy Match (EBM). We develop an algorithm EBM(m, s)
which, given m, s, outputs an α such that f(m, s) ≤ α. It only
works when there are 2-shares (so V = 3). The key new idea is
that if Alice is a 2-student and she has a share of size x, then
her other share has size m

s
− x. This is called matching. It is

107
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similar to buddying where, if there is a share of size x, there is
a share of size 1− x.

Exercise 10.1. For (m, s) = (16, 15), (17, 16), (19, 18), (29, 27):

(1) Compute α = minf(m, s).
(2) Compute FINDPROC(m, s, α). (You should get a DK

which means that minf(m, s) is unlikely to be f(m, s).)

10.2 Matching

Recall the following scenario.

Assume that muffin M is cut into 2 pieces. Let x be a
piece from M . M ’s other piece is of size 1− x. We call
this other piece the buddy of x.

Hence
if (a, b) has c shares then

(1− b, 1− a) has c shares by buddying
(also true for [a, b] and [1− b, 1− a]).

We introduce a similar concept which we call matching.

Assume that Alice is a 2-student. Let x be one of Alice’s
shares. Alice’s other share is of size m

s
−x. We call this

other piece the match of x.

If (a, b) has c 2-shares then
(m
s
− b, m

s
− a) has c 2-shares by matching

(also true for [a, b] and [m
s
− b, m

s
− a]).

Definition 10.2. Let x be a 2-share. The match of x, denoted
M(x), is m

s
− x. This definition extends naturally to sets of 2-

shares. We will be using it on intervals of 2-shares. We write
M(a, b) rather than the more proper M((a, b)). Similarly we use
M [a, b] rather than M([a, b]). M is a bijection (see Appendix A
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for the definition of a bijection). Note that we cannot apply
M to a non-2-share!

Since M is a bijection, if (a, b) is an interval contained in
the 2-shares then (a, b) and M(a, b) have the same number of
shares. Why stop here? Recall that B (buddying) is a bijection.
Hence (a, b), M(a, b), and B(M(a, b)) are the same number of
shares. Why stop here? Can we apply M? Be careful. In order
to apply M we would need B(M(a, b)) to be contained in the
2-shares. Assume that B(M(a, b)) is contained in the 2-shares.
Then I can apply M to obtain that (a, b), M(a, b), B(M(a, b)),
and M(B(M(a, b)) all have the same number of shares. We can
now apply B to obtain that . . . you get the idea. We want to
continue this process as long as possible. When are we forced
to stop? When we need to apply M but the interval we want
to apply it to has non-2-shares. We formalize this with the
definition of a buddy-match sequence, following the definition
of 2-share region.

Definition 10.3. The 2-share region is a region that cannot
have non 2-shares. Note that this includes an interval that we
know has no shares.

Definition 10.4. A buddy-match sequence is a sequence of in-
tervals M0, B0,M1, B1, . . . (the sequence is finite) such that (1)
we apply B to Mi to get Bi, (2) Mi is contained in the 2-share
region (so the next step makes sense) (3) we apply M to Bi to
get Mi+1.

Recall the following notation:

Notation 10.5. If (a, b) is an interval then |(a, b)| is the number
of shares in that interval. Note that this is not standard.
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10.3 Thirteen Muffins, Twelve Students

Theorem 10.6. f(13, 12) = 1
3
.

Proof. We show that f(13, 12) ≤ 1
3
. We leave the proof that

f(13, 12) ≥ 1
3

to the reader. Alternatively the reader can run
FINDPROC(13, 12, 1

3
) or use Theorem 4.5.

Assume, by way of contradiction, that there is a (13, 12)-
procedure with smallest piece > 1

3
. By Theorem 2.6 every muffin

is cut into exactly 2 pieces. Hence there are 26 pieces. We leave
it to the reader to show that there are ten 2-students, two 3-
students, twenty 2-shares, six 3-shares, and that the following
picture captures what we know:

( 6 3-shs )( 20 2-shs )
4
12

5
12

8
12

We use a buddy-match sequence to find intervals that cover
the 2-shares, which will lead to a contradiction.

• ( 4
12
, 5
12

) contains 6 shares.
• B( 4

12
, 5
12

) = ( 7
12
, 8
12

) contains 6 shares. Since ( 7
12
, 8
12

) is con-
tained in the 2-share region, we can apply M to it.
• M( 7

12
, 8
12

) = ( 5
12
, 6
12

) contains 6 shares.
• B( 5

12
, 6
12

) = ( 6
12
, 7
12

) contains 6 shares. Since ( 6
12
, 7
12

) is con-
tained in the 2-share region, we can apply M to it.
• M( 6

12
, 7
12

) = ( 6
12
, 7
12

) contains 6 shares.
• B( 6

12
, 7
12

) = ( 5
12
, 6
12

) contains 6 shares. Since ( 5
12
, 6
12

) is con-
tained in the 2-share region, we can apply M to it.
• M( 5

12
6
12

) = ( 7
12
, 8
12

) contains 6 shares.
• B( 7

12
, 8
12

) = ( 4
12
, 5
12

) contains 6 shares. Since ( 4
12
, 5
12

) overlaps
the 3-shares region we cannot apply M to it; we stop.
• There are no shares of size 4

12
. Since B( 4

12
) = 8

12
, there are

no shares of size 8
12

. Similarly, there are no shares of the
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size of any the endpoints of the open intervals above. In
particular there are no shares of sizes 6

12
, 7
12

, or 8
12

.

The intervals ( 5
12
, 6
12

), ( 6
12
, 7
12

), and ( 7
12
, 8
12

) each have 6 shares.
Hence:

∣∣∣∣( 5

12
,

6

12

)⋃( 6

12
,

7

12

)⋃( 7

12
,

8

12

)∣∣∣∣ = 18

and that there are no shares of sizes 5
12
, 6
12
, 7
12
, 8
12

. Hence there
are 18 shares in ( 5

12
, 8
12

) which is the interval that contains all the
2-shares. But there are 20 2-shares. This is a contradiction.

The high level view is that we used buddy-match to get a
count of the 2-shares and it contradicted the real count.

10.4 Fourteen Students, Thirteen Muffins

Theorem 10.7. f(14, 13) = 9
26

.

Proof. We show that f(14, 13) ≤ 9
26

. We leave the proof that
f(14, 13) ≥ 9

26
to the reader. Alternatively the reader can run

FINDPROC(14, 13, 9
26

).
Assume, by way of contradiction, that there is a (14, 13)-

procedure with smallest piece > 9
26

. By Theorem 2.6 every muf-
fin is cut into exactly 2 pieces. Hence there are 28 pieces. We
leave it to the reader to show that there are eleven 2-students,
two 3-students, twenty-two 2-shares, six 3-shares, and that the
following picture captures what we know:

( 6 3-shs )[ 0 ]( 22 2-shs )
9
26

10
26

11
26

17
26

We use a buddy-match sequence to find intervals that cover the

entire interval which will lead to a contradiction.
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• ( 9
26
, 11
26

) has 6 shares. (The interval ( 9
26
, 10
26

) has all 6 shares;
however, it turns out to be easier to view ( 9

26
, 11
26

) as having
all six 3-shares, which it does.)
• B( 9

26
, 11
26

) = (15
26
, 17
26

) contains 6 shares. Since (15
26
, 17
26

) is con-
tained in the 2-share region, we can apply M to it.
• M(15

26
, 17
26

) = (11
26
, 13
26

) contains 6 shares.
• B(11

26
, 13
26

) = (13
26
, 15
26

) contains 6 shares. Since (13
26
, 15
26

) is con-
tained in the 2-share region, we can apply M to it.
• M(13

26
, 15
26

) = (13
26
, 15
26

) contains 6 shares.
• B(13

26
, 15
26

) = (11
26
, 13
26

) contains 6 shares. Since (11
26
, 13
26

) is con-
tained in the 2-share region, we can apply M to it.
• M(11

26
, 13
26

) = (15
26
, 17
26

) contains 6 shares.
• B(15

26
, 17
26

) = ( 9
26
, 11
26

) contains 6 shares. Since ( 9
26
, 11
26

) overlaps
the 3-shares region we cannot apply M to it; we stop.
• Since there are no shares of sizes 9

26
or 11

26
the above items

also prove there are no shares of sizes 13
26
, 15
26

, or 17
26

.

Hence:

∣∣∣∣( 9

26
,
11

26

)⋃(11

26
,
13

26

)⋃(13

26
,
15

26

)⋃(15

26
,
17

26

)∣∣∣∣ = 24

and that there are no shares of sizes 11
26
, 13
26
, 17
26

. Hence ( 9
26
, 17
26

)
has 24 shares. All of the shares are in this interval, so there are
24 shares. but there are 28 shares. That is a contradiction.

Note the following difference:

• The proof that f(13, 12) ≤ 1
3

looks at how many 2-shares
there are.
• The proof that f(14, 13) ≤ 9

26
looks at how many shares

there are.
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10.5 Twenty-Nine Muffins, Twenty-Seven Stu-
dents

Theorem 10.8. f(29, 27) = 37
108

.

Proof. We show that f(29, 27) ≤ 37
108

. We leave the proof that
f(29, 27) ≥ 37

108
to the reader. Alternatively the reader can run

FINDPROC(29, 27, 37
108

).
Assume, by way of contradiction, that there is a (29, 27)-

procedure with smallest piece > 37
108

. By Theorem 2.6 every
muffin is cut into exactly 2 pieces; hence there are 58 pieces.
We leave it to the reader to show that there are twenty-three
2-students, four 3-students, forty-six 2-shares, twelve 3-shares,
and that the following picture captures what we know:

( 12 3-shs )[ 0 ]( 46 2-shs )
37
108

42
108

45
108

71
108

We use a buddy-match sequence to find a useful empty inter-
val.

(1) [ 42
108
, 45
108

] is empty.

(2) B[ 42
108
, 45
108

] = [ 63
108
, 66
108

] is empty. Since [ 63
108
, 66
108

] is contained
in the 2-share region, so we can apply M to it

(3) M [ 63
108
, 66
108

] = [ 50
108
, 53
108

] is empty.

(4) B[ 50
108
, 53
108

] = [ 55
108
, 58
108

] is empty. Since [ 55
108
, 58
108

] is contained
in the 2-share region, so we can apply M to it

(5) M [ 55
108
, 58
108

] = [ 58
108
, 61
108

] is empty.

(6) B[ 58
108
, 61
108

] = [ 47
108
, 50
108

] is empty. Since [ 47
108
, 50
108

] is contained
in the 2-share region, so we can apply M to it

(7) M [ 47
108
, 50
108

] = [ 66
108
, 69
108

] is empty.

(8) B[ 66
108
, 69
108

] = [ 39
108
, 42
108

] is empty. Since [ 39
108
, 42
108

] overlaps the
3-shares region we cannot apply M to it; we stop.
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(9) None of the endpoints have shares.

Since [ 39
108
, 42
108

] is empty and [ 42
108
, 45
108

] is empty, [ 39
108
, 45
108

] is
empty. We could deduce many other closed intervals of length
6

108
are empty; however, all we need is [ 39

108
, 42
108

]. We will use this
interval being empty in a crucial part of the next buddy-match
sequence.

The following picture captures what we know:

( 12 3-shs )[ 0 ]( 46 2-shs )
37
108

39
108

45
108

71
108

It is important that the gap has been expanded from [ 42
108
, 45
108

]
to [ 39

108
, 45
108

]. Why? In the following buddy match sequence, at
step 8, we will be able to do a match step, where we would not
have been able to if we had the smaller gap.

We use a buddy-match sequence to find intervals that cover
the entire interval, which will lead to a contradiction.

(1) ( 37
108
, 45
108

) has 12 shares.

(2) B( 37
108
, 45
108

) = ( 63
108
, 71
108

) has 12 shares. Since ( 63
108
, 71
108

) is
contained in the 2-share region, we can apply M to it.

(3) M( 63
108
, 71
108

) = ( 45
108
, 53
108

) has 12 shares.

(4) B( 45
108
, 53
108

) = ( 55
108
, 63
108

) has 12 shares. Since ( 55
108
, 63
108

) is
contained in the 2-share region, we can apply M to it.

(5) M( 55
108
, 63
108

) = ( 53
108
, 61
108

) has 12 shares.

(6) B( 53
108
, 61
108

) = ( 47
108
, 55
108

) has 12 shares. Since ( 47
108
, 55
108

) is
contained in the 2-share region, we can apply M to it.

(7) M( 47
108
, 55
108

) = ( 61
108
, 69
108

) has 12 shares.

(8) B( 61
108
, 69
108

) = ( 39
108
, 47
108

) has 12 shares. Since ( 39
108
, 47
108

) is
contained in the 2-share region, we can apply M to it. Note
that if we still had the smaller gap of [ 42

108
, 45
108

] then we could
not state that ( 39

108
, 47
108

) was in the 2-share region.
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(9) M( 39
108
, 47
108

) = ( 69
108
, 77
108

) has 12 shares. (This looks odd since
there are no shares in [ 71

108
, 77
108

) but it is still true.)

(10) B( 69
108
, 77
108

) = ( 31
108
, 39
108

) has 12 shares. Since ( 31
108
, 39
108

) over-
laps the 3-shares region we cannot apply M to it; we stop.

(11) None of the endpoints have shares.

Each of the intervals in the next line have 12 shares. Hence
the total number of shares is 5× 12 = 60.

(
37

108
,

45

108

)⋃( 45

108
,

53

108

)⋃( 53

108
,

61

108

)⋃( 61

108
,

69

108

)⋃( 69

108
,

77

108

)
However there are 58 shares. This is a contradiction.

Exercise 10.9. Imitate the proofs of Theorems 10.6, 10.7, or
and 10.8 to prove the following:

(1) f(33, 31) ≤ 21
62

(2) f(35, 33) ≤ 15
44

(3) f(37, 34) ≤ 1
3

(4) f(39, 37) ≤ 25
74

(5) f(41, 39) ≤ 53
156

(6) f(44, 41) ≤ 14
41

(7) f(45, 43) ≤ 29
86

(8) f(46, 43) ≤ 1
3

(9) f(47, 45) ≤ 61
180

(10) f(49, 45) ≤ 1
3

(11) f(49, 46) ≤ 31
92

(12) f(50, 47) ≤ 16
47

(13) f(51, 49) ≤ 33
98

(14) f(53, 50) ≤ 17
50
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10.6 General Theorem

We prove a theorem about f(3dk+a+d, 3dk+a). We will only
look at a ∈ {1, . . . , 3d} because if a ≥ 3d+ 1 then we can use a
larger k. We note now that we will not need a VEBM (Verify
EBM) function; we go straight to EBM which will be a set of
nice formulas.

Why (3dk + a + d, 3dk + a)? Originally we were looking at
f(s + d, s) for fixed d. We were hoping for formulas like we
had for f(m, s) for fixed s (Such formulas can be obtained from
our work; however, it is not in the book. It is on the MUFFIN
website.) The formulas depended on m (mod 3d). Hence we
ended up looking at (3dk+a+d, 3dk+a). More formally, given
m, s we find d, k, a as follows

(1) d = m− s.
(2) k is the largest number ≥ 0 such that 3dk < s.
(3) a = s− 3dk.

We do not use these equations until we define the EBM func-
tion in Section 10.7.

We will soon proof a general theorem, Theorem 10.11, that
gives formulas for upper bounds on f(m, s). However, there is
one case that is easier to do separately. That case is the following
exercise.

Exercise 10.10. In this exercise, due to Yunseo Choi and Kevin
Cong, we look at the case of a = 2d.

(1) Use the Floor-Ceiling theorem to get an upper bound on
f(3dk + 3d, 3dk + 2d).

(2) Show that the upper bound is also a lower bound.

Because of Exercise 10.10 we can ignore the a = 2d case in
the following theorem.

Theorem 10.11. Let d, k ≥ 1, a ∈ {1, . . . , 3d} − {2d}.
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(1) If 2d+ 1 ≤ a ≤ 3d then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a
=

1

3

where X = a
3
. (This case is a generalization of Theo-

rem 10.6. Plug d = 1, a = 3, k = 3 into this formula
to obtain Theorem 10.6.)

(2)

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = a
2
. Only useful when a ∈ {1, . . . , d} since other-

wise Part 1 or Part 3 gives a stronger result. (This case is
a generalization of Theorem 10.7. Plug d = 1, a = 1, k = 4
into this formula to obtain Theorem 10.7.)

(3)

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = a+d
4

. Only useful when a ∈ {d, . . . , 2d− 1} since
otherwise Part 1 or Part 2 gives a stronger result. (This
case is a generalization of Theorem 10.8. Plug Use d = 2,
a = 3, k = 4 into this formula to obtain Theorem 10.8.)

Proof. We do the proof with parameter X and then break into
three cases (Cases 3e.1, 3e.2, 3e.3) corresponding to the three
statements in the theorem. We assume X ≥ a

3
so dk+X

3dk+a
≥ 1

3
.

Assume, by way of contradiction, that there is a (3dk + a +
d, 3dk + a)-procedure with smallest piece > dk+X

3dk+a
≥ 1

3
. By

Theorem 2.6 every muffin is divided into two pieces. Hence
there are 6dk + 2a+ 2d pieces.
Case 1: If Alice gets ≥ 4 shares then some share is

≤ 3dk + a+ d

3dk + a
× 1

4
=

0.75dk + 0.25a+ 0.25d

3dk + a
≤ dk +X

3dk + a
.

(The inequality follows from X ≥ a
3
> a

4
and k ≥ 1.)
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Case 2: If Alice gets 1 share then, since each share is ≤ 1
2
, she

has

≤ 1

2
<

3dk + a+ d

3dk + a
,

which is impossible.
Case 3: Everyone is a 2-student or a 3-student.

Let s2 (s3) be the number of 2-students (3-students). Since
there are 6dk + 2a+ 2d pieces we have:

2s2 + 3s3 = 6dk + 2a+ 2d
s2 + s3 = 3dk + a.

Hence s2 = 3dk+a−2d and s3 = 2d. So there are 6dk+2a−4d
2-shares and 6d 3-shares.
Case 3a: There is a 3-share ≥ dk+a+d−2X

3dk+a
. The remaining two

3-shares add up to

≤ 3dk + a+ d

3dk + a
− dk + a+ d− 2X

3dk + a
=

2dk + 2X

3dk + a
;

hence there is a 3-share

≤ 2dk + 2X

3dk + a
× 1

2
=
dk +X

3dk + a
.

Case 3b: There is a 2-share ≥ 2dk+a−X
3dk+a

. Its buddy is

≤ 1− 2dk + a−X
3dk + a

=
dk +X

3dk + a
.

Case 3c: There is a 2-share ≤ dk+d+X
3dk+a

. Its match is

≥ 3dk + a+ d

3dk + a
− dk + d+X

3dk + a
=

2dk + a−X
3dk + a

.

Its buddy is

≤ 1− 2dk + a−X
3dk + a

=
dk +X

3dk + a
.

Case 3d: There is a 3-share ≤ dk+X
3dk+a

. This case is obvious.
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Case 3e: All the 3-shares are in ( dk+X
3dk+a

, dk+a+d−2X
3dk+a

) and all the

2-shares are in (dk+d+X
3dk+a

, 2dk+a−X
3dk+a

).
The following picture captures what we know:

( 3s3 3-shs )[ 0 ]( 2s2 2-shs )
dk+X
3dk+a

dk+a+d−2X
3dk+a

dk+d+X
3dk+a

2dk+a−X
3dk+a

(The reader can check that the assumption X ≥ a
3

ensures
that the interval of 2-shares and the interval of 3-shares do not
intersect.)

We define the following:

M0 = ( dk+X
3dk+a

, dk+d+X
3dk+a

)

B0 = B(M0) = (2dk+a−d−X
3dk+a

, 2dk+a−X
3dk+a

)

(∀0 ≤ i ≤ k − 1)[Mi = M(Bi−1) = (dk+id+X
3dk+a

, dk+(i+1)d+X
3dk+a

)]

(∀0 ≤ i ≤ k − 1)[Bi = B(Mi) = (2dk+a−(i+1)d−X
3dk+a

, 2dk+a−id−X
3dk+a

)].

The last B (M) to be defined is Bk−1 (Mk−1)). We stop there
since we might have an interval that overlaps the 3-share region,
and hence cannot apply M to it.

We want that if k ≥ 2, then Bk−2, and hence B0, . . . , Bk−3,
are contained in the 2-share region; hence M can be applied to
them. We want this since the definition of Mk−1 needs that Bk−2
is contained in the 2-share region. We need the left endpoint of
Bk−2 to be greater than or equal to the right endpoint of the
3-shares which we take to be dk+a+d−2X

3dk+a
. Hence we need:

dk + a+ d− 2X

3dk + a
≤ 2dk + a− (k − 1)d−X

3dk + a

which is equivalent to 1 ≤ 2, which is true of course.
Since |B0| = 6d and the B and M functions are bijections,

(1) all Bi’s and Mi’s have 6d shares, and (2) if x is an endpoint
of any Bi or Mi then there are no shares of size x.
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There are three subcases of Case 3 that correspond to the
three statements in our theorem.

Case 3e.1: (Statement 1 of the Theorem): We assume, by
way of contradiction, that 2d+ 1 ≤ a ≤ 3d and X > a

3
.

We show that:

B0 ∪ · · · ∪Bk−1 ⊇
(
dk + d+X

3dk + a
,
2dk + a−X

3dk + a

)
.

(The right hand side is the set of 2-shares.)
We want the left endpoint of Bk−1 to be ≤ the right endpoint

of the 2-shares which we take to be dk+d+X
3dk+a

. Hence we need

2dk + a− kd−X
3dk + a

≤ dk + a+ d− 2X

3dk + a

which is X ≤ d. This is true since X = a
3

and a ≤ 3d.
So we have

B0 ∪ · · · ∪Bk−1 ⊇
(
dk + d+X

3dk + a
,
2dk + a−X

3dk + a

)
(The right hand side is the set of 2-shares.)

|B0 ∪ · · · ∪Bk−1| ≥
∣∣∣∣(dk + d+X

3dk + a
,
2dk + a−X

3dk + a

)∣∣∣∣
6dk ≥ 6dk + 2a− 4d

2d ≥ a,

which is a contradiction.

Case 3e.2 (Statement 2 of the Theorem): Assume, by way
of contradiction, that X > a

2
.
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We show that

B0 ∪ · · · ∪Bk−1 =

(
dk +X

3dk + a
,
2dk + a−X

3dk + a

)
.

(The right hand side is the entire interval.)
We want the left endpoint of Bk−1 to be ≤ the right endpoint

of the 3-shares which is dk+X
3dk+a

. Hence we need:

2dk + a− kd−X
3dk + a

≤ dk +X

3dk + a
which is X ≥ a

2
which we have.

Since the last line is true we have

B0 ∪ · · · ∪Bk−1 =

(
dk +X

3dk + a
,
2dk + a−X

3dk + a

)
∣∣∣∣B0 ∪ · · · ∪Bk−1

∣∣∣∣ =

∣∣∣∣( dk +X

3dk + a
,
2dk + a−X

3dk + a

)∣∣∣∣
6dk = 6dk + 2d+ 2a

a+ d = 0

which is a contradiction since d ≥ 1.

Case 3e.3: (Statement 3 of the Theorem): Assume, by
way of contradiction, that X > a+d

4
. (Recall that a 6= 2d which

we use later.)
If X > a

2
then, by Case 3e.2, we already get a contradiction.

Hence we assume X ≤ a
2

during this case.
We show the picture that captures what we know:

( 3s3 3-shs )[ 0 ]( 2s2 2-shs )
dk+X
3dk+a

dk+a+d−2X
3dk+a

dk+d+X
3dk+a

2dk+a−X
3dk+a
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We use a buddy-match sequence to find a useful empty inter-
val contained in the 3-share region.

M0 = [dk+a+d−2X
3dk+a

, dk+d+X
3dk+a

]

B0 = B(M0) = [2dk+a−d−X
3dk+a

, 2dk−d+2X
3dk+a

]

M1 = M(B0) = [dk+a+2d−2X
3dk+a

, dk+2d+X
3dk+a

]

B1 = B(M0) = [2dk+a−2d−X
3dk+a

, 2dk−2d+2X
3dk+a

]

(∀0 ≤ i ≤ k − 1)[Mi = M(Bi−1) = [dk+a+(i+1)d−2X
3dk+a

, dk+(i+1)d+X
3dk+a

]

(∀0 ≤ i ≤ k − 1)[Bi = B(Mi) = [2dk+a−(i+1)d−X
3dk+a

, 2dk−(i+1)d+2X
3dk+a

].

We want Bk−2, and hence B0, . . . , Bk−3, to be contained in
the 2-shares, so that M can be applied to them. Note that

Bk−2 =

[
dk + a+ d−X

3dk + a
,
dk + d−X

3dk + a

]
.

We need

dk + a+ d− 2X

3dk + a
≤ dk + a+ d−X

3dk + a
,

which is clearly true.
Since M0 is empty, so are all of the Mi’s and Bi’s. So:

Bk−1 =

[
dk + a−X

3dk + a
,
dk + 2X

3dk + a

]
= ∅.

We want the Bk−1 gap to merge with
the (dk+a+d−2X

3dk+a
, dk+d−2X

3dk+a
) gap to form a larger gap. Hence we

need

dk +X

3dk + a
≤ dk + a−X

3dk + a
≤ dk + a+ d− 2X

3dk + a
≤ dk + 2X

3dk + a
.

The first inequality is equivalent to X ≤ a+d
2

. We have this
since X ≤ a

2
.
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The second inequality is equivalent to X ≤ d. We have this
since X ≤ a

2
and a ≤ 2d.

The third inequality is equivalent to X ≥ a+d
4

. We have this
by hypothesis.

The following picture captures what we know:

( 3s3 3-shs )[ 0 ]( 2s2 2-shs )
dk+X
3dk+a

dk+a−X
3dk+a

dk+d+X
3dk+a

2dk+a−X
3dk+a

We use a buddy-match sequence to find intervals that cover
the entire interval, which will cause a contradiction. This is
similar to the sequence in Case 3e.2 except that, because of the
bigger gap, we can go one step further.

M0 = ( dk+X
3dk+a

, dk+X+d
3dk+a

)

B0 = B(M0) = (2dk+a−d−X
3dk+a

, 2dk+a−X
3dk+a

)

(∀0 ≤ i ≤ k)[Mi = M(Bi−1) = (dk+id+X
3dk+a

, dk+(i+1)d+X
3dk+a

)]

(∀0 ≤ i ≤ k)[Bi = B(Mi) = (2dk+a−(i+1)d−X
3dk+a

, 2dk+a−id−X
3dk+a

)].

We want Bk−1, and hence B0, . . . , Bk−2, are contained in the
2-share region, so that M can be applied to them. Note that

Bk−1 =

(
dk + a−X

3dk + a
,
dk + a+ d−X

3dk + a

)
.

We need

dk + a−X
3dk + a

≤ dk + a−X
3dk + a

which is clearly true.
We want M0 ∪ · · · ∪Mk to cover the entire interval. Hence

we need

2dk + a−X
3dk + a

≤ dk + (k + 1)d+X

3dk + a
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which is X ≥ a−d
2

. We have this since X ≥ a+d
4

and a ≤ 3d.
Since |B0| = 6d and B,M are bijections, (1) all Bi’s and Mi’s

have 6d shares, and (2) there are no shares of that have the same
size as the endpoints of any Bi or Mi. Hence

6dk + 2a+ 2d = |M0 ∪ · · · ∪Mk| = 6d(k + 1)

which implies a = 2d. This is a contradiction.

10.7 The Function EBM

We define a function EBM so that we can add it to the list of
upper bounds on f(m, s).

Definition 10.12. EBM(m, s) is defined as follows.

(1) If s divides m then EBM(m, s) = 1.
(2) If

⌈
2m
s

⌉
≥ 4 then EBM(m, s) = 1.

(3) Let:

(a) d = m− s.
(b) k be the largest number ≥ 0 such that 3dk < s.
(c) a = s− 3dk.
(d) Note that s = 3dk + a and m = 3dk + a+ d.

(4) (a) If a ∈ {2d + 1, . . . , 3d} then EBM(m, s) = dK+X
3dk+a

where
X = a

3
, so EBM(m, s) = 1

3
.

(b) If a = 2d then EBM(m, s) = FC(m, s) by Exer-
cise 10.10.

(c) If a ∈ {1, . . . , d} then EBM(m, s) = dK+X
3dk+a

where X =
min{a

2
}.

(d) If a ∈ {d, . . . , 2d − 1} then EBM(m, s) = dK+X
3dk+a

where

X = min{a+d
4
}.
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From Theorem 10.11 we have the following:

Theorem 10.13. For all m ≥ s, f(m, s) ≤ EBM(m, s).

10.8 Program and Progress

Using the techniques presented so far we have the following at-
tempt at an algorithm to find f(m, s):

(1) Input(m, s)
(2) α is the min of
{FC(m, s),Half(m, s),MID(m, s),INT(m, s),EBM(m, s)}.

(3) Run FINDPROC(m, s, α). If it outputs a procedure P then
output α, else output DK.

There are 3520 pairs (m, s) we are considering (see Chap-
ter 3). There were 198 pairs that neither FC nor Half nor
INT nor MID able so solve, but EBM was. Here are the
full statistics so far. When we state that (say) for 329 cases
f(m, s) = Half(m, s) it is implicit that the prior techniques (in
the case of Half its just FC) did not obtain the upper bound.

• For 2301 of them, f(m, s) = FC(m, s). That is ∼ 65.37%.
• For 329 of them, f(m, s) = Half(m, s). That is ∼ 9.35%.
• For 186 of them, f(m, s) = INT(m, s). That is ∼ 5.28%.
• For 111 of them, f(m, s) = MID(m, s). That is ∼ 3.15%
• For 240 of them, f(m, s) = EBM(m, s). That is ∼ 6.82%
• For 353 of them, none of FC, Half, INT, MID, or EBM

suffices to find f(m, s). That is ∼ 10.00%.



October 29, 2019 23:51 ws-book9x6 The Mathematics of Muffins fullbook page 126



October 29, 2019 23:51 ws-book9x6 The Mathematics of Muffins fullbook page 127

Chapter 11

The Hard Buddy-Match Method

11.1 Recap and Goals for This Chapter

From Chapter 4, 6, 9, 8, and 10 we know that, for m ≥ s,

f(m, s) ≤ min

{FC(m, s),Half(m, s),MID(m, s),INT(m, s),EBM(m, s)}.

Just for now we will refer to the min of those quantities
as minf(m, s). Is it the case that, for all m ≥ s, f(m, s) =
minf(m, s)? No. The counterexample with the smallest s is
f(25, 22); however it is more illustrative show the following:

f(59, 52) ≤ 9

26
< minf(59, 52).

The proof of the upper bound uses a technique we call Hard
Buddy-Match (HBM). We develop an algorithm HBM(m, s)
which, given m, s, outputs an α such that f(m, s) ≤ α. It only
works when V = 3.

Exercise 11.1. For (m, s) = (25, 22), (33, 29), (34, 31), (59, 52):

(1) Compute α = minf(m, s).
(2) Compute FINDPROC(m, s, α). (You should get a DK

which means that minf(m, s) is unlikely to be f(m, s).)

127
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11.2 f(59, 52) ≤ 9
26

Theorem 11.2. f(59, 52) = 9
26

.

Proof. We leave the proof that f(59, 52) ≥ 9
26

to the reader.
Alternatively the reader can run FINDPROC(59, 52, 9

26
).

We use denominator 52 throughout. We restate our theorem
as f(59, 52) = 18

52
.

Assume, by way of contradiction, that there is a (59, 52)-
procedure with smallest piece > 18

52
. By Theorem 2.6 every muf-

fin is cut into exactly 2 pieces. Hence there are 118 pieces.
We leave it to the reader to show that there are thirty-eight
2-students, fourteen 3-students, seventy-six 2-shares, forty-two
3-shares, and that the following picture captures what we know:

( 42 3-shs )[ 0 ]( 76 2-shs )
18
52

23
52

25
52

34
52

We use a buddy-match sequence to find more empty intervals.

(1) [23
52
, 25
52

] is empty.

(2) B[23
52
, 25
52

] = [27
52
, 29
52

] is empty. Since [27
52
, 29
52

] is contained in
the 2-share region, we can apply M to it.

(3) M [27
52
, 29
52

] = [30
52
, 32
52

] is empty.

(4) B[30
52
, 32
52

] = [20
52
, 22
52

] is empty. Since [20
52
, 22
52

] overlaps the 3-
shares region we cannot apply M ; we stop.
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The following picture captures what we know (we do not
know z):

( z 3-shs )[ 0 ]( 42− z 3-shs )[ 0 ]
18
52

20
52

22
52

23
52

25
52

( 34 2-shs )[ 0 ]( 42− z 2-shs )[ 0 ]( z 2-shs )
25
52

27
52

29
52

30
52

32
52

34
52

We want to know what z is. Hence we do a Buddy-Match
sequence beginning with (18

52
, 20
52

), which has z shares, hoping it
gets mapped to an interval with a known number of shares.

(1) (18
52
, 20
52

) has z shares.

(2) B(18
52
, 20
52

) = (32
52
, 34
52

) has z shares (which we already knew).

(3) M(32
52
, 34
52

) = (25
52
, 27
52

) has z shares. But we also know it has
34 shares. So z = 34.

The following picture captures what we know:

( 34 3-shs )[ 0 ]( 8 3-shs )[ 0 ]
18
52

20
52

22
52

23
52

25
52

( 34 2-shs )[ 0 ]( 8 2-shs )[ 0 ]( 34 2-shs )
25
52

27
52

29
52

30
52

32
52

34
52

We use a buddy-match sequence to find symmetry.

(1) B(18
52
, 20
52

) = (32
52
, 34
52

). It has no 3-shares so we can apply M .

(2) M(32
52
, 34
52

) = (25
52
, 27
52

). This is symmetric around 26
52

= 1
2

so
(18
52
, 20
52

) is symmetric around 19
52

.
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The following picture captures what we know about the 3-
shares:

( 17 3-shs | 17 3-shs )[ 0 ]( 8 3-shs )
18
52

19
52

20
52

22
52

23
52

We define the following intervals and use Convention 9.5.

• I1 = (18
52
, 19
52

)

• I2 = (19
52
, 20
52

) (|I1| = |I2| = 17)

• I3 = (22
52
, 23
52

) (|I3| = 8)

We need a finer classification of 3-students. We use Nota-
tion 9.4.
Claim 1: The only possible types of students are:

(1) (1, 1, 3) (we denote the number of such students by y1,1,3).
(2) (2, 2, 2) (we denote the number of such students by y2,2,2).

Proof of Claim 1:
We show that some students are impossible.
A (1, 2, 2)-student has < 19

52
+ 2× 20

52
= 59

52
∗.

A (1, 2, 3)-student has > 18
52

+ 19
52

+ 22
52

= 59
52
∗.

The result follows.
End of Proof of Claim 1

(We write down all equations that we know. This is overkill
but it mirrors what we do in the general theorem.)

Since |I1| = |I2| = 17 we have 2y1,1,3 = 3y2,2,2 = 17.
Since |I3| = 8 we have y1,1,3 = 8.
Since s3 = 14 we have y1,1,3 + y2,2,2 = 14.
One can check that this set of linear equations has no N-

solution. (Recall from Definition 5.5 that an N-solution is a
solution where every variable is in N.) In fact, the first equation,
2y1,1,3 = 17 already ensures no N-solution.
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11.3 The Hard Buddy Match Program

The proof that f(59, 52) ≤ 9
26

went as follows:

(1) Determine what V is. If V ≥ 4 then do not use this method.
(2) V = 3 so everyone is either a 2-student or a 3-student.
(3) Find out how many 2-students, 3-students, 2-shares, and

3-shares there are.
(4) Find the interval of 2-shares and the interval of 3-shares.
(5) Use a buddy-match sequence starting at the gap to find a

gap that is properly within the 3-shares, splitting the 3-
shares. This will lead to some intervals which have z shares,
where we do not know z.

(6) Use a buddy-match sequence to find z.
(7) Use a buddy-match sequence to show that one of the inter-

vals within the 3-shares is symmetric.
(8) Determine which types of students are possible.
(9) Use that information to form a set of linear equations that

needs to have an N-solution. (Recall from Definition 5.5
that an N-solution is a solution where all of the variables
are in N.) If it doesn’t then we get a contradiction. We will
actually put a stricter condition on solutions. It will turn out
that s3 = 2d. Hence all of the variables are not just in N but
are in {0, . . . , 2d}. A solution must have all of its variables
in {0, . . . , 2d}. We call this a 2d-solution. When dealing
with actual values of m, s (e.g., f(59, 52)) this restriction is
not useful since if any variable is > 2d then some other one
is < 0 since the sum of all the variables is 2d. However,
when proving general theorems, it will be useful to restrict
solutions to 2d-solutions.

We call this the Hard Buddy-Match Method, or HBM. It is
harder than the Easy Buddy-Match Method since we need to
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look at types-of-students and linear equations.

Exercise 11.3. Prove each of the following using the HBM
method:

(1) f(25, 22) ≤ 23
66

(2) f(33, 29) ≤ 10
29

(3) f(34, 31) ≤ 32
93

(4) f(38, 31) ≤ 11
31

(5) f(43, 35) ≤ 5
14

(6) f(41, 36) ≤ 37
108

(7) f(43, 40) ≤ 41
120

(8) f(49, 40) ≤ 57
160

(9) f(45, 41) ≤ 14
41

(10) f(49, 43) ≤ 44
129

(11) f(55, 48) ≤ 83
240

(12) f(59, 48) ≤ 103
288

(13) f(52, 49) ≤ 50
147

(14) f(60, 49) ≤ 5
14

(15) f(57, 50) ≤ 17
50

We will now formalize the HBM-technique by doing the fol-
lowing:

(1) We will write a program VHBM(a, d, k,X) which uses the
above template to, given a, d, k,X, output Yes if it proves
that f(3dk + a+ d, 3dk + a) ≤ dk+X

3dk+a
, and output NO oth-

erwise.
(2) Once we have the program we will derive 12 corollaries

that give formulas for upper bounds based on a, d. These
corollaries find several functions X = X(a, d) (note that X
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does not depend on k) such that

(∀k ≥ 1)

[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
.

11.4 The VHBM Algorithm

We will present the VHBM algorithm and, at the same time,
prove that it works. Hence we will have both instructions for
the algorithm and long passages that are then used to justify
the instructions.

The algorithm VHBM below takes as input a, d, k,X and
tries to verify that f(3dk + a + d, 3dk + a) ≤ dk+X

3dk+a
. There are

some caveats:

• We require that a ∈ {1, . . . , 3d} since if a ≥ 3d + 1 then
one could take a larger value of k.
• We require that k ≥ 1.
• We will first check if EBM already produced the bounds.

VHBM

• Input a, d, k,X.

Preprocessing Stage:

(1) If a /∈ {1, . . . , 3d} then output BAD INPUT and stop.
(2) If a = 2d then output FC(3dk + a + d, 3dk + a). (This is

Exercise 10.10.)
(3) If X < a

3
then output DK and stop. For the rest of the

algorithm we assume X ≥ a
3
.

(4) If X ≥ a
3

and a ∈ {2d + 1, . . . , 3d − 1} then output Yes
and stop. (This is Theorem 10.11.1.) For the rest of the
algorithm we assume a ∈ {1, . . . , 2d− 1}.

(5) If X ≥ a
2

then output Yes and stop. (This is Theo-
rem 10.11.2.) For the rest of the algorithm we assume
X < a

2
.
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(6) If X ≥ a+d
4

then output Yes and stop. (This is The-
orem 10.11.3.) For the rest of the algorithm we assume
X < a+d

4
.

End of Preprocessing Stage
The following is not an algorithm, it is being used to set up

the algorithm.
Getting More Information (Not an Algorithm)

Assume, by way of contradiction, that there is a (3dk + a +
d, 3dk + a)-procedure with smallest piece > dk+X

3dk+a
. We seek a

contradiction.
Since V = 3 everyone has either 2 or 3 shares. As usual let

s2 (s3) be the number of 2-students (3-students).
From the proof of Theorem 10.11 we know that:

(1) s2 = 3dk + a− 2d, so there are 6dk + 2a− 4d 2-shares.
(2) s3 = 2d, so there are 6d 3-shares.
(3) The following picture captures what we know:

( 3s3 3-shs )[ 0 ]( 2s2 2-shs )
dk+X
3dk+a

dk+a+d−2X
3dk+a

dk+d+X
3dk+a

2dk+a−X
3dk+a

(The reader can check that the assumption X ≥ a
3

ensures
the interval of 2-shares and the interval of 3-shares do not
intersect.)

We use a buddy-match sequence to find a useful empty inter-
val.

M0 = [dk+a+d−2X
3dk+a

, dk+d+X
3dk+a

]

B0 = B(M0) = [2dk+a−d−X
3dk+a

, 2dk−d+2X
3dk+a

]

M1 = M(B0) = [dk+a+2d−2X
3dk+a

, dk+2d+X
3dk+a

]

B1 = B(M0) = [2dk+a−2d−X
3dk+a

, 2dk−2d+2X
3dk+a

]

(∀0 ≤ i ≤ k − 1)[Mi = M(Bi−1) = [dk+a+(i+1)d−2X
3dk+a

, dk+(i+1)d+X
3dk+a

]

(∀0 ≤ i ≤ k − 1)[Bi = B(Mi) = [2dk+a−(i+1)d−X
3dk+a

, 2dk−(i+1)d+2X
3dk+a

].
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We want that Bk−2, and hence B0, . . . , Bk−3, are contained
in the 2-share region, so M can be applied to them. Note that

Bk−2 =

[
dk + a+ d−X

3dk + a
,
dk + d−X

3dk + a

]
.

We need dk+a+d−2X
3dk+a

≤ dk+a+d−X
3dk+a

which is clearly true.
Since M0 is empty, so are all of the Mi’s and Bi’s. In partic-

ular

Bk−1 =

[
dk + a−X

3dk + a
,
dk + 2X

3dk + a

]
is empty. We want that Bk−1 is properly within the 3-shares.
Hence we need:

dk + 2X

3dk + a
<
dk + a+ d− 2X

3dk + a

which we have since X < a+d
4

. (This is the main place we use
X < a+d

4
. We also use it to simplify our table of X’s later.)

Let the number of shares in ( dk+X
3dk+a

, dk+a−X
3dk+a

) be z. We discuss
the number of shares each nonempty interval has. The reader
may want to look at the next picture while reading this.

(1) ( dk+X
3dk+a

, dk+a−X
3dk+a

) and (2dk+X
3dk+a

, 2dk+a−X
3dk+a

) are buddies so they
both have z shares.

(2) The 6d 3-shares are in ( dk+X
3dk+a

, dk+a−X
3dk+a

)∪ (dk+2X
3dk+a

, dk+a+d−2X
3dk+a

).
Since the first interval has z, the second interval has 6d− z.

(3) (dk+2X
3dk+a

, dk+a+d−2X
3dk+a

) and (2dk−d+2X
3dk+a

, 2dk+a−2X
3dk+a

) are buddies so
they both have 6d− z shares.

(4) The only non-empty interval not accounted for above is
(dk+d+X

3dk+a
, 2dk+a−d−X

3dk+a
). Since there are 2(3dk + a + d) =

6dk + 2a+ 2d shares total, this interval has

6dk + 2a+ 2d− 2z − 2(6d− z) = 6dk − 10d+ 2a shares.

The following picture captures what we know (we do not
know z):
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The 3-Shares:

( z 3-shs )[ 0 ]( 6d− z 3-shs )[ 0 ]
dk+X
3dk+a

dk+a−X
3dk+a

dk+2X
3dk+a

dk+a+d−2X
3dk+a

dk+d+X
3dk+a

The 2-Shares:

( 6dk − 10d+ 2a 2-shs )[ 0 ]
dk+d+X
3dk+a

2dk+a−d−X
3dk+a

2dk−d+2X
3dk+a

( 6d− z 2-shs )[ 0 ]( z 2-shs )
2dk−d+2X

3dk+a
2dk+a−2X

3dk+a
2dk+X
3dk+a

2dk+a−X
3dk+a

We use a buddy-match sequence to determine z.

M0 = ( dk+X
3dk+a

, dk+d+X
3dk+a

)

B0 = B(M0) = (2dk+a−d−X
3dk+a

, 2dk+a−X
3dk+a

)

(∀0 ≤ i ≤ k − 1)[Mi = M(Bi−1) = (dk+id+X
3dk+a

, dk+(i+1)d+X
3dk+a

)]

(∀0 ≤ i ≤ k − 1)[Bi = B(Mi) = (2dk+a−(i+1)d−X
3dk+a

, 2dk+a−id−X
3dk+a

)].

We need this sequence to make sense. That is, we need that
whenever we apply M to an interval, that interval is contained
in the 2-share region. We proved this within the proof of Theo-
rem 10.11.

The Mi’s keep moving right. We do not want them to get to
the end. Note that

Mk−1 =

(
2dk − d+X

3dk + a
,
2dk +X

3dk + a

)
.

So we want 2dk+X ≤ 2d+a−X which is true since X ≤ a
2
.

The Mi’s are disjoint and each has 3s3 shares

3ks3 = |M0 ∪ · · · ∪Mk−1| =
∣∣∣∣( dk +X

3dk + a
,
2dk +X

3dk + a

)∣∣∣∣.



October 29, 2019 23:51 ws-book9x6 The Mathematics of Muffins fullbook page 137

The Hard Buddy-Match Method 137

But∣∣∣∣( dk +X

3dk + a
,
2dk + a−X

3dk + a

)∣∣∣∣ = all shares = 2(3dk+a+d) = 6dk+2a+2d.

So

z =

∣∣∣∣(2dk+X
3dk+a

, 2dk+a−X
3dk+a

)∣∣∣∣ = 6dk + 2a+ 2d− 3ks3

= 6dk + 2a+ 2d− 3k(2d)
= 2a+ 2d.

Great! We know z.
The following picture captures what we know:
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The 3-shares

( 2a+ 2d 3-shs )[ 0 ]( 4d− 2a 3-shs )[ 0 ]
dk+X
3dk+a

dk+a−X
3dk+a

dk+2X
3dk+a

dk+a+d−2X
3dk+a

dk+d+X
3dk+a

The 2-shares

( 6dk − 10d+ 2a 2-shs )[ 0 ]
dk+d+X
3dk+a

2dk+a−d−X
3dk+a

2dk−d+2X
3dk+a

( 4d− 2a 2-shs )[ 0 ]( 2a+ 2d 2-shs )
2dk−d+2X

3dk+a
2dk+a−2X

3dk+a
2dk+X
3dk+a

2dk+a−X
3dk+a

We use a buddy-match sequence to find symmetry.

M0 = ( dk+X
3dk+a

, dk+a−X
3dk+a

)

B0 = B(M0) = (2dk+X
3dk+a

, 2dk+a−X
3dk+a

)

M1 = M(B0) = (dk+d+X
3dk+a

, dk+a+d−X
3dk+a

)

B1 = B(M1) = (2dk−d+X
3dk+a

, 2dk+a−d−X
3dk+a

)

(∀0 ≤ i ≤ k − 1)[Mi = M(Bi−1) = (dk+id+X
3dk+a

, dk+a+id−X
3dk+a

)]

(∀0 ≤ i ≤ k − 1)[Bi = B(Mi) = (2dk−id+X
3dk+a

, 2dk+a−id−X
3dk+a

)].

We leave it to the reader to prove that every time we apply
M to an interval, that interval is contained in the 2-share region.
We actually do not need to go all the way to i = k− 1 to get to
a symmetric interval. Where we go depends on the parity of k.
Case 1: k is even. Let i = k

2
. Then

Mk/2 =

(
dk + dk

2
+X

3dk + a
,
dk + a+ dk

2
−X

3dk + a

)
.
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The sum of the endpoints is 3dk+a
3dk+a

= 1, so the midpoint is 1
2
.

Hence Mk/2 is symmetric by buddying. In both cases M0 is
symmetric by the buddy-match sequence.

Case 2: k is odd. Let i = k+1
2

. Then

M(k+1)/2 =

(
dk + d(k+1)

2
+X

3dk + a
,
dk + a+ d(k+1)

2
−X

3dk + a

)
.

The sum of the endpoints is 3dk+a+d
3dk+a

so the midpoint is 1
2
×

3dk+a+d
3dk+a

. Hence M(k+1)/2 is symmetric by matching (see Sec-
tion 10.2), and M0 is symmetric by the buddy-match sequence.

The following picture captures what we know about the 3-
shares:

( a+ d | a+ d )[ 0 ]( 4d− 2a 3-shs )
dk+X
3dk+a

dk+a
2

3dk+a
dk+a−X
3dk+a

dk+2X
3dk+a

dk+a+d−2X
3dk+a

We define the following intervals (and use Convention 9.5):

• J1 = ( dk+X
3dk+a

,
dk+a

2

3dk+a
)

• J2 = (
dk+a

2

3dk+a
, dk+a−X

3dk+a
) (|J1| = |J2| = a+ d)

• J3 = (dk+2X
3dk+a

, dk+a+d−2X
3dk+a

) (|J3| = 4d− 2a)

For each type of student we determine the condition on X
such that (1) the student does not get enough (that is, gets
< 3dk+a+d

3dk+a
), and (2) the student gets too much (that is, gets

> 3dk+a+d
3dk+a

). In either case, such a student does not exist.
(1,1,1)-students:

• Not enough: 3 × dk+a
2

3dk+a
≤ 3dk+a+d

3dk+a
which is a ≤ 2d. Always

true.
• Too much: 3× dk+X

3dk+a
≥ 3dk+a+d

3dk+a
. Impossible since X < a+d

4
.

(1, 1, 2)(1, 1, 2)(1, 1, 2)-students:
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• Not enough: 2 × dk+a
2

3dk+a
+ dk+a−X

3dk+a
≤ 3dk+a+d

3dk+a
, which is X ≥

a− d.
• Too much: 2× dk+X

3dk+a
+

dk+a
2

3dk+a
≥ 3dk+a+d

3dk+a
, which is X ≥ a+2d

4
.

Impossible since X < a+d
4

.

(1, 1, 3)(1, 1, 3)(1, 1, 3)-students:

• Not enough: 2 × dk+a
2

3dk+a
+ dk+a+d−2X

3dk+a
≤ 3dk+a+d

3dk+a
, which is

X ≥ a
2
. Impossible since X < a

2
.

• Too much: 2× dk+X
3dk+a

+ dk+2X
3dk+a

≥ 3dk+a+d
3dk+a

, which is X ≥ a+d
4

.

Impossible since X < a+d
4

.

We stop here and leave the rest as an exercise.

Exercise 11.4. Show that the following table is correct: (The
Not Enough column means that any student of that type gets
< 3dk+a+d

3dk+a
. The Too Much column means that any student of

that type gets > 3dk+a+d
3dk+a

.)

Student Type Not Enough Too Much

(1, 1, 1) 0 = 0 0 6= 0

(1, 1, 2) X ≥ a− d 0 6= 0

(1, 1, 3) 0 6= 0 0 6= 0

(1, 2, 2) X ≥ 3a−2d
4

0 6= 0

(1, 2, 3) 0 6= 0 X ≥ a+2d
6

(1, 3, 3) 0 6= 0 X ≥ a+d
5

(2, 2, 2) X ≥ 2a−d
3

0 6= 0

(2, 2, 3) 0 6= 0 X ≥ d
2

(2, 3, 3) 0 6= 0 X ≥ a+2d
8

(3, 3, 3) 0 6= 0 X ≥ a+d
6
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Recall the following picture:

( a+ d | a+ d )[ 0 ]( 4d− 2a 3-shs )
dk+X
3dk+a

dk+a
2

3dk+a
dk+a−X
3dk+a

dk+2X
3dk+a

dk+a+d−2X
3dk+a

The picture leads us to the following:
Equations

Equation(s) 1 Based on |J1| = |J2| = a+ d:

3y1,1,1 + 2(y1,1,2 + y1,1,3) + y1,2,2 + y1,2,3 + y1,3,3 = a+ d

3y2,2,2 + 2(y1,2,2 + y2,2,3) + y1,1,2 + y1,2,3 + y2,3,3 = a+ d

|J3| = 4d− 2a:
Equation 2 based on |J3| = 4d− 2a:

3y3,3,3 + 2(y1,3,3 + y2,3,3) + y1,1,3 + y1,2,3 + y2,2,3 = 4d− 2a

Equation 3 based on s3 = 2d:∑
1≤i≤j≤k≤3

yi,j,k = 2d

End of Getting More Information
We need a definition before resuming the algorithm.

Definition 11.5. A variable is forbidden (abbreviated forb) if
a student of that type is forced to have either too much or too
little muffin. We set such variables to 0. Other variables are
called permitted.

We now resume the algorithm.

(1) Determine which of the yi,j,k variables are forbidden.
(2) In Equations 1,2,3 set the forbidden variables to 0. Denote

the equations E.
(3) Determine if E has a 2d-solution (all of the variables are in
{0, . . . , 2d}). If not then output Yes, if so then output DK.
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11.5 Generating Formulas

We can use the Algorithm from Section 11.4 to generate the-
orems. We can find conditions on X that make many of the
yi,j,k variables forbidden, and then condition on a, d such that
the resulting set of equations has no 2d-solution.

We will look at all ways to make 1, 2, 3, or 4 variables per-
mitted. These will lead to formulas we express as corollaries.

From the table of condition on the yi,j,k variables we have the
following:

• y1,1,1 is always forbidden. We will not mention it again.
• y1,1,3 is always permitted.
• y1,2,3 forb =⇒ y1,3,3 forb =⇒ y2,3,3 forb =⇒ y2,2,2 forb.

(For these yi,j,k the only way they are forbidden is if the
student gets too much. Hence if another student gets more,
they also get too much.)
• y1,2,3 forb =⇒ y2,2,3 forb =⇒ y2,3,3 forb =⇒ y3,3,3 forb.

(For these yi,j,k the only way they are forbidden is if the
student gets too much. Hence if another student gets more,
they also get too much.)
• y2,2,2 forb =⇒ y1,2,2 forb =⇒ y1,1,2 forb. (For these yi,j,k

the only way they are forbidden is if the student gets too
little. Hence if another student gets less, they also get too
little.)

From the above one can deduce the following:

(1) The only set of 1 variable such that one can make only the
element of that set permitted is:

• {y1,1,3}.
(2) The only sets of 2 variables such that one can make only the

elements of that set permitted are:

• {y1,1,3, y1,2,3},
• {y1,1,3, y2,2,2}.
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(3) The only sets of 3 variables such that one can make only the
elements of that set permitted are:

• {y1,1,3, y1,2,2, y2,2,2},
• {y1,1,3, y1,2,3, y1,3,3},
• {y1,1,3, y1,2,3, y2,2,2},
• {y1,1,3, y1,2,3, y2,2,3}.

(4) The only sets of 4 variables such that one can make only the
elements of that set permitted are:

• {y1,1,2, y1,1,3, y1,2,2, y2,2,2},
• {y1,1,3, y1,2,2, y1,2,3, y2,2,2},
• {y1,1,3, y1,2,3, y1,3,3, y2,2,2},
• {y1,1,3, y1,2,3, y1,3,3, y2,2,3},
• {y1,1,3, y1,2,3, y2,2,2, y2,2,3}.

We could list the only sets of 5 variables such that one can
make only the elements of that set permitted. We do not since
this did not lead to any corollaries of interest. That is, the
equations you get do not have an easy condition (e.g., a ≤ d)
such that they are unsolvable.

Notation 11.6. Let COND(X) be the following condition on
X:

a

3
≤ X < min

{
a

2
,
a+ d

4

}
.

In the next subsections we obtain 12 corollaries that will yield
nice formulas to bound f(3dk + a + d, 3dk + a). We only work
out a few of them. For the rest we give the result but leave it
to the reader to derive it.

We will sometimes state conditions on a, d that make the
theorem work. The conditions will be labeled with a **, meaning
they are useful, or with Not Helpful, which is what it sounds like,
or with Overshadowed meaning a condition that could be helpful
but for the fact that another condition implies it.
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11.5.1 y1,1,3 Permitted, All Other Variables For-
bidden

To make all other variables forbidden:

• y1,2,3 forbidden. The students get too much: X ≥ a+2d
6

.
• y2,2,2 forbidden. The students get too little: X ≥ 2a−d

3
.

If all variables except y1,1,3 are set to 0 then the equations
are:

2y1,1,3 = a+ d

0 = a+ d

y1,1,3 = 4d− 2a

y1,1,3 = 2d.

If these equations have a 2d-solution then a+ d = 0 which is
not possible. Hence we have the following corollary:

Corollary 11.7. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. Then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{a+2d
6
, 2a−d

3
}, if COND(X) holds.

11.5.2 y1,1,3, y1,2,3 Permitted, All Other Variables
Forbidden

Corollary 11.8. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a 6= 1 or d 6= 1 then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{a+d
5
, 2a−d

3
, d
2
}, if COND(X) holds.
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11.5.3 y1,1,3, y2,2,2 Permitted, All Other Variables
Forbidden

Corollary 11.9. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a 6= 7d

5
then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{3a−2d
4

, a+2d
6
}, if COND(X) holds.

If a = 10 and d = 7 (note that a 6= 7d
5

) then f(21k+17, 21k+
10) ≤ 7k+4

21k+10
. Plug in k = 2 to get f(59, 52) ≤ 18

52
, which is

Theorem 11.2.

11.5.4 y1,1,3, y1,2,2, y2,2,2 Permitted, All Other
Variables Forbidden

To make all other variables forbidden:

• y1,1,2 forbidden. The students get too little: X ≥ a− d.
• y1,2,3 forbidden. The students get too much: X ≥ a+2d

6
.

If all variables except y1,1,3, y1,2,2 and y2,2,2 are set to 0 then
the equations are:

2y1,1,3 +y1,2,2 = a+ d

+2y1,2,2 +3y2,2,2 = a+ d

y1,1,3 = 4d− 2a

y1,1,3 +y1,2,2 +y2,2,2 = 2d.

This set of equations has solution:

(1) y1,1,3 = 4d− 2a

• 0 ≤ 4d− 2a, so a ≤ 2d. Not helpful.
• 4d− 2a ≤ 2d, so d ≤ a. Overshadowed.

(2) y1,2,2 = 5a− 7d
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• 0 ≤ 5a− 7d, so 7d
5
≤ a**

• 5a− 7d ≤ 2d, so a ≤ 9d
5

. Overshadowed.

(3) y2,2,2 = 5d− 3a

• 0 ≤ 5d− 3a, so a ≤ 5d
3

**
• 5d− 3a ≤ 2d, so d ≤ a. Overshadowed.

Corollary 11.10. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a < 7d

5
or a > 5d

3
then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{a− d, a+2d
6
}, if COND(X) holds.

11.5.5 y1,1,3, y1,2,3, y1,3,3 Permitted, All Other
Variables Forbidden

Corollary 11.11. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a 6= 1 or d 6= 1 then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{2a−d
3
, d
2
}, if COND(X) holds.

11.5.6 y1,1,3, y1,2,3, y2,2,2 Permitted, All Other
Variables Forbidden

Corollary 11.12. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a < d or a > 7d

5
then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{3a−2d
4

, a+d
5
, d
2
}, if COND(X) holds.
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11.5.7 y1,1,3, y1,2,3, y2,2,3 Permitted, All Other
Variables Forbidden

Corollary 11.13. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a 6= 1 or d 6= 1 then

f(3dk + a+ d, 3dk + a ≤ dk +X

3dk + a

where X = max{2a−d
3
, a+d

5
}, if COND(X) holds.

If a = 4 and d = 3 then f(9k + 7, 9k + 4) ≤ 9k+5
27k+12

. Plug in
k = 2 to get f(25, 22) ≤ 23

66
.

11.5.8 y1,1,2, y1,1,3, y1,2,2, y2,2,2 Permitted, All
Other Vars Forbidden

To make all other variables forbidden:

• y1,2,3 forbidden. The students get too much: X ≥ a+2d
6

.

If all variables except y1,1,2, y1,1,3, y1,2,2, y2,2,2 are set to 0 then
the equations are:

2y1,1,2 +2y1,1,3 +y1,2,2 = a+ d

y1,1,2 + +2y1,2,2 +3y2,2,2 = a+ d

+y1,1,3 = 4d− 2a

y1,1,2 +y1,1,3 +y1,2,2 +y2,2,2 = 2d.

These equations are not linearly independent hence they have
an infinite number of solutions. We express the number of
solutions by letting y2,2,2 = w and expressing the other vari-
ables in terms of a, d, w. Since w is the number of students of
type (2, 2, 2) and those must be 3-students, and there are 2d
3-students, we know that 0 ≤ w ≤ 2d. We express these with a
parameter w. Since y2,2,2 = w, 0 ≤ w ≤ 2d.

(1) y1,1,2 = 3a− 5d+ w
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• 0 ≤ 3a− 5d+ 2d so d ≤ a. Overshadowed.
• 3a− 5d ≤ 2d so 3a ≤ 7d. Not useful.
• 0 ≤ 3a− 5d+ w so 5d− 3a ≤ w. So, 10d− 6a ≤ 2w.
• 3a− 5d+ w ≤ 2d so w ≤ 7d− 3a. So, 2w ≤ 14d− 6a.

(2) y1,1,3 = 4d− 2a

• 0 ≤ 4d− 2a, so a ≤ 2d. Not useful.
• 4d− 2a ≤ 2d, so d ≤ a. Overshadowed.

(3) y1,2,2 = 3d− a− 2w

• 0 ≤ 3d− a so a ≤ 3d. Not useful.
• 3d− a− 4d ≤ 2d so −a ≤ 3d. Not useful.
• 0 ≤ 3d− a− 2w so 2w ≤ 3d− a.
• 3d− a− 2w ≤ 2d so d− a ≤ 2w.

(4) y2,2,2 = w

Now look at the w’s:
10d− 6a ≤ 2w ≤ 3d− a, so 7d

5
≤ a.**

d− a ≤ 2w ≤ 14d− 6a, so a ≤ 13d
5

. Not helpful.

Corollary 11.14. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a < 7d

5
then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = a+2d
6

if COND(X) holds.

11.5.9 y1,1,3, y1,2,2, y1,2,3, y2,2,2 Permitted, All
Other Vars Forbidden

Corollary 11.15. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If d > a or a > 7d

3
then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{a− d, a+d
5
, d
2
}, if COND(X) holds.
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11.5.10 y1,1,3, y1,2,3, y1,3,3, y2,2,2 Permitted, All
Other Vars Forbidden

Corollary 11.16. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a < d

2
or a > 7d

5
then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{3a−2d
4

, d
2
}, if COND(X) holds.

11.5.11 y1,1,3, y1,2,3, y1,3,3, y2,2,3 Permitted, All
Other Vars Forbidden

Corollary 11.17. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a > d or a < d

3
then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{2a−d
3
, a+2d

8
}, if COND(X) holds.

11.5.12 y1,1,3, y1,2,3, y2,2,2, y2,2,3 Permitted, All
Other Vars Forbidden

Corollary 11.18. Let a, d, k be such that d, k ≥ 1, a ∈
{1, . . . , 2d}. If a > 7d

5
or a < d then

f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

where X = max{a+d
5
, 3a−2d

4
}, if COND(X) holds.

Exercise 11.19. Use the corollaries above and the other tech-
niques in this book to get formulas for f(s+d, s) for small values
of d. (We have a paper on the MUFFINS website that answers
this.)
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11.6 A Reasonable and a Bizarre Theorem

In all of the corollaries presented in Section 11.5 we had a bound
on f(3dk + a + d, 3dk + a) of the form dk+X

3dk+a
where X did not

depend on k. Hence the following theorem, due to Richard
Chatwin [Chatwin (2019)], is not a surprise:

Theorem 11.20. (The Reasonable X(a, d)-Theorem.) For all
a, d such that a ∈ {1, . . . , 3d}, there exists X = X(a, d) such
that

(∀k ≥ 1)

[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
.

The proofs of the corollaries strongly used that there were
only 2-shares and 3-shares, so Buddy-Match sequences were pos-
sible. This happens for f(3dk+a+d, 3dk+a) when k ≥ 1. What
about when k = 0? In this case we do not have 2-shares and
3-shares, we have (V − 1)-shares and V -shares for some V ≥ 3.
Hence we cannot use buddy-match techniques. So there is no
reason to expect that the formula above holds when k = 0. Ex-
cept for one thing. It does. Richard Chatwin also proved the
following bizarre theorem:

Theorem 11.21. (The Unreasonable X(a, d)-Theorem.) For
all a, d such that a ∈ {1, . . . , 3d}, there exists X = X(a, d) such
that

(∀k ≥ 0)

[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
.

(For this conjecture we take, for all m, f(m, 1) = f(m, 2) = 1
2

since that makes it work. This part is not unreasonable—we
always assume that every muffin is cut into 2 pieces.)

Before we knew Theorem 11.21 was true we thought it was
true and, by assuming, it, got some real results. Here was the
process:
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(1) Given a, d we want to find the X such that

(∀k ≥ 1)

[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
.

(2) Plug in k = 0 to get the expression f(a+ d, a) ≤ X
a

.
(3) We actually know f(a+d, a), so we can find a candidate for

X.
(4) Given the candidate we verify it using Buddy-Match tech-

niques.
(5) Once it’s verified it doesn’t matter that we got it by guess-

work and a bizarre conjecture; it’s true.

11.7 The Function HBM

We leave the formal definition of the HBM function to the
reader. It is similar to the EBM function but with many more
cases.

Theorem 11.22. For every m ≥ s, f(m, s) ≤ HBM(m, s).

11.8 Program and Progress

Using the techniques presented so far we have the following at-
tempt at an algorithm to find f(m, s):

(1) Input(m, s)
(2) α is the min of
{FC(m, s),Half(m, s),INT(m, s),MID(m, s),EBM(m, s),
HBM(m, s)}.

(3) Run FINDPROC(m, s, α). If it outputs a procedure P then
output α, else output DK.

There are 3520 pairs (m, s) we are considering (see Chap-
ter 3). There were 78 pairs that neither FC nor Half nor INT
nor MID nor EBM able so solve, but HBM was. Here are the
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full statistics so far. When we state that (say) for 329 cases
f(m, s) = Half(m, s) it is implicit that the prior techniques (in
the case of Half its just FC) did not obtain the upper bound.

• For 2301 of them, f(m, s) = FC(m, s). That is ∼ 65.37%.
• For 329 of them, f(m, s) = Half(m, s). That is ∼ 9.35%.
• For 186 of them, f(m, s) = INT(m, s). That is ∼ 5.28%.
• For 111 of them, f(m, s) = MID(m, s). That is ∼ 3.15%
• For 240 of them, f(m, s) = EBM(m, s). That is ∼ 6.82%
• For 89 of them, f(m, s) = HBM(m, s). That is ∼ 2.53%.
• For 264 of them, none of FC, Half, INT, MID, EBM, or

HBM suffices to find f(m, s). That is ∼ 7.79%.
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Chapter 12

The Gap and Train Methods

12.1 Recap and Goals for This Chapter

From Chapter 4, 6, 8, 9, 10, and 11, we know that, for m ≥ s,

f(m, s) ≤ min

{FC(m, s),Half(m, s), INT(m, s),MID(m, s),

EBM(m, s),HBM(m, s)}.

Just for now we will refer to the min of those quantities
as minf(m, s). Is it the case that, for all m ≥ s, f(m, s) =
minf(m, s)? No. The counterexample with the smallest s is
f(47, 17); however it is more illustrative to show the following:

f(31, 19) ≤ 54

133

f(54, 47) ≤ 16

47
.

The proofs of these upper bounds use a new technique called
The Gap method. We develop an algorithm Gap(m, s) which,
given m, s, finds an α such that f(m, s) ≤ α can be proved by
the Gap method.

Exercise 12.1. For (m, s) = (47, 17), (31, 19), (54, 47):

(1) Compute α = minf(m, s).
(2) Compute FINDPROC(m, s, α). (You should get a DK

which means that minf(m, s) is unlikely to be f(m, s).)

153
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12.2 Thirty-One Muffins, Nineteen Students

Theorem 12.2. f(31, 19) = 54
133

.

Proof. We leave the proof that f(31, 19) ≥ 54
133

to the reader.
Alternatively the reader can run FINDPROC(31, 19, 54

133
).

We use denominator 266 to avoid fractional numerators. We
prove f(31, 19) ≤ 108

266
. Every student gets 31

19
= 434

266
.

We begin the proof that f(31, 19) ≤ 54
266

as if we were using
the MID method.

Assume, by way of contradiction, that there is a (31, 19)-
procedure with smallest piece > 108

266
. We leave it to the reader to

show that there are fourteen 3-students, five 4-students, forty-
two 3-shares, twenty 4-shares, and that the following picture
captures what we know:

( 20 4-shs )[ 0 ]( 22 3-shs )[ 0 ]( 20 3-shs )
108
266

110
266

118
266

148
266

156
266

158
266

The following picture captures what we know about the 3-
shares (we use Convention 9.5):

( 11 3-shs | 11 3-shs )[ 0 ]( 20 3-shs )
118
266

133
266

148
266

156
266

158
266

We define the following intervals:

• I1 = (118
266
, 133
266

)

• I2 = (133
266
, 148
266

) (|I1| = |I2| = 11.)

• I3 = (156
266
, 158
266

) (|I3| = 20.)

We need a finer classification of 3-students. We use Nota-
tion 9.4.
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Claim 1: The following are the only types of students who
are possible:

(1) (1, 2, 3) (y1,2,3 denotes the number of such students.)
(2) (1, 3, 3) (y1,3,3 denotes the number of such students.)
(3) (2, 2, 2) (y2,2,2 denotes the number of such students.)
(4) (2, 2, 3) (y2,2,3 denotes the number of such students.)

Proof of Claim 1:
We establish that some students are impossible.

A (1, 2, 2)-student has < 133
266

+ 2× 148
266

= 429
266

< 434
266

.
A (1, 1, 3)-student has < 2× 133

266
+ 158

266
= 424

266
< 434

266
.

A (2, 3, 3)-student has > 133
266

+ 2× 156
266

= 445
266

> 434
266

.
The result follows.

End of Proof of Claim 1
We set up equations just as with the MID technique:
Since |I1| = 11:

y1,2,3 + y1,3,3 = 11.

Since |I2| = 11:

y1,2,3 + 3y2,2,2 + 2y2,2,3 = 11.

Since |I3| = 20:

y1,2,3 + 2y1,3,3 + y2,2,3 = 20.

Since s3 = 14:

y1,2,3 + y1,3,3 + y2,2,2 + y2,2,3 = 14.

We need to show that this system has no N-solutions.
Not so fast. It does have an N-solution. In fact, it has four:

• (y1,2,3, y1,3,3, y2,2,2, y2,2,3) = (2, 9, 3, 0)
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• (y1,2,3, y1,3,3, y2,2,2, y2,2,3) = (3, 8, 2, 1)
• (y1,2,3, y1,3,3, y2,2,2, y2,2,3) = (4, 7, 1, 2)
• (y1,2,3, y1,3,3, y2,2,2, y2,2,3) = (5, 6, 0, 3)

Hence the MID method fails to show f(31, 19) ≤ 108
266

.
There was one hint that this proof would not work out: none

of the proofs that students are impossible had a *.
Okay. . . now what? Look at the students who use I1-shares.

Assume Alice is a (1, 2, 3)-student. How big does the I1-share
have to be so that Alice can get enough?

(1) Since the I2-share contributes < 148
266

and the I3-share con-
tributes < 158

266
, together they contribute < 148

266
+ 158

266
= 306

266
.

(2) Hence Alice’s I1-share must be > 434
266
− 306

266
= 128

266
.

(3) In short: A (1, 2, 3)-student has I1-share > 128
266

.

Assume Bob is a (1, 3, 3)-student. How small does the I1-
share have to be to make sure that Bob doesn’t get too much?

(1) The two I3-shares contribute > 2× 156
266

= 312
266

.
(2) Hence Bob’s I1-share must be < 434

266
− 312

266
= 122

266
.

(3) In short: A (1, 3, 3)-student has I1-share < 122
266

.

Since the only students who have I1-shares are (1, 2, 3)-
students and (1, 3, 3)-students we have:

There are no shares in [122
266
, 128
266

]. And it gets better! By
buddying: There are no shares in [138

266
, 144
266

].
The following picture captures what we know about the 3-

shares (we do not know x or y):

( x 3-shs )[ 0 ]( y 3-shs | y 3-shs )[ 0 ]( x 3-shs )
118
266

122
266

128
266

133
266

138
266

144
266

148
266
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[ 0 ]( 20 3-shs )
148
266

156
266

158
266

We define new intervals (and use Convention 9.5).

• I1 = (118
266
, 122
266

)

• I2 = (128
266
, 133
266

)

• I3 = (133
266
, 138
266

) (|I2| = |I3|.)
• I4 = (144

266
, 148
266

) (|I1| = |I4|.)
• I5 = (156

266
, 158
266

) (|I5| = 20.)

(We also know that |I1| + |I2| = |I3| + |I4| = 11 but this is not
needed.)
Claim 2: The following are the only types of students who
are possible:

(1) (1, 5, 5) (y1,5,5 denotes the number of such students.)
(2) (2, 4, 5) (y2,4,5 denotes the number of such students.)
(3) (3, 4, 5) (y3,4,5 denotes the number of such students.)
(4) (4, 4, 4) (y4,4,4 denotes the number of such students.)

Proof of Claim 2:
We establish that some students are impossible.
A (1, 4, 5)-student has < 122

266
+ 148

266
+ 158

266
= 428

266
.

A (3, 4, 4)-student has < 138
266

+ 2× 148
266

= 434
266

*.
A (3, 3, 5)-student has < 2× 138

266
+ 158

266
= 434

266
*.

A (2, 5, 5)-student has > 128
266

+ 2× 156
266

= 440
266

> 434
266

.
A (4, 4, 5)-student has > 2× 144

266
+ 156

266
= 444

266
> 434

266
.

The result follows.
End of Proof of Claim 2
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Since |I2| = |I3|:
Eq 1: y2,4,5 = y3,4,5.

Since |I1| = |I4|:
Eq 2: y1,5,5 = y2,4,5 + y3,4,5 + 3y4,4,4.

Since s3 = 14:
Eq 3: y1,5,5 + y2,4,5 + y3,4,5 + y4,4,4 = 14.

We use Eq 1 to eliminate y3,4,5 from Eq 2 and Eq 3 to get:

y1,5,5 = 2y2,4,5 + 3y4,4,4
y1,5,5 = 14− 2y2,4,5 − y4,4,4

We equate the two expressions for y1,5,5 to get:

2y2,4,5 + 3y4,4,4 = 14− 2y2,4,5 − y4,4,4

2y2,4,5 + 4y4,4,4 = 7

y2,4,5 + 2y4,4,4 =
7

2
which is a contradiction since this equation has no N-solutions.

Exercise 12.3. Prove the following using the Gap method:

(1) f(41, 19) ≤ 131
304

(2) f(59, 22) ≤ 167
374

(3) f(41, 23) ≤ 149
368

(4) f(54, 25) ≤ 151
350

(5) f(67, 25) ≤ 223
500

(6) f(59, 26) ≤ 191
442

(7) f(47, 29) ≤ 117
290

(8) f(55, 31) ≤ 151
372

(9) f(67, 31) ≤ 187
434

(10) f(55, 34) ≤ 151
374
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12.3 Fifty-Four Muffins, Forty-Seven Students

The proof of f(31, 19) ≤ 54
133

used buddying and the 3-shares.
Most proofs using the Gap method just use buddying and one
type of share.

We prove f(54, 47) ≤ 16
47

using buddying and matching (see
Section 10.2). We will also use both the 2-shares and the 3-
shares. There is one more nuance in the proof that we will point
out when we get to it.

Theorem 12.4. f(54, 47) = 16
47

.

Proof. We leave the proof that f(54, 47) ≥ 16
47

to the reader.
Alternatively the reader can run FINDPROC(54, 47, 16

47
).

Since 47 divides 47 normally we would do this proof with
denominator 47. However, if we did that then some of the other
numbers involved would not be integers. We use denominator
94 to avoid that. We restate our theorem as f(54, 47) ≤ 32

94
.

Every student gets 54
47

= 108
94

.
Assume, by way of contradiction, that there is a (54, 47)-

procedure with smallest piece > 32
94

. We leave it to the reader to
show that there are thirty-three 2-students, fourteen 3-students,
sixty-six 2-shares, forty-two 3-shares, and that the following pic-
ture captures what we know:

( 42 3-shs )[ 0 ]( 66 2-shs )
32
94

44
94

46
94

62
94

We would normally now buddy the gap to get another gap.
Instead we will create a buddy-match sequence (see Defini-
tion 10.4) which will give us many gaps. The first gap we get is
the usual buddy gap.

(1) [44
94
, 46
94

] = ∅.
(2) B[44

94
, 46
94

] = [48
94
, 50
94

] is empty. Since [48
94
, 50
94

] is contained in
the 2-share region we can apply M to it.
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(3) M [48
94
, 50
94

] = [58
94
, 60
94

] is empty.

(4) B[58
94
, 60
94

] = [34
94
, 36
94

] is empty. Since [34
94
, 36
94

] overlaps the 3-
shares region, we cannot apply M to it; we stop.

The following picture captures all we know about the 2-shares
(we do not know x, y, or z).

( x 2-shares )[ 0 ]( y 2-shares )[ 0 ]( z 2-shares )
46
94

48
94

50
94

58
94

60
94

62
94

Are there symmetries? Yes:

(1) (46
94
, 48
94

) = (60
94
, 62
94

) by matching. So x = z.
(2) (50

94
, 54
94

) = (54
94
, 58
94

) by matching. So we want to break the
interval (50

94
, 58
94

) into two intervals (50
94
, 54
94

) and (54
94
, 58
94

) and
then use Convention 9.5 so we do not need to worry about
pieces of size 54

94
. But we can’t! (This is the nuance we

referred to above.) Let’s say we did that and were wondering
if 2-student Alice can have both shares in (50

94
, 54
94

). Normally
we would say no since each piece is < 54

94
; hence Alice gets

<
54

94
+

54

94
=

108

94
.

Normally this strict inequality is correct since at least one
of the shares is the end of an open interval. But in this case
both shares are the end of a closed interval. Alice really
can’t have two pieces in (50

94
, 54
94

) but she can have two pieces
in [54

94
, 54
94

]. What to do? We make [54
94
, 54
94

] an interval all
by itself. We call share sizes that need their own interval
troublesome.

In the following picture we are reusing the labels x, y, z. y
and z do not mean what they meant in the previous picture.
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As usual, the following picture represents all we know about the
3-shares (we do not know x, y, or z).

( x 2-shs )[ 0 ]( y 2-shs )[ z 2-shs ]( y 2-shs )[ 0 ]( x 2-shs )
46
94

48
94

50
94

54
94

54
94

58
94

60
94

62
94

Are there more symmetries? Yes:

(1) |(46
94
, 47
94

)| = |(47
94
, 48
94

)| by buddying.

(2) |(46
94
, 47
94

)| = |(61
94
, 62
94

)| by matching.

(3) |(47
94
, 48
94

)| = |(60
94
, 61
94

)| by matching.

(4) |(60
94
, 61
94

)| = |(61
94
, 62
94

)| by combining the above items.

In the following picture we are reusing the labels x, y, z. x
does not mean what it meant in the previous picture. As usual,
the following picture represents all we know about the 2-shares
(we do not know x, y, or z).

( x 2-shs | x 2-shs )[ 0 ]( y 2-shs )[ z 2-shs ]( y 3-shs )
46
94

47
94

48
94

50
94

54
94

54
94

58
94

[ 0 ]( x 2-shs | x 2-shs )
58
94

60
94

61
94

62
94

Are there more symmetries? Yes:

(1) |(32
94
, 33
94

)| = |(61
94
, 62
94

)| by buddying.

(2) |(33
94
, 34
94

)| = |(60
94
, 61
94

)| by buddying.

(3) |(32
94
, 33
94

)| = |(33
94
, 34
94

)| by the above and (60
94
, 61
94

) = (61
94
, 62
94

).

(4) All of the above intervals in the last three items have x
shares since both (46

94
, 47
94

) and (47
94
, 48
94

) have x shares. This is
easy and we leave it to the reader.
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(5) [54
94
, 54
94

] = [40
94
, 40
94

] by buddying. Even though 40
94

is not a
troublesome share size (recall that 54

94
is troublesome), for

symmetry we also give 40
94

its own interval.

(6) |(36
94
, 40
94

)| = |(54
94
, 58
94

)| by buddying.

(7) |(40
94
, 44
94

)| = |(50
94
, 54
94

)| by buddying.

(8) |(36
94
, 40
94

)| = |(40
94
, 44
94

)| by the above and |(50
94
, 54
94

)| = |(54
94
, 58
94

)|.

The following picture captures everything we know about the
2-shares and the 3-shares.
3-shares

( x 3-shs | x 3-shs )[ 0 ]( y 3-shs )[ z 3-shs ]( y 3-shs )
32
94

33
94

34
94

36
94

40
94

40
94

44
94

2-shares

( x 2-shs | x 2-shs )[ 0 ]( y 2-shs )[ z 2-shs ]( y 2-shs )
46
94

47
94

48
94

50
94

54
94

54
94

58
94

[ 0 ]( x 2-shs | x 2-shs )
58
94

60
94

61
94

62
94

We define two types of intervals. The J-intervals are of 3-
shares, the I-intervals are of 2-shares. Our explanations of why
certain intervals are equal are either mat for matching, bud for
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buddying, or trans for transitive closure of the other equalities.

• J1 = (32
94
, 33
94

)

• J2 = (33
94
, 34
94

) (|J1| = |J2| by trans.)

• J3 = (36
94
, 40
94

)

• J4 = [40
94
, 40
94

]

• J5 = (40
94
, 44
94

) (|J3| = |J5| by trans.)

• I1 = (46
94
, 47
94

)

• I2 = (47
94
, 48
94

) (|I1| = |I2| by bud.)

• I3 = (50
94
, 54
94

) (|J5| = |I3| by bud.)

• I4 = [54
94
, 54
94

] (|J4| = |I4| by bud.)

• I5 = (54
94
, 58
94

) (|J3| = |I5| by bud, |I3| = |I5| by mat.)

• I6 = (60
94
, 61
94

) (|J2| = |I6| by bud, |I2| = |I6| by mat.)

• I7 = (61
94
, 62
94

) (|J1| = |I7| by bud, |I1| = |I7| by mat. )

Since |J1| = |I7| and |I1| = |I7|, |I1| = |J1|. Since |I1| = |I2|
and |J1| = |J2| we have

|J1| = |J2| = |I1| = |I2|.

More equations can be obtained; however, we will not need
them.

The astute reader may have noticed that we have more trou-
blesome share sizes. Lets say we were wondering if there can be
a (1, 6)-student Alice, so Alice would have one share in I1 and
one share in I6. Normally we would say this is not possible since
she would have

<
47

94
+

61

94
=

108

94
.

Normally this strict inequality is correct since at least one of
the shares is the end of an open interval. But there can be
shares of sizes 47

94
and 61

94
. We should declare both 47

94
and 61

94
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troublesome and make them each their own interval, plus their
buddies (though 47

94
is its own buddy, so no need there). We are

not going to do this. Hence our proof is technically incorrect.
We leave it to the reader to modify the proof to make it correct.
As it stands the proof still illustrates the points we want to
make, that if V = 3 then a gaps proof can use a buddy-match
sequence and symmetries.
Claim 1: The following are the only types of students who
are possible:

(1) (1, 1, 5) (y1,1,5 will denote the number of these.)
(2) (1, 2, 5) (y1,2,5 will denote the number of these.)
(3) (1, 3, 3) (y1,3,3 will denote the number of these.)
(4) (2, 2, 5) (y2,2,5 will denote the number of these.)
(5) (2, 3, 3) (y2,3,3 will denote the number of these.)

Proof of Claim 1:
We establish that some students are impossible.

A (2, 2, 4)-student has < 2× 34
94

+ 40
94

= 108
94

*.
A (3, 3, 3)-student has > 3× 36

94
= 108

94
*.

A (1, 3, 4)-student has > 32
94

+ 36
94

+ 40
94

= 108
94

*.
End of Proof of Claim 1:
Claim 2: The following are the only types of students who
are possible:

(1) (1, 7) (z1,7 will denote the number of these.)
(2) (2, 6) (z2,6 will denote the number of these.)
(3) (3, 5) (z3,5 will denote the number of these.)

Proof of Claim 2: We establish that some students are im-
possible.

A (1, 6)-student has < 47
94

+ 61
94

= 108
94

*.
A (2, 5)-student has < 48

94
+ 58

94
= 106

94
< 108

94
.

A (2, 7)-student has > 47
94

+ 61
94

= 108
94

*.
A (3, 6)-student has > 50

94
+ 60

94
= 110

94
> 108

94
.

By Claim 1 there are no shares in J4. Since I4 buddies J4
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there are no shares in I4. Hence there are no students of type
(3, 4), (4, 4), (4, 5), (4, 6), or (4, 7).

The result follows.
End of Proof of Claim 2

Since |I1| = |I2|:
Eq 1: z1,7 = z2,6.

Since |J1| = |J2| = |I1| = |I2|:
Eq 2: 2y1,1,5 + y1,2,6 + y1,3,3 = 2y2,2,5 + y2,3,3 = z1,7.

Since |J5| = |I3|:
Eq 3: y1,1,5 + y1,2,5 + y2,2,5 = z3,5.

Since |J3| = |I5|:
Eq 4: 2y1,3,3 + 2y2,3,3 = z3,5

Since s2 = 33:
Eq 5: z1,7 + z2,6 + z3,5 = 33.

Since s3 = 14:
Eq 6: y1,1,5 + y1,2,5 + y1,3,3 + y2,2,5 + y2,3,3 = 14

We rewrite Eq 6 as

Eq 7: (y1,1,5 + y1,2,5 + y2,2,5) +
1

2
× (2y1,3,3 + 2y2,3,3) = 14

Using Eq 3 and Eq 4 we rewrite Eq 7 as

z3,5 +
1

2
z3,5 = 14

3z3,5 = 28

Since 28 is not a multiple of 3, there is no N-solutions.

At the end of the proof of Theorem 12.4 we needed to show
that a set of linear equations did not have a N-solution. In this
case, we were lucky that we could prove there was no N-solution
by hand. For other problems we are (1) not so lucky, in that
hand calculations would be tedious, but (2) lucky that we live
in the modern computer age. Indeed, we use a linear equation
solver.
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12.4 The VGap Program

The following psuedocode summarizes the VGap method:
VGap

(1) Input (m, s, α).
(2) Find intervals and gaps as in the VMID method. Hence the

interval that contains 1
2

will be split into two intervals that
buddy each other. If V = 3 then (1) use a buddy-match
sequence to find intervals and gaps, (2) split the interval
that has m

2s
, and (3) make m

2s
its own interval.

(3) Iterate the following process until no new gaps are formed.

(a) Note which intervals have the same number of shares
via buddying. If V = 3 then note which intervals of
2-shares have the same number of shares via matching
and make the troublesome shares, and their buddies and
matches, into separate intervals.

(b) Find the possible students.
(c) Use them to try to create new gaps. If such are found

then use buddying (and a buddy-match sequence if V =
3) to find more intervals and gaps.

(4) (Iteration will produce no new gaps.) Assign to each possi-
ble type of student a variable. Set up the equations based
on what you know about symmetry, how much is in some
intervals, sV and sV−1. If this system has no N-solution then
you are done, f(m, s) ≤ α, so output Yes. Else output DK.

12.5 The Gap Program

In the prior chapters we had a program for (say) Half that pro-
duced an upper bound. So far we have VGap which verifies
upper bounds but does not produce them. In order to produce
an upper bound we need to do a binary-search-like algorithm
with VGap.
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Gap

(1) Input m, s.
(2) Look at all the rationals between 1

3
and 1

2
that have de-

nominators of the form bs where 1 ≤ b ≤ ms. (Empirical
evidence suggests that the denominator is always a multiple
of s that is ≤ ms2. It is usually much lower.) Sort them to
produce α1 < α2 < · · · < αn. Add in α0 = 1

3
if its not there

already.
By using VGap(m, s, αi) do a binary search to find the small-
est αi such that VGap(m, s, αi) = Yes. Output αi.

Note 12.5. In practice we will know much better upper bounds
that 1

2
having ran FC(m, s), Half(m, s), etc. Hence the binary

search will be on less numbers than portrayed here.

Theorem 12.6. For all m ≥ s, f(m, s) ≤ Gap(m, s).

12.6 Program and Progress

Using the techniques presented so far we have the following at-
tempt at an algorithm to find f(m, s):

(1) Input(m, s)
(2) α is the min of
{FC(m, s),Half(m, s),INT(m, s),
MID(m, s),EBM(m, s), HBM(m, s), Gap(m, s)}.

(3) Run FINDPROC(m, s, α). If it outputs a procedure then
output α, else output DK.

12.7 The Train Method

Before the Gap method we had solved 3246 of the 3520 cases we
are considering (see Chapter 3), leaving 274 unsolved. The Gap
method solved 261 of them, leaving 13 unsolved. Hence we need
a new method. We found one! The Train method. We omit it
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from this book since it is somewhat complicated; however, it is
on the MUFFIN website.

The Train method did indeed solve the remaining 13 cases.

12.8 Program

Using the techniques presented so far (and the Train method)
we have the following attempt at an algorithm to find f(m, s).
Since it is the last algorithm using our methods we call it OU-
RULTIMATE.
OURULTIMATE

(1) Input(m, s)
(2) α is the min of

{FC(m, s),Half(m, s), INT(m, s),MID(m, s),

EBM(m, s),HBM(m, s)}

(3) Run FINDPROC(m, s, α). If it outputs a procedure P then
output α.

(4) Run Gap(m, s) except that we can do the binary search with
α as the upper bound, not 1

2
. If it outputs α then by the

Gap Program, α is the answer, so output α.
(5) Run Train(m, s) except that we can do the binary search

with α as the upper bound, not 1
2
. If it outputs α then by the

Train Program, α is the answer, so output α. (Train(m, s)
will also use some of the information that Gap(m, s) found
in its failed attempt to prove the upper bound.)

There are 3520 pairs (m, s) we are considering (see Chap-
ter 3). There were 261 pairs that neither FC nor Half nor INT
nor MID nor EBM nor HBM were able so solve, but Gap was.
There were 14 pairs where none of the above could solve them,
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nor could Gap, but Train could. Here are the full statistics.
When we state that (say) for 329 cases f(m, s) = Half(m, s) it
is implicit that the prior techniques (in the case of Half its just
FC) did not obtain the upper bound.

• For 2301 of them, f(m, s) = FC(m, s). That is ∼ 65.37%.
• For 329 of them, f(m, s) = Half(m, s). That is ∼ 9.35%.
• For 186 of them,f(m, s) = INT(m, s). That is ∼ 5.28%.
• For 111 of them, f(m, s) = MID(m, s). That is ∼ 3.15%
• For 240 of them, f(m, s) = EBM(m, s). That is ∼ 6.82%
• For 89 of them, f(m, s) = HBM(m, s). That is ∼ 2.53%.
• For 250 of them, f(m, s) = Gap(m, s) This is ∼ 7.10%.
• For 13 of them, f(m, s) = Train(m, s). This is ∼ 0.4%.
• All 3520 are solvable by one of the methods above.

We have solved all of the problems we were considering. Yeah!
So. . . are we done?

The next chapter presents a method, due to Scott Huddle-
ston, which, given (m, s), finds an (m, s)-procedure very quickly.
In all cases we have tested it gives the optimal one. Later,
Richard Chatwin [Chatwin (2019)] rediscovered Scott’s algo-
rithm and proved it correct. Hence we actually know all of
the answers. So, do our techniques always lead to the correct
answer? Alas no. The following were discovered by Scott’s algo-
rithm; however, our techniques cannot prove the upper bounds:

(1) f(205, 178) = 214
623

.
(2) f(226, 135) = 388

945
.

(3) f(233, 141) = 691
1692

,

We suspect that we could extend our methods to prove these
three. However, this would get more complicated and actually
approach being the harder methods of Scott that we have been
trying to avoid. Hence, for our own techniques, we stop here.
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Chapter 13

Scott Huddleston’s Method*

13.1 Recap

In Section 12.8 we used all of our methods to produce a program
that computes f(m, s) for all 3519 pairs we targeted in Chap-
ter 3. This should be cause for celebration! But (1) the program
runs slowly for some values of m, s, and (2) there are cases where
our methods do not suffice (see the end of Chapter 12).

We discuss a method that was discovered independently by
Scott Huddleston and Richard Chatwin. We call this Scott’s Al-
gorithm since Scott was the first to contact us about it. Richard
proved that Scott’s algorithm always finds the answer [Chatwin
(2019)], though we omit the proof. Scott’s algorithm is ex-
tremely fast in both theory and practice. Formally Scott’s algo-
rithm shows that finding f(m, s) and an (m, s)-procedure that
achieves this bound can be done in time O(m2). The analysis
may not be tight—it is possible that the algorithm always runs
in O(m log n) time. In any case, in practice, it is always fast.

We give two examples of Scott’s algorithm. These examples
will help to establish notation and concepts. We then present
Scott’s algorithm.

171
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13.2 Five Muffins, Three Students

We assume f(5, 3) > 1
3
. By Theorem 2.6, every muffin is cut

into 2 pieces, so there are 10 shares. We leave it to the reader to
show that there are two 3-students, one 4-student, six 3-shares,
and four 4-shares. So far this is all standard.

We introduce several new ideas that we use throughout this
section.

New Idea One: Generalize The Problem
We first restate the (5,3)-problem:

(1) We have 5 muffins that are worth 1 each and cut into 2
pieces. We denote this as (5, 1, 2). In the future we will
have muffins that have values other than 1.

(2) We have one 4-student who needs 5
3

via 4 shares. We denote
this as (1, 5

3
, 4).

(3) We have two 3-students who need 5
3

via 3 shares. We denote
this as (2, 5

3
, 3).

We denote this problem as

Scott

[
(5, 1, 2) ,

(
1,

5

3
, 4

)
,

(
2,

5

3
, 3

)]
.

We call it SC(5,3)-0. We will soon recast it as a problem
about finding weights on edges in a graph. We will still call this
recast problem SC(5,3)-0.

This is an example of a Scott-Muffin problem. We now give
the formal definition and conventions.

Definition 13.1. A Scott-Muffin Problem is a 3-tuple of 3-
tuples:

(nm, vm, pm)

(ns1 , vs1 , ps1)

(ns2 , vs2 , ps2)

(13.1)

with the following meaning:
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(1) All three tuples are in N×Q× N. All 9 numbers are ≥ 0.
(2) The first tuple (nm, vm, pm) means that there are nm muffins,

each with value vm, and each cut into pm pieces. Later pm
will be the degree of a muffin-vertex in a graph. All three
of these numbers are > 0.

(3) Both the second and third tuples represent students.

(a) The second tuple (ns1 , vs1 , ps1) means that there are ns1
students (these are not all of the students) who want
muffins of value vs1 , in ps1 shares. These are called the
major students (we’ll see why in point c). Later ps1 will
be the degree of a student-vertex in a graph. All three
of these numbers are > 0.

(b) The third tuple (ns2 , vs2 , ps2) means there are ns2 stu-
dents who want muffins of value vs2 , in ps2 shares. These
are called the minor students (we’ll see why in point c).
Later ps2 will be the degree of a student-vertex in a
graph. If all three numbers are 0 then we leave it off
and in this case the Scott-Muffin problem only has two
tuples—a muffin tuple and the major students.

(c) Which student-tuple is major and which is minor is
determined as follows: the tuple with the larger ra-

tio
degree
value are the major muffins. In other words,

ps1
vs1

>
ps2
vs2

.

(4) Be forewarned: you are used to thinking of pieces of muffins
being given to students. We will often invert that and think
of students giving pieces to muffins. The graphs we use will
be undirected so either mentality is fine.

The Scott-Muffin problem is important since we will be tak-
ing a standard muffin problem and transforming it into a smaller
Scott-Muffin problem, and then (possibly) again into an even
smaller Scott-Muffin problem, until we get to a certain type of
Scott-Muffin problem that is easy to solve optimally. We will
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then use that to solve all the problems in the sequence (con-
jecturally) optimally. So solving Scott-Muffin problems is an
example of that old chestnut: it’s sometimes easier to solve a
harder problem.

New Idea Two: Represent the Problem as a Graph
Since the 4-student only uses 4 shares and there are 5 muffins,

there must be a muffin that is shared among only the 3-students.
Since each muffin is cut in two pieces, there will be two 3-
students who share a muffin. We represent this in Graph 13.1
where the massive magenta1 vertices are muffins and the small
cyan vertices are students.

Graph 13.1 Five Muffins, Three Students, SC(5,3)-0

We will present many more graphs (actually multigraphs)
where (1) vertices are either students or muffins, and (2) a muffin
vertex is connected to a student vertex if that student gets a
piece of that muffin. We state the conventions for such graphs.

Convention 13.2. In all of our graphs, the following hold:

(1) Muffins are Massive Magenta (reddish) colored dots. (M for

1Depending on the medium you are reasoning this in you may or may not see
the colors.
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Muffin, Massive, and Magenta).
(2) Students are Small Cyan (blueish) colored dots (S for Stu-

dent, small, and (sort of) Cyan).
(3) A muffin and a student are connected if a student has a

piece of that muffin. Since muffins can only be connected
to students and vice versa, students and muffins are the two
parts of a bipartite graph. We do not draw the graphs as
bipartite since such a drawing would be a mess.

(4) We associate to a Scott-Muffin problem

(nm, vm, pm)

(ns1 , vs1 , ps1)

(ns2 , vs2 , ps2)

(13.2)

a graph. This graph is not unique. That is, there may be
more than one graph that represents the problem. This will
end up not mattering since the graphs are visual aids and not
used in the actual algorithm. The graph will have nm muffin-
vertices of degree pm, ns1 student-vertices of degree ps1 , and
ns2 student-vertices of degree ps2 (we leave out for now how
to determine the edges). The problem is to assign nonnega-
tive weights to the edges such that every muffin-vertex has
weighted degree vm, that every major-student-vertex has
weighted degree vs1 , and that every minor-student-vertex
has weighted degree vs2 . It is easy to see how these weights
can be used to obtain a solution to the Scott-Muffin prob-
lem.

(5) Note that (1) all of the muffin-nodes are of degree pm, (2)
all of the major-student-nodes are of degree ps1 , and (3) all
of the minor-student-nodes are of degree ps2 .

(6) Note that the graph itself does not specify the entire Scott-
Muffin problem. We often say things like this graph captures
some of the Scott-Muffin problem.

(7) The muffin-vertices for a standard muffin problem will have
degree 2 since each muffin is cut into exactly 2 pieces. For
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a Scott-Muffin problem where the muffins may have values
other than 1 and may be cut into more than 2 pieces, the
muffin-vertices may have higher degree.

(8) The weights on the edges represent the size of the piece that
the muffin gave to the student. To re-iterate: we will often
invert that and think of a student giving pieces to a muffin.

Since there are two 3-students who share a muffin, and one
4-student, Graph 13.1 captures some of what we know.

Note that a (5,3)-procedure is a way to assign nonnegative
weights to the edges of Graph 13.1 such that

• The weighted degree of each muffin vertex is 1.
• The weighted degree of each student vertex is 5

3
.

We call the problem of finding such weights SC(5,3)-0.

New Idea Three: Transform the Problem into a Smaller
One—Clusters are Students

We need a notation for a certain part of the graph.

Definition 13.3. Let L ≥ 0. An L-cluster is a sequence of
length 2L + 1 of the form student-muffin-· · · -student that has
L minor students, together with all the other muffins attached
to the students. The muffins in the student-muffin-· · · -student
sequence are called internal muffins whereas the muffins that
are not in that sequence but are attached to the students are
called external muffins. The muffins in the sequence might have
other students attached to them but those students are not part
of the cluster.

Graph 13.1 has a 1-cluster consisting of the 2 students and 1
internal muffin (at the bottom) together with the four external
muffins that are adjacent to the students. Here is the big new
idea:
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We will transform the problem by regarding this 1-
cluster as being a student.

The internal and external muffins are part of the cluster. The
2 students in the cluster need 2 × 5

3
= 10

3
. There is 1 internal

muffin and there are 4 external muffins so the cluster has 5
muffins. We are now going to view the students as having muffin
pieces to give to the muffins. Hence the cluster can be viewed
as a student who has an excess of 5− 10

3
= 5

3
(the fact that this

is 5
3

is an accident, do not let that confuse you). The degree of
the cluster is 4. Hence we can view the 1-cluster as a student of
value 5

3
and degree 4.

What to make of the remaining student? We have already
used up all of the muffins, so that student can be viewed as
needing 5

3
but not having any muffins. So its value is −5

3
. Rather

than think of negative numbers we instead think of this student
as being a muffin who needs 5

3
. Note also that this vertex (which

now represents a muffin) has degree 4. Hence we can view this
as the following Scott-Muffin problem:

Scott

[(
1,

5

3
, 4

)
,

(
1,

5

3
, 4

)]
.

We call it SC(5,3)-1. It is partially represented by Graph 13.2.
The problem is now to put nonnegative weights on the edges
such that

• The weighted degree of the muffin vertex is 5
3
.

• The weighted degree of each student vertex is 5
3
.

We now state a conjecture with two parts. One part we use
now, one we use later.

Conjecture 13.4. If either (1) there are no minor students, or
(2) no set of clusters contains all of the minor students, then all
the pieces being given to the major muffins will be the same size.
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Graph 13.2 Five Muffins, Three Students, SC(5,3)-1

Using this conjecture, and the fact that there are no minor
students, the problem is now easy: Assign each edge 5

12
as in

Graph 13.3.

5
12

5
12

5
12

5
12

Graph 13.3 Five Muffins, Three Students, Solution to SC(5,3)-1

How do we go from the solution of SC(5,3)-1 to a solution of
SC(5,3)-0? The bottom node is really a cluster of two student-
vertices and an internal muffin-vertex. Recall that the weights
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were how much these students were going to give away. Consider
one of these students, Alice. Alice is connected to 2 external
muffin-nodes. Using the solution to SC(5,3)-1 (Graph 13.3) we
see that, for each of these muffins, she gives away 5

12
and hence

keeps 7
12

. Hence each student keeps 2 × 7
12

= 7
6
. They now

need to split the internal muffin so that each one gets 5
3
. Hence

they each need 5
3
− 7

6
= 1

2
. We give the solution to SC(5,3)-0 in

Graph 13.4.
In this case obtaining the solution to the SC(5,3)-0 from the

SC(5,3)-1 was easy. It is not always so easy and we do not
always split internal muffins (1

2
, 1
2
).

7
12

7
12

7
12

7
12

5
12

5
12

5
12

5
12

1
2

1
2

Graph 13.4 Five Muffins, Three Students, Solution to SC(5,3)-0

In summary we transformed SC(5,3)-0

Scott

[
(5, 1, 2) ,

(
1,

5

3
, 4

)
,

(
2,

5

3
, 3

)]
into the easier problem SC(5,3)-1
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Scott

[(
1,

5

3
, 4

)
,

(
1,

5

3
, 4

)]
.

We then solved SC(5,3)-1 and used its solution to solve SC(5,3)-
0.

13.3 Thirty-Five Muffins, Thirteen Students

We now do the problem of f(35, 13). We will use the ideas
from Section 13.2; hence we will assume familiarity with the
definitions and ideas presented there. We will need a few new
ideas as well.

We assume f(35, 13) > 1
3
. By Theorem 2.6, every muffin is

cut into 2 pieces, so there are 70 pieces. We leave it to the reader
to show that there are eight 5-students, five 6-students, forty 5-
shares, and thirty 6-shares. We express this as the following
Scott-Muffin problem:

Scott

[
(35, 1, 2) ,

(
5,

35

13
, 6

)
,

(
8,

35

13
, 5

)]
.

We call this problem SC(35,13)-0. It is somewhat represented
by Graph 13.6, though we need to explain why that graph rep-
resents the problem, so we will look at Graph 13.5 first.

Since there are thirty 6-shares, the 6-students can only use
pieces of 30 muffins. Hence there are 5 muffins that are used
entirely by the 5-students.

We will assume that the 5 muffins that are shared by the
5-students form one 1-cluster and two 2-clusters. Graph 13.5
shows those clusters (without the external muffins—that would
make a mess) along with the 6-students. It turns out that essen-
tially every muffin problem begins this way: (1) find V so that
everyone is either a V -student or a (V −1)-student (V =

⌈
2m
s

⌉
),
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(2) find that the (V − 1)-students must share m′ muffins be-
tween them, (3) find an L such that the muffin-sharing can be
represented by clusters of length L and L− 1.

Graph 13.5 Thirty-Five Muffins, Thirteen Students: Clusters

Given the Scott-Muffin problem and the clusters, Graph 13.6
represents it (other graphs might also).

As in Section 13.2 we will transform SC(35,13)-0 into a
smaller problem. Look at Graph 13.6.

(1) The five 6-students will be viewed as not having any muffins
adjacent to them (these are the external muffins of the clus-
ters in the next two items) hence these five 6-students need
35
13

each and have nothing to begin with. These are now
viewed as muffins and denoted (5, 35

13
, 6).

(2) There are two 2-clusters of 5-students (they are at the bot-
tom of both Graph 13.5 and 13.6). We focus on one of them;
however, the same goes for the other one. The three stu-
dents need 3× 35

13
= 105

13
muffins. The cluster has 2 internal

muffins and 11 external muffins for a total of 13 muffins.
Hence the cluster becomes a student of value 13− 105

13
= 64

13
.
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Graph 13.6 Thirty Five Muffins and Thirteen Students, SC(35,13)-0

Note that there are 11 edge coming out of the cluster. Since
there are 2 of these clusters we denote this (2, 64

13
, 11). Note

that
degree
value = 11

64/13
∼ 2.23. This ratio of degree to value is

larger than the one in the next item, so these are the major
students.

(3) There is one 1-cluster of 5-students (it is at the top of both
Graph 13.5 and 13.6). The two students need 2 × 35

13
= 70

13

muffins. The cluster has 1 internal muffin and 8 external
muffins for a total of 9 muffins. Hence the cluster be-
comes a student of value 9 − 70

13
= 47

13
. Note that there

are 8 edges coming out of the cluster. Since there is only
1 of these clusters we denote this (1, 47

13
, 8). Note that

degree
value = 8

47/13
∼ 2.21. This ratio of degree to value is
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smaller than the one in the prior item, so these are the mi-
nor students.

Hence we have the following Scott-Muffin problem:

Scott

[(
5,

35

13
, 6

)
,

(
2,

64

13
, 11

)
,

(
1,

47

13
, 8

)]
.

We call this problem SC(35,13)-1. It is partially captured by
Graph 13.7.

Graph 13.7 Thirty-Five Muffins, Thirteen Students, SC(35,13)-1

While we have spilled a lot of ink, all we’ve done so far is
transformed SC(35,13)-0:

Scott

[
(35, 1, 2) ,

(
5,

35

13
, 6

)
,

(
8,

35

13
, 5

)]
into SC(35,13)-1:

Scott

[(
5,

35

13
, 6

)
,

(
2,

64

13
, 11

)
,

(
1,

47

13
, 8

)]
.



October 29, 2019 23:51 ws-book9x6 The Mathematics of Muffins fullbook page 184

184 The Mathematics of Muffins

We will transform SC(35,13)-1 to a new problem SC(35,13)-
2. We will then find a solution to SC(35,13)-2 and use it to
find a solution to SC(35,13)-1, and use that to find a solution to
SC(35,13)-0.

13.3.1 Transforming SC(35,13)-1 to SC(35,13)-2

Recall SC(35,13)-1:

Scott

[(
5,

35

13
, 6

)
,

(
2,

64

13
, 11

)
,

(
1,

47

13
, 8

)]
which is represented by Graph 13.7. Since there are no clusters,
by Conjecture 13.4 we give all the major students equal amounts
on all of their edges.

The two major students (the two student-vertices at the bot-
tom of Graph 13.7) each want weighted degree 64

13
and are of

unweighted degree 11. Hence we give each of the edges coming
out of it weight 64

13
× 1

11
= 64

143
.

With these edges taken care of we will recurse into a smaller
Scott-Muffin SC(35,13)-2. Before defining SC(35,13)-2 we look
at the muffin vertices of SC(35,13)-1 that have gotten some of
the way towards their weighted degree.

There are two kinds of muffin vertices in Graph 13.7. Note
that the muffin vertices are the ones in the middle layer.
SC(35,13)-1:

• The 3 muffin-vertices that have 2 edges to the 1 minor stu-
dent. Since these muffins originally needed weighted degree
35
13

and now have, from the edges to the major students,
4× 64

143
= 256

143
, they now need just 35

13
− 256

143
= 129

143
.

• The 2 muffin-vertices that have 1 edge to the 1 minor stu-
dent. Since these muffins originally needed weighted degree
35
13

and now have, from the edges to the major students,
5× 64

143
= 320

143
, they now need just 35

13
− 320

143
= 5

11
.
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We will now define the SC(35,13)-2 problem.

(1) There is 1 muffin of value 47
13

and degree 8. We denote this
as (1, 47

13
, 8). (This used to be the 1 minor student, which is

the top most student in Graph 13.7.)
(2) There are 3 students of value 129

143
and degree 2. We denote

this as (3, 129
143
, 2). Note that

degree
value = 2

129/143
∼ 2.22. These

students have a larger
degree
value than those in the next item so

these are the major students. (These used to be the muffins
that had 2 edges to the minor student.)

(3) There are 2 students of value 5
11

and degree 1. We denote

this as (2, 5
11
, 1). Note that

degree
value = 1

5/11
∼ 2.20. These

students have a smaller
degree
value than those in the prior item

so these are the minor students. (These used to be the
muffins that had 1 edges to the minor student.)

Hence we have

Scott

[(
1,

47

13
, 8

)
,

(
3,

129

143
, 2

)
,

(
2,

5

11
, 1

)]
.

We call this problem SC(35,13)-2. It is partially captured by
Graph 13.8.

This graph has no clusters.
We use Conjecture 13.4 and give all the major students equal

amounts on all of their edges. Since each major student has
degree 2 and must get 129

143
all of those edges get weight 129

143
× 1

2
=

129
286

. The minor students need 5
11

and are of degree 1 so the edge
to each one must be 5

11
. This completes the solution, though

we need to check that the muffins worked out (the first triple in
SC(35,13)-2). For the solution see Graph 13.9.

We need to check that the first part of SC(35,13)-2 works:
(1, 47

13
, 8). There are 2 edges going into the muffin node of weight

5
11

and 6 of weight 129
286

. Hence the total weight going into the
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Graph 13.8 Thirty Five Muffins, Thirteen Students, SC(35,13)-2

muffin is

2× 5

11
+ 6× 129

286
=

47

13
.

Do not be surprised at this. Because of the way we set it up, it
had to be this way.

13.3.2 Using the Solution to SC(35,13)-2 to Solve
SC(35,13)-1

We use the solution to SC(35,13)-2 as expressed in Graph 13.9
to solve SC(35,13)-1. Actually, this is quite easy, since when we
went from SC(35,13)-1 to SC(35,13)-2, we had already assigned
weights to edges and then removed them. Now all we need to do
is put them back. Graph 13.10 shows a solution to SC(35,13)-
1.
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5
11

5
11

129
286 129

286
129
286

129
286

129
286

129
286

Graph 13.9 Thirty Five Muffins, Thirteen Students, Solution to SC(35,13)-2

13.3.3 Using the Solution of SC(35,13)-1 to
Solve SC(35,13)-0

We explain how to take a solution to SC(35,13)-1 and use it to
obtain a solution to SC(35,13)-0. This will be a case where clus-
ters become vertices and some thought is needed to convert the
solution. We will be asking you to flip back and forth between
(1) the problem SC(35,13)-0 which is Graph 13.6, (2) the solu-
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5
11

129
286 129

286

129
286

5
11

64
143

64
143 64

143
64
143

64
143

64
143

Graph 13.10 Thirty Five Muffins, Thirteen Students, Solution to SC(35,13)-1

tion to SC(35,13)-1, which is Graph 13.10, and (3) the solution
to SC(35,13)–0, which is Graph 13.11.

The left bottom student-vertex in Graph 13.10 corresponds
to the left bottom cluster of Graph 13.6. The 11 edges coming
out of the left bottom student-vertex in Graph 13.10 correspond
to the 11 2-paths (student-muffin-student) coming out of the left
bottom cluster of Graph 13.6. We think of the students in the
left bottom cluster as giving away 64

143
and keeping 1− 64

143
. Hence

we get part of Graph 13.11.
Look at the left most student-vertex in the cluster (the same

will hold for the right most) who we call Alice. Alice keeps
for herself 4 × 79

143
= 316

143
and needs (which will come from the

internal muffin) 35
13
− 316

143
= 69

143
. Hence the muffin between left

and middle is split 69
143

for left and 1− 69
143

= 74
143

for middle.
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The same happens for the right most student in the cluster.
So now the left and right both have weighted degree 35

13
. What

about the middle? He has

3× 79

143
+ 2× 74

143
=

35

13
.

This should not surprise you. We set it up this way.
The rest of the edges are mostly forced. Look at the

5 student-vertices on the third level from the bottom in
Graph 13.11 (don’t look at the edge from those nodes going up).
Look at the left most student vertex. We already know that the
5 edges coming into it from the bottom contribute 5× 64

143
= 320

143
.

Since the node needs weighted degree 35
13

, the edge coming out
of it going upwards must have weight

35

13
− 320

143
=

5

11
.

This edge of weight 5
11

goes into a muffin-vertex. Since this
muffin vertex has weighted degree the other edge coming out of
it has weight

1− 5

11
=

6

11
.

In a similar manner we can find the weights of all of the edges.
It will all work out. See Graph 13.11 for the full solution.

13.4 Reflections on What We Have Done

We have demonstrated a way to, given Scott-Muffin A, find a
smaller Scott-Muffin problem B, such that a solution to B gives
a solution to A. We do not know that an optimal solution to
B gives an optimal solution to A but we believe this to be true.
This has held for every single case we have tried. It will be one
of our conjectures.
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6
11

5
11

157
286

129
286

157
286

129
286

157
286

129
286

157
286

129
286

157
286

129
286

157
286

129
286

6
11

5
11

1
2

1
2

69
143 74

143 74
143 69

143
69
143

74
143

74
143

69
143

79
143

64
143

Graph 13.11 Thirty Five Muffins, Thirteen Students, Solution to SC(35,13)-0

For the problem of finding a (35,13)-procedure we did the
following:

Recast it as finding a solution to SC(35,13)-0:

Scott

[
(35, 1, 2) ,

(
5,

35

13
, 6

)
,

(
8,

35

13
, 5

)]
.

Reduced SC(35,13)-0 to SC(35,13)-1:

Scott

[(
5,

35

13
, 6

)
,

(
2,

64

13
, 11

)
,

(
1,

47

13
, 8

)]
.

Reduced SC(35,13)-1 to SC(35,13)-2:
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Scott

[(
1,

47

13
, 8

)
,

(
3,

129

143
, 2

)
,

(
2,

5

11
, 1

)]
.

This last problem, SC(35,13)-2, was easy (if it wasn’t we
would have found a SC(35,13)-3). We got the optimal solution
to SC(35,13)-2 and used it to get a solution to SC(35,13)-1. We
took this solution to SC(35,13)-1 and used it to get a solution to
SC(35,13)-0, our original problem. By conjecture we have the
optimal solution for SC(35,13)-0.

Carrying out the reduction of a Scott-Muffin problem to a
smaller Scott-Muffin problems is very fast. Using a solution
for Scott-Muffin problem B to get a solution for Scott-Muffin
problem A is also very fast. Note that the reduction in size is
often large as well so there are not that many iterations.

13.5 Scott’s Algorithm

From Scott’s algorithm, we were able to extract six conjectures
about the muffin problem with the property that if all six are
true, then the algorithm finds optimal solutions.

Essentially, the conjectures characterize what optimal solu-
tions look like. Once you know the conjectures, the algorithm
can be understood as a way to find a solution that follows the
conjectures. We first present the conjectures, and then present
the algorithm. We believe that the conjectures are true but hard
to prove.

We will assume that the reader has read the past section
and hence knows the following: Scott-Muffin problem, Major
Student, Minor Student.

The conjectures and algorithm in this section are about the
case where f(m, s) > 1

3
. We will discuss how to (slightly) modify

the algorithm to account for what happens if f(m, s) = 1
3

in
Section 13.6. The modification will rely on (what else?) another
conjecture.
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13.5.1 The Conjectures

The first conjecture we have already seen: the V -conjecture. We
restate it in the form we will use it

Conjecture 13.5. Let m ≥ s. Let V =
⌈
2m
s

⌉
. There is an

optimal (m, s)-procedure where everyone is either a V -student
or a (V − 1)-student.

Conjecture 13.6. In an optimal solution to a Scott-Muffin
problem, there are two kinds of muffins.

• Minor muffins, which give one piece to one minor student,
a second piece to a second minor student, and the rest of
their pieces to major students.
• Major muffins, which give exactly one piece to one minor

student (if there are any minor muffins), and the rest of its
pieces to major students.

Exception: if there are no minor muffins, then major muffins
may give all pieces to major students.

Note that the number of major and minor muffins will be
determined by the 9 numbers in the Scott-Muffin problem.

Note also that the above conjecture allow us to draw a graph,
which we call the minor muffin graph (it will be a subgraph
of the graphs we had in the last section). In this graph, the
nodes are minor students, and two minor students have an edge
between them if they both receive a piece from the same minor
muffin. The next conjecture characterizes what this graph looks
like.

Conjecture 13.7. Assume we are looking at a Scott-Muffin
problem. In an optimal solution, the minor muffin graph con-
sists of clusters of length L and L − 1 for some number L. A
cluster in a minor muffin graph is defined below.
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Definition 13.8. A cluster of a minor graph is a set of l nodes
connected in a line by l − 1 edges. Note that this definition
corresponds to the definition of cluster given in the earlier ex-
amples. The edges of a cluster in a minor graph correspond
to the internal muffins of the muffin-student-muffin-. . . -student-
muffin sequence, since those internal muffins are minor muffins.
The other muffins attached to the students in the sequence are
all major muffins, so they are not drawn in the minor muffin
graph.

Lemma 13.9. Assume Conjecture 13.7 is true. Assume we are
looking at a Scott-Muffin problem with parameters as in Defini-
tion 13.1.

(1)

L =

⌈
1

nm

ns2
+ 1− ps2

⌉
(13.3)

(2) There are

a = Lnm − Lps2ns2 + Lns2 − ns2 (13.4)

L− 1 clusters.
(3) There are

b =
ns2 − a(L− 1)

L
(13.5)

L-clusters.
(4) The exception from Conjecture 13.6 applies exactly when

L = 1.
(5) It is possible to partition the graph into L and L−1 clusters

exactly when there are fewer edges than vertices in the minor
graph, i.e. when ns2ps2 < nm + ns2.

Proof. We just note that the calculation of a and b uses the
following:

Each L−1-cluster uses L−1 minor students and ps2(L−1)−
L+2 muffins, and each L-cluster uses L minors and ps2L−L+1
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muffins. Using this information, we can calculate exactly how
many L and L− 1 clusters there are.

For (5), it is clear that if there are more edges than vertices,
the minor graph must have a cycle and therefore is not a forest
of clusters. On the other hand, if there are N vertices and E
edges, then there is an L ≥ 1 such that N L−1

L
≥ E ≥ N L−2

L−1 . So,
we can construct a minor graph with N vertices and E edges
which consists solely of L-clusters and L − 1-clusters. Finally,
note that the minor graph has ns2 vertices and ns2ps2−nm edges.

Conjecture 13.10. Assume that a solution to a Scott-Muffin
problem conforms to Conjectures 6.12, 13.6 and 13.7. Then, for
each muffin, the pieces that it gives to minors are bigger than
the pieces it gives to majors.

The consequence of this is that we don’t have to think about
which minor students receive pieces—only which cluster of them
receives pieces.

Conjecture 13.11. If there are too many muffins to be able to
form clusters, then the optimal solution will involve giving each
major student pieces which are all the same size. Furthermore,
that size will be the smallest piece necessary in the procedure
(That second clause is not necessary to know that the algorithm
yields optimal solutions, but is true in all cases checked so far).

By the lemma, the conjecture kicks in when ns2ps2 ≥ nm+ns2

Conjecture 13.12. If the condition of the last conjecture holds,
then the muffins should give pieces to the majors as evenly as
possible.

This means that the muffins will each give either P or P − 1
pieces to the major students, where
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P =

⌈
ns1ps1
nm

⌉
(13.6)

There will be x = ns1ps1 − (P − 1)nm muffins which give P
pieces, and y = nm − a muffins which give P − 1 pieces.

Theorem 13.13. If the above conjectures are true, then the
algorithm described in the next section always finds optimal so-
lutions.

We will see that this is true.

13.5.2 The Algorithm

The algorithm will input a Scott-Muffin problem and output a α
such that f(m, s) ≥ α and the procedure that proves f(m, s) ≥
α. There are three cases depending on the input. In each case,
we use the conjectures to determine how the algorithm must
proceed.

13.5.2.1 Case 1: No majors or No minors

Without loss of generality suppose that there are no minors, so
ns2 = 0.

We must have then that the total value of muffins and majors
is the same,

nmvm = ns1vs1 (13.7)

and that the total pieces are the same,

nmpm = ns1ps1 . (13.8)

Dividing those two equations, we get
vm
pm

=
vs1
ps1

. (13.9)

If we split all muffins into even sized pieces, then every piece
is of size vm

pm
. Each student will get ps1 of these pieces. Because

of the last equation, this is a valid procedure. It is also clearly
an optimal procedure.
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13.5.2.2 Case 2: We can make clusters, or ns2ps2 <

nm + ns2

In this case, according to the conjecture, an optimal solution
must have major and minor muffins divided into L and L − 1
clusters. Also according to conjectures, there are a (L − 1)-
clusters and b L-clusters.

Let’s recap the situation. We have ns1 majors, who receive
all of their pieces from major muffins. We also have ns2 minors
who receive pieces from SPECIFIC major and minor muffins,
depending on their place in their cluster. Which muffins they
receive pieces from is specified by the way that we drew the
minor graph. Therefore, the only question that remains is
which major muffins give pieces to which majors.

However, all major muffins are linked to either an L-cluster
or an (L − 1)-cluster. Furthermore, we can throw out some
information. Suppose that in an optimal solution, major s1
gets a piece from major muffin m1, and major s2 gets a piece
from major muffin m2. Further, suppose that m1 and m2 are
connected to the same cluster. Then, we could instead let s1
get their piece from m2 and s2 get their piece from m1, and by
conjecture 4 the solution would still remain optimal.

Therefore, the only piece of information that we need to find
is: for each major student, which clusters are the ma-
jor muffins that it gets its pieces from connected to?

In order to figure this out, we make use of a very clever dis-
covery that Scott made. The question of which major muffins
get their pieces from which clusters is exactly like a Scott-Muffin
problem! We will construct a new muffin problem, whose solu-
tion will tell us the solution to the old muffin problem.

In order to construct this new muffin problem, for each old
major make a new muffin. For each old L or (L − 1)-cluster,
make a new student. Finally, let s and c be an old major and
old cluster, respectively Let m′ and s′ be the corresponding new
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muffin and new student, respectively. Then, for every piece that
s gets from a major muffin connected to c, let m′ give a piece of
the same size to s′.

This transformation to a new muffin problem has the prop-
erty that if we find an optimal procedure for the new muffin
problem, and then use that procedure to decide where old ma-
jors get their pieces in the old problem, then that will yield an
optimal solution in the old problem as well.

In order to find out which major muffins give pieces to which
clusters, we run Scott’s algorithm again on the Scott-Muffin
problem below. You can use algebra to find the V and P for
each cluster. The result is the following mess:

(ns1 , vs1 , ps1)

(a, (Lps2 − (L− 1))vm − Lvs2 , p′s1)
(b, ((L− 1)ps2 − (L− 2))vm − (L− 1)vs2 , p

′
s2

),

(13.10)

where

p′s1 = (Lps2 − 2(L− 1))(pm − 1) + (L− 1)(pm − 2)

p′s2 = ((L− 1)ps2 − 2(L− 2))(pm − 1) + (L− 2)(pm − 2).

(13.11)

13.5.2.3 Case 3: We can’t make clusters, or ns2ps2 ≥
nm + ns2

In this case, according to the second part of conjecture 5, we
must divide the majors evenly. We have already found f(m, s)
and if all we want is the answer we could stop. However, in
order to find the entire procedure, we need to continue.

In addition, according to conjecture 6, we know that there are
x muffins which give P pieces to majors, and y muffins which
give P − 1 pieces to majors.
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Therefore, the only question that remains is which minors get
pieces from which muffins. There are two kinds of muffins, and
the only students we don’t know about are minors, so we will
make a Scott-Muffin problem where the old minors become the
new muffins, and the old muffins become the new majors and
minors.

Therefore, we recurse Scott’s algorithm with the following
problem:

(ns2 , vs2 , ps2)

(x, vm −
Pvs1
ps1

, pm − P )

(y, vm −
(P − 1)vs1

ps1
, pm − (P − 1)).

(13.12)

The parameters are decreasing and will eventually get to a
point where there are no minor muffins.

13.6 What if f(m, s) = 1
3
?

The following is a fact, not a conjecture:
Fact: Scott’s algorithm will find a procedure where every muffin
is cut into exactly two pieces.

Should Scott’s algorithm output a procedure with smallest
piece < 1

3
then there are two ways to modify the algorithm:

• Run FINDPROC(m, s, 1
3
) to find a procedure with smallest

piece 1
3
.

• Use Theorem 4.5 to obtain a procedure with smallest piece
1
3
.

It is known that if m ≥ s then f(m, s) ≥ 1
3
. There is a proof

of this on the MUFFIN website and also a proof in Richard’s
paper [Chatwin (2019)].
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Math Notation

In this chapter we present some math notation that is used
throughout the book.

A.1 Sets

A set is a collection of objects. For us it will always be a collec-
tion of numbers. No element can appear twice in a set.

Notation A.1. Let A be a set and x be a number.

(1) x ∈ A means x is in the set A.
(2) x /∈ A means x is not in the set A.

We denote sets in several ways:

(1) If the set is finite and small we can just list out the elements.
For example {

5

12
,

6

12
,

7

12

}
.

(2) If the set is finite and large but has a pattern, we can list
out the elements so that the pattern is clear, and use “. . .”
For example: {

13

256
,

14

256
,

15

256
, . . . ,

243

256

}
.

199
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(3) If the set is finite and large but has no obvious pattern,
then we can describe the set in English (and later with math
notation). For example:

{x ∈ N : x ≤ 100 and x can be written as the sum of 3 squares}

(4) If the set is infinite but has a pattern, we can list out the
elements so that the pattern is clear, and use “. . . ” For
example:

{3, 6, 9, . . .}

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

(5) If the set is infinite but has no obvious pattern, then we can
describe the set in English (and later with math notation).
For example:

{x ∈ N : x can be written as the sum of 3 squares}

(6) Some sets have well established names:

• ∅ is the set with no elements. It is also denoted {}.
• N is the set of naturals, which is {0, 1, 2, . . .}. Some

textbooks do not include 0. They are wrong.
• Z is the set of integers, which is {. . . ,−2,−1, 0, 1, 2, . . .}.
• Q is the set of rationals, which is {a

b
: a, b ∈ Z, b 6= 0}.

• R is the set of reals. The reals are actually hard to define
formally so we take the intuitive definition of finite and
infinite decimal expansions. There are reals that are
not rationals. It is known that

√
2 is a real but not a

rational.
• (a, b) is the set {x ∈ R : a < x < b}. Note that a, b are

not included. This is called an open interval.
• [a, b] is the set {x ∈ R : a ≤ x ≤ b}. Note that a, b are

included. This is called a closed interval.
• [a, b) and (a, b] we leave to you to define. These are

called clopen intervals.
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Notation A.2. Let A and B be sets.

(1) A ∪ B, pronounced A union B, is the set of elements in A

or B. For example:

{1, 3, 4, 5} ∪ {1, 5, 10, 15} = {1, 3, 4, 5, 10, 15}.

(2) A ∩ B, pronounced A intersect B, is the set of elements in
A and B. For example

{1, 3, 4, 5} ∩ {1, 5, 10, 15} = {1, 5}.

(3) A set with W elements in it is called a W -set.
(4) A ⊆ B, pronounced A is a subset of B, means that every

element of A is an element of B.
(5) A ⊇ B, pronounced A is a superset of B, means that every

element of B is an element of A.
(6) A subset of A with W elements is called a W -subset of A.

If A is understood then we just use the term W -subset.
(7) Assume A ⊆ Q. Moreover, assume (informally) that all we

care about is Q. Then the complement of A is the set of
elements of Q that are not in A. We denote this A. More
generally, A is defined when we have a universe of discourse
(in the case above, Q) and we take the complement relative
to it.

(8) A−B is the set of elements in A that are not in B. Formally
this is A ∩B.

(9) A × B is the set of all ordered pairs (a, b) such that a ∈ A
and b ∈ B. We leave the definition of A × B × C, and
beyond, to the reader.

(10) A2 = A× A. An = A× · · · × A (A appears n times).
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Exercise A.3. Let

A = {2, 4, 6, . . . , 100}

B = {3, 6, 9, . . . , 99}.

(1) List all of the elements of A ∩B.
(2) Write A ∩B in the form {x ∈ N : BLAH }.
(3) List all of the elements of A ∪ ∅.
(4) List all of the elements of A ∩ ∅.

Definition A.4.

(1) A multiset is a set where we allow elements to appear more
than once. For example {1, 1, 2, 3} is a multiset.

(2) Let A be a set. Then B is a multisubset of A if every element
of B is in A and an element of A can appear many times in
B. If it is understood that B is a multiset we just use the
term subset of A.

(3) Let B be a multiset. B is a W -multisubset of A if B is a
multisubset of A that has W elements in it. Note that the
set {1, 1, 3, 4} has just 4 elements in it. If it is understood
that B is a multiset we use the term W -subset. We will use
this in Chapter 5 with W = V and W = V − 1.

Example A.5. Let B = {5, 6, 7}. Then both {5, 7} and {6, 6}
are 2-subsets of B. Also, {6, 6, 7} is a 3-subset of B.

Example A.6. Let

A = {1, 2, 3, 4, 10}.
Then the following are subsets of A. The first one is a multiset
but we still call it a subset of A since calling it a mulitsubset is
clumsy.

(1) {1, 1, 1, 2, 3}
(2) {1, 2, 10}
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A.2 Functions and Bijections

Let A and B be sets. A function f from A to B is a rule that
takes an element of A and maps it to an element of B. For
example

f(x) = 2x+ 1

is a function from N to N. It can also be regarded as a function
from N to the odd numbers.

Notation A.7. Let A and B be sets and let f be a function
from A to B.

(1) A is called the domain of f , and B is called the co-domain
of f .

(2) f is injective (also called 1-1) if

(∀x, y ∈ A)[x 6= y → f(x) 6= f(y)]].

In other words, no two elements of A map to the same ele-
ment of B.

Example A.8.

(a) If the domain and co-domain are both N then f(x) = x2

is injective: If x2 = y2 then (x− y)(x+ y) = 0 so either
x = y or x = −y. If x = −y then, since x, y ≥ 0, we
must have x = y = 0.

(b) If the domain is Z and the co-domain is N then f(x) =
x2 is not injective since, for example, f(3) = f(−3) = 9.

(3) f is surjective (also called onto) if

(∀y ∈ B)(∃x ∈ A)[f(x) = y].

In other words every element in the co-domain gets mapped
to by an element of the domain.

Example A.9.
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(a) If the domain is R and the co-domain is Z then f(x) =
dxe is surjective: if y ∈ Z then take x = y to get f(x) =
y.

(b) If the domain is Z and the co-domain is Q then f(x) =
x+ 1 is not surjective. No element of Z maps to 1

2
.

(4) f is bijective (also called 1-1 and onto) if it is both injective
and surjective.

Example A.10.

(a) If the domain and the co-domain are both N then f(x) =
x2 is not bijective since it is not surjective. No element
of N maps to 2.

(b) If the domain is R and the co-domain is Z then f(x) =
dxe is not bijective since it is not injective. Many ele-
ments map to 1. In fact every element in (0, 1] maps to
1.

(c) If the domain and range are both (0, 1) then f(x) = 1−x
is a bijection. Note that this is the buddy function from
Definition 1.12.

Notation A.11. If f is a function from A to B and C ⊆ A
then

f(C) = {f(x) : x ∈ C}.

We now state an important property of bijections. We first
need some notation

Notation A.12.

(1) If A is a finite set then |A| is the number of elements in A.
(2) if A is a set of intervals then |A| is the number of shares in

A. This notation is not standard. It is likely that it is only
used in the mathematics of muffins.

Theorem A.13. Let f be a bijection A to B.
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(1) If A is finite then |f(A)| = |A| (using Notation A.12.1).
(2) If A is a set of intervals then |f(A)| = |A| (using Nota-

tion A.12.2).

If f is a function from A to B, C ⊆ A, and C is finite, then
|f(C)| = |C|.

A.3 Mod Arithmetic

Notation A.14. Let a, b, s ∈ N. Then

a ≡ b (mod s)

means that a− b is divisible by s. This notation is usually only
used when 0 ≤ b ≤ s− 1. In that case b is the remainder when
a is divided by s.

Example A.15. 100 ≡ 2 (mod 7) since 7 divides 100− 2 = 98.
Alternatively, 2 is the remainder when 100 is divided by 7.

Example A.16. Let’s look at mod 3:
0 ≡ 0 (mod 3).
1 ≡ 1 (mod 3).
2 ≡ 2 (mod 3).
3 ≡ 0 (mod 3).
4 ≡ 1 (mod 3).
5 ≡ 2 (mod 3).

Definition A.17. a (mod b) means the remainder when a is
divided by b. For example

29 mod 4 = 1.

Definition A.18. Let n be dLdL−1 · · · d0 in base 10.

(1) sum(n) = d0 + d1 + · · ·+ dL.

Exercise A.19.
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(1) For 700 ≤ n ≤ 710 compute

• n (mod 3)
• sum(n) (mod 3)

(You should get that n ≡ sum(n) (mod 3).)
(2) For 0 ≤ i ≤ 10 compute 10i (mod 3). (Advice: once you

know that 10i ≡ a (mod 3), compute 10i+1 = 10×10i ≡ 10a
(mod 3).)

(3) Spot a pattern in the 10i (mod 3) sequence and make a
formula for 10i (mod 3).

(4) Prove that, for all n, n ≡ sum(n) (mod 3). (Hint: If n =
dL · · · d0 then n = 10LdL + · · ·+ 101d1 + d0.)

(5) For 0 ≤ i ≤ 10 compute 10i (mod 9). (Advice: once you
know that 10i ≡ a (mod 9), compute 10i+1 = 10×10i ≡ 10a
(mod 9).)

(6) Spot a pattern in the 10i (mod 9) sequence and make a
formula for 10i (mod 9).

(7) Prove that, for all n, n ≡ sum(n) (mod 9).

Solution to Exercise A.19

(1) 700 = 3× 233 + 1 ≡ 1 (mod 3).
sum(700) = 7 ≡ 1 (mod 3).

701 = 3× 233 + 2 ≡ 2 (mod 3).
sum(701) = 7 + 1 = 8 ≡ 2 (mod 3).

702 = 3× 233 + 3 ≡ 0 (mod 3).
sum(702) = 7 + 2 = 9 ≡ 0 (mod 3).
We omit the rest.

(2) 100 = 1 ≡ 1 (mod 3).
101 = 10 ≡ 1 (mod 3).
102 = 10× 10 ≡ 1× 1 ≡ 1 (mod 3).
103 = 102 × 10 ≡ 1× 1 ≡ 1 (mod 3).
We omit the rest.

(3) The pattern is that, for all i, 10i ≡ 1 (mod 3).
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(4) All ≡ are mod 3.

n = dL · · · d0
= 10LdL + · · ·+ 101d1 + d0
≡ 1× dL + · · ·+ 1× d1 + d0
= sum(n)

(5) Omitted, but similar to the mod 3 case.
(6) The pattern is that for all i, 10i ≡ 1 (mod 9).
(7) Omitted, but similar to the mod 3 case.

We have established the following:

(1) For all n, n ≡ sum(n) (mod 3)
(2) For all n, n ≡ sum(n) (mod 9)

These facts give a very easy way to tell if a number n is
divisible by 3 or 9: just sum the digits of n mod 3 or 9 and see
if the answer is 0. More information can be obtained, namely
what n is congruent to mod 3 or 9.

The fact that n ≡ sum(n) (mod 9) was often used to check
sums before calculators were in wide spread use. For example if
you did the calculation

1233987 + 59201 = 1293188

you can check it by seeing if

1233987 + 59201 ≡ 1293188 (mod 9)

sum(1233987) + sum(59201) ≡ sum(1293188) (mod 9)

33 + 17 ≡ 32 (mod 9).

Rather than do the addition we can again pass to the sums.
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sum(33) + sum(17) ≡ sum(32) (mod 9)

6 + 8 ≡ 5 (mod 9)

14 ≡ 5 (mod 9)

which is true.
In reality the above is not what you would do. Look at
sum(1233987). You would really mod 9 as you go like this:
1+2+3+3 OH, that’s 9 ≡ 0. So we have 0.
0 + 9 OH, that’s 9 ≡ 0.
0 + 0 + 8 + 7 = 15 ≡ 6.
The above is the basis for the procedure known as casting

out 9’s. Before modern computers were in common use, people
would check x + y = z for large x, y, z. One way to check the
sum was to (in our terminology) make sure that

x (mod 9) + y (mod 9) = z (mod 9)

This was easy to do by doing a running sum of the digits of
x and y and z mod 9. If you got a 6= then the sum is wrong. If
you got an = then the sum could still be wrong but the chance
of that is much less.

We just described a method to check sums using mod 9. The
same technique can be used to check products.

Let’s look back at divisibility. Let n = nd · · ·n0. The follow-
ing are true:

(1) n ≡ sum(n) (mod 3)
(2) n ≡ sum(n) (mod 9)
(3) n ≡ n0 (mod 2)
(4) n ≡ n0 (mod 5)
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Exercise A.20. The four facts above give easy tricks for de-
termining if a number is divisible by 3,9,2,5. Find tricks for
divisibility by 4,6,7,8,11. (Hint: For mod 4 look at 10i (mod 4)
and try to find a pattern. Similar for mod 6, mod 7, mod 8, and
mod 11.)

A.4 Quantifiers

The symbol ∃x means there exists x. When it is used there is a
domain in mind that x comes from. For example, if the domain
is N, then

A = {x : (∃y)(∃z)[x = y2 + z2]}
is the set of all natural numbers that can be written as the sum
of two squares.

The symbol ∀x means for all x. And again, there is a domain.
For example, if the domain is N then

A = {x : (∀y)[ if y divides x then y = x or y = 1}
is the set of all natural numbers that only have 1 and themselves
as divisors. These are also called the primes.

The notation

(∀0 ≤ n ≤ 19)

means for all n that are between 0 and 19 inclusive. For example,
if the domain is N, then

(∀0 ≤ n ≤ 22)(∃x1, . . . , x8)[n = x31 + · · ·+ x38]

means that every natural number between 0 and 22 inclusive
can be written as the sum of 8 cubes (this is true).

A.5 Summation Notation

We want to write

1 + 3 + 5 + · · ·+ 99
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more compactly. We use the notation

49∑
i=0

2i+ 1.

More generally
n∑
i=0

ai = a0 + a1 + · · ·+ an.

Let A = {1, 4, 5, 10}. Then∑
i∈A

i = 1 + 4 + 5 + 10.

We can also write∑
i∈A

2i+ 1 = (2× 1 + 1) + (2× 4 + 1) + (2× 5 + 1) + (2× 10 + 1).

More generally, if A is a set and f is a function with domain A,
and A = {a1, . . . , aL} then∑

i∈A

f(i) = f(a1) + · · ·+ f(aL).
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Fair Division

There is a wonderful field called fair division which our work
can be considered a close cousin of. We describe it briefly.

There is a vast literature on the following problem (stated
informally): How can n students, with different tastes, divide a
cake fairly, in the best way [Aziz and Mackenzie (2016); Brams
and Taylor (1996, 1995); Edmonds and Pruhs (2011); Even and
Paz (1984); Robertson and Webb (1998)]. In those problems
there is one cake and the students may have different tastes.
For example, Bill prefers chocolate and everyone else prefers
kale (Bill is right, the others are wrong).

One can vary the notions of fairness and also look at discrete
objects (e.g., how to split an inheritance) as well as continu-
ous (our cake). One can also vary what kind of procedures are
allowed: discrete (e.g., Alice cuts, Bob chooses) or continuous
(e.g., moving knife protocols where a knife is going over a cake
until someone yells stop).

Convention B.1. Everyone thinks that the whole cake has
value 1.

We give some definitions and state some theorems.

Definition B.2. Let n ∈ N. A division of a cake among n
students (who may have different tastes) is proportional if each
person thinks they have ≥ 1

n
.

211
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You might think that a proportional division is fair. But con-
sider the following scenario: Alice, Bob, and Carol have split a
cake such that:

• Alice thinks (1) she has 2
5
, (2) Bob has 1

10
, (3) Carol has 1

2
.

Alice thinks Carol has more than her!
• Bob thinks (1) he has 2

5
, (2) Alice has 2

5
, (3) Carol has 1

5
.

Bob is happy.
• Carol thinks (1) she has 2

5
, (2) Alice has 2

5
+ 1

1010
, (3) Bob

has 1
5
− 1

1010
. Carol thinks that Alice has more than her!

Definition B.3. Let n ∈ N. A division of a cake among n
students (who may have different tastes) is envy-free if each
person thinks they have the most (or tied for the most).

We list some of what is known about discrete protocols for cake
cutting.

(1) For n = 2 there is a well known protocol that is envy free:
Alice cuts the cake in two, and Bob chooses one of the pieces.

(2) There is a proportional cake cutting protocol for n students
that takes roughly n log n cuts [Even and Paz (1984)].

(3) Any proportional cake cutting protocol for n students re-
quires roughly n log n cuts [Edmonds and Pruhs (2011)].

(4) There is an envy-free protocol for 3 students where the num-
ber of cuts is 5 [Brams and Taylor (1995)].

(5) For all n ≥ 4 there is an envy-free protocol for n students
where the number of cuts is unbounded [Brams and Taylor
(1995)]: for all numbers M , there is a way to set up the
tastes of the n students so that the number of cuts is at
least M . Is there a bounded protocol? See next point.

(6) There is a procedure with g(n) cuts to divide a cake among
n students in an envy free way where g(n) is a very fast
growing function [Aziz and Mackenzie (2016)].
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f(m, s) Exists!

f(m, s) Is Rational!

f(m, s) Is Computable!*

C.1 Introduction

Does f(m, s) always exist? It is plausible that, for any (24, 11)-
procedures, there is a better one. For example:

(1) There is a (24, 11)-procedure with smallest piece 19
44
− 1

10
.

(2) There is a (24, 11)-procedure with smallest piece 19
44
− 1

100
.

(3) There is a (24, 11)-procedure with smallest piece 19
44
− 1

1000
.

(4) Etc., but also:
(5) For all (24, 11)-procedures there is some piece < 19

44
.

If that happened then f(24, 11) would not exist.
Do not worry. We give three proofs that f(m, s) exists.

Is f(m, s) always rational? It is plausible that f(24, 11) = π
7
.

Do not worry. We give three proofs that f(m, s) is rational.

Is there a program that will, given m, s, output f(m, s)? It
is plausible that f(m, s) is not computable.

Do not worry. We give two proofs that f(m, s) is computable.

C.2 Roadmap

Linear Programming and Mixed Integer Programming (which
we will define rigorously) are problems that are known to be

213
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solvable and always have a rational solution.
Our first proof will phrase the problem of determining f(m, s)

as solving an insane number of linear programming problems.
We stress that this is a proof that f(m, s) exists, is rational,
and is computable, but not a feasible way to find f(m, s).

Our second proof will phrase the problem of determining
f(m, s) as a mixed integer programming problem. This proof
that f(m, s) exists, is rational, and computable, can be turned
into an algorithm to find f(m, s) for small values of m, s. After
the proof we give advice on how to make this algorithm faster
and hence perhaps suitable for larger values of m, s.

Our third proof uses elegant (though advanced) ideas from
analysis to show that f(m, s) exists and is rational. It does not
give a way to actually compute f(m, s).

C.3 Linear and Integer Programming

We urge the reader to look up the definitions of vectors, matrices,
not product, and matrix multiplication before proceeding.

Definition C.1. Linear Programming (LP) is the following
problem: Given a matrix M and vectors ~b,~c where all of the
entries are rational, find a vector ~x such that

• M~x ≤ ~b.
• ~x · ~c is maximized.

We can replace maximized with minimized. It may be the case
that no such ~x exists. This may happen if the region

{~x : M~x ≤ ~b}

is empty or unbounded. Also, note that equality constraints
can be used in addition to inequality constraints. If we want
the constraint ~m · ~x = b, we can get that by combining the
constraints ~m · ~x ≤ b and −~m · ~x ≤ −b.
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We state the following well known result without proof.

Lemma C.2.

(1) Let (M,~b,~c) be an LP such that the region {x : M~x ≤ ~b} is
nonempty and bounded. Then there exists a rational solu-
tion.

(2) The following function is computable: Given an LP
(M,~b,~c), determine if it has a solution, and if it does then
output it.

Note C.3. The Simplex Method, invented by George Dantzig in
the late 1940’s, is a well known and often used algorithm to solve
LPs. You can find it in any operations research textbook and
also on the web. For most inputs it is very fast; however, there
are some inputs where it is known to take a long time—formally
time 2n where n is the number of variables. In 1979, Leonid
Khachiyan presented a polynomial time algorithm for LP; how-
ever, it was slow in practice. In 1984, Narendra Karmarkar
presented a polynomial time algorithm for LP which seems to
be fast in practice. There are packages for the LP that solve it
quickly most of the time.

Definition C.4. A Mixed Integer Program (MIP) is the fol-
lowing problem: Given a matrix M and vectors ~b,~c where all of
the entries are rational, and a finite set I ⊆ N, find a vector ~x
such that:

• M~x ≤ ~b.
• ~x · ~c is maximized.
• For every i ∈ I, xi ∈ Z. These xi are called the integer

variables.

We can replace maximized with minimized. It may be the case
that no such ~x exists. This may happen if the region

{~x : M~x ≤ ~b}
is empty or unbounded or has no integers for an integer variable.
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We state the following well known result without proof.

Lemma C.5.

(1) Let (M,~b,~c, I) be an MIP such that the region {x : M~x ≤ ~b}
is bounded. Then there exists a rational solution.

(2) The following function is computable: Given MIP
(M,~b,~c, I), determine if it has a solution, and if it does
then output it.

Note C.6. There is no known method for solving MIPs that
runs quickly. Such an algorithm is unlikely (formally, the prob-
lem is NP-complete). There are packages for the problem that
do well if the dimensions of the matrix are not too large.

C.4 A Proof That Uses Linear Programming

Theorem C.7.

(1) For all m, s, f(m, s) exists.
(2) For all m, s, f(m, s) ∈ Q.
(3) The function f(m, s) is computable.

Proof. Consider the following (failed) attempt to phrase the
muffin problem as an LP.
MUFFINLP

(1) The variables are xij where 1 ≤ i ≤ m and 1 ≤ j ≤ s. The
intent is that xij is the fraction of muffin i that student j
gets.

(2) For all 1 ≤ i ≤ m, 1 ≤ j ≤ s, 0 ≤ xij ≤ 1.
(3) Let 1 ≤ i ≤ m. Consider the ith muffin. The sum of what

it gives to student 1, student 2, . . ., student s is 1. Hence
we have requirement

∑s
j=1 xij = 1.

(4) Let 1 ≤ j ≤ s. Consider the jth student. The sum of what
she gets from muffin 1, muffin 2, . . ., muffin m. is m

s
. Hence∑m

i=1 xij = m
s

.
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(5) For all 1 ≤ i ≤ m, 1 ≤ j ≤ s, z ≤ xij.
(6) Maximize z.

This does not work. The problem is that (say) x13 could be
0. In fact it is likely that some xij is 0. This makes z = 0. What
we really want is

xij 6= 0 =⇒ xij ≥ z.

In any (m, s)-procedure there will be a (possibly empty) set
of pairs (i, j) such that nothing from muffin i goes to student j.
Hence the following insane procedure will find f(m, s) and at
the same time prove it exists and is rational.

For all X ⊆ {x11, . . . , xms}
In MUFFINLP set all of the variables of X to 0.
Solve this LP. Call the answer f(m, s)X

Output

max{f(m, s)X : X ⊆ {x11, . . . , xms}}.

By Lemma C.2 (1) f(m, s)X exists since the LP bounds all
the variables between 0 and 1 and (2) f(m, s)X ∈ Q.

Note C.8. The algorithm in Theorem C.7 is not practical since
there are many X’s to try. Do Not Use!

C.5 A Proof That Uses Mixed Integer Program-
ming

The following proof was independently discovered by Veit Elser
and Robert Fleischman.

Theorem C.9.

(1) For all m, s, f(m, s) exists.
(2) For all m, s, f(m, s) ∈ Q.
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(3) The function f(m, s) is computable.

Proof. We will take the MUFFINLP and add some integer-
variables and constraints.

It is easy to show that f(m, s) ≥ 1
s
. Hence every nonzero xij

is ≥ 1
s
. We will use this in our proof.

Take MUFFINLP and modify it to form MUFFINMIP.
For 1 ≤ i ≤ m, 1 ≤ j ≤ s

(1) Add integer variable yij and constraints yij ≤ 1 and yij ≥ 0
so that yij ∈ {0, 1}.

(2) Add the constraint xij + yij ≤ 1.
(3) Add the constraint xij + yij ≥ 1

s
.

(4) Replace the constraint z ≤ xij with z ≤ xij + yij.
(5) We still want to maximize z.

Assume that we have a solution xij, yij. We show that this
represents an optimal (m, s)-procedure. We need that z is ≤
every nonzero xij and not have it ≤ any of the variables that
are set to 0. There are cases:
Case 0: xij = 0. We look at what the constraints tell us.

• xij + yij ≤ 1. Since xij = 0 and yij ∈ {0, 1}, this imposes no
constraint on yij.
• xij + yij ≥ 1

s
. Since xij = 0 and yij ∈ {0, 1}, yij = 1.

• z ≤ xij+yij is satisfied since yij = 1. Hence xij has no effect
on z.

Case 1: xij > 0. We look at what the constraints tell us.

• xij + yij ≤ 1. Since xij > 0 and yij ∈ {0, 1}, this implies
yij = 0.
• xij + yij ≥ 1

s
. Since yij = 0 this implies xij ≥ 1

s
. This

makes sense since the muffin problem always has the trivial
solution of dividing all muffins into s pieces of size 1

s
and

giving everyone m of those pieces.
• z ≤ xij + yij means z ≤ xij since yij = 0.
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By Lemma C.5 the resulting MIP can be solved and has a
rational solution.

Note C.10. The MIP program described in Theorem C.9 is
very slow. In this book we gave several ways to find upper
bounds for f(m, s). If you add an upper bound on z to the
MIP then it will run faster. We have done this and been able to
solve some moderately large muffin problems. Using a free MIP
package we could get up to around 50 muffins, 19 students.

C.6 A Proof That Uses Topology

The following proof was discovered by Caleb Stanford in 2013
(who also helped me with this writeup). The proof is very differ-
ent from those in Theorems C.7 and C.9 since it uses elementary
topology rather than LPs or MIPs. The proof shows that f(m, s)
exists and is rational; however, it does not show that f(m, s) is
computable.

Definition C.11. Let p1, p2, . . . be a sequence of points in Rn.
Let A ⊆ Rn.

(1) p1, p2, . . . is bounded if there exist positive numbers
B1, . . . , Bn such that, for 1 ≤ i ≤ n, for j ∈ N, the ith

component of pj is between −Bi and Bi.
(2) A limit point of p1, p2, . . . is a point p such that, for all ε, for

all i, there is a j > i such that pj is within ε of p.
(3) Let A ⊆ Rn. A is closed if the limit points of every bounded

sequence of points in A are in A.

Example C.12.

(1) The sequence 0, 1, 2, 3, . . . is not bounded.
(2) The sequence 1, 1

2
, 1
3
, . . . is bounded. It has one limit point:

0.
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(3) The sequence 1,−1, 1,−1, . . . is bounded. It has two limit
points: 1 and −1. While they are formally limit points, this
is not what the definition was intended to capture. Limit
points are intended to capture the notion of getting closer
and closer to a point, not of hitting the point exactly in-
finitely often.

(4) The sequence 1 + 1
2
, 10 + 1

2
, 1 + 1

3
, 10 + 1

3
, . . . is bounded. It

has two limit points: 1 and 10.
(5) The set (0, 2) is not closed. The sequence 1, 1

2
, 1
3
, . . . is a

bounded sequence of points in the set, whose limit point, 0,
is not in the set.

(6) The set [0, 1] is closed. We do not prove this.
(7) The sequence (0, 0), (1

2
,−1

2
), (3

4
,−3

4
), . . ., has one limit point

at (1,−1).

The following is well known.

Lemma C.13. Let m,n ∈ N. Let M be an n ×m matrix and
~b ∈ Rm.

(1) [0, 1]n is a closed and bounded set.
(2) {~x : M~x ≤ ~b} is a closed set.
(3) The intersection of a closed and bounded set with a closed

set is closed and bounded.
(4) [0, 1]n ∩ {~x : M~x ≤ ~b} is closed and bounded. (This follows

from items 1,2, and 3 above.)
(5) A finite union of disjoint closed and bounded sets is closed

and bounded.
(6) Let X be a closed and bounded set. Let F be a continuous

function from X to R. Then there is a point x ∈ X such
that F (x) is the max value of {F (y) : y ∈ X}.

Theorem C.14.

(1) For all m, s, f(m, s) exists.
(2) For all m, s, f(m, s) ∈ Q.
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Proof. 1) We prove f(m, s) exists. Note that you cannot ex-
tract from this proof an algorithm to find f(m, s).

Following the proof of Theorem C.7, and using that in an
optimal solution all pieces are ≥ 1

s
, we note that any (m, s)-

procedure of interest can be viewed as a way to set the variables
xij as 1 ≤ i ≤ m, 1 ≤ j ≤ s such that:

(1) 1
s
≤ xij ≤ 1 of xij = 0.

(2) For each 1 ≤ i ≤ m,
∑s

j=1 xij = 1.
(3) For each 1 ≤ j ≤ s,

∑m
i=1 xij = m

s
.

Let ~x be the vector of all variables xij. Let M be the ma-

trix, and ~b be the vector, such that constraints 2 and 3 can be
expressed as M~x ≤ ~b. We define the following set:

POSS =

([
1

s
, 1

]
∪ {0}

)ms
∩ {~x : M~x ≤ ~b}.

By Lemma C.13, POSS is a closed set. POSS is a finite set
of disconnected components. We give an example of one such
component:

POSS((1, 3), (2, 2)) = POSS∩{
~x : x13 = 0 ∧ x22 = 0 ∧ for all (i, j) 6= (1, 3), (2, 2) xij ≥

1

s

}
.

For every subset of {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ s} there is a
component that sets those indexed variables to 0 and the rest are
required to be ≥ 1

s
. Hence there are 2ms connected components.

By Lemma C.13 each of the components is a closed and bounded
set.
POSS is the set of all possible ways to divide up m muffins

and give them to s students so that every student gets m
s

and
each piece is ≥ 1

s
. The vectors in POSS with the maximum

minimal entry represents the optimal procedures.
Let F : POSS → R+ map every vector in POSS to its

minimum nonzero element. It is easy to see that F is continuous
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on POSS. By Theorem C.14 there exists an ~x such that F (~x)
is the max value of {F (~y) : ~y ∈ POSS}. This ~x is an optimal
way to divide the muffins, and F (~x) = f(m, s). Hence f(m, s)
exists.

2) We proof that f(m, s) ∈ Q. We could try a proof where
we show that f(m, s) /∈ Q leads to a contradiction. We are
not going to do that directly. We are going to show that if the
optimal ~x has some irrational elements then we can find another
optimal ~x′ that has fewer irrational elements. By repeating this
procedure we obtain an optimal ~x with all rational elements.

We view the values of xij as a matrix A:x11 · · · x1s
...

. . .
...

xm1 · · · xms


Note that each row of the matrix sums to 1 ∈ Q and each

column sums to m
s
∈ Q. We first show the following which will

not yield our theorem; however, it will be instructive.
Claim 1: If f(m, s) ∈ Q then there is an optimal matrix A with
all rational elements.
Proof of Claim 1:

Let A be an optimal solution with some irrational entries.
We show that there is an optimal solution with less irrational
entries. The claim follows by iterating the process. Note that
this is not a proof by contradiction.

We state the following obvious fact since it will have an analog
in Claim 2:

• If a row has an element in R−Q, then it must have another
element in R−Q: if not, then the sum of the row would not
be rational.
• If a column has an element in R − Q, then it must have

another element in R−Q: if not, then the sum of the column
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would not be rational.

Since A is an optimal solution with some irrational entries
there exists 1 ≤ i1 ≤ m, 1 ≤ j1 ≤ s, β1 /∈ Q such that β1 = xi1,j1 .
Since β1 /∈ Q there must be another irrational element β2 in row
i1. Let β2 = xi1,j2 . Form a sequence of triples: (ik, jk, βk) such
that:

(1) For all k, βk = xik,jk .
(2) For all k, βk /∈ Q.
(3) If k is odd then ik+1 = ik.
(4) If k is even then jk+1 = jk.

Since A is finite the sequence eventually repeats. Replace the
sequence with only the finite repeating portion (which will be
an even-length sequence). Renumber so that β1 is the minimum
irrational in the sequence. Let

β1 − f(m, s) = ε.

Since f(m, s) ∈ Q, ε > 0. (This is where we use f(m, s) ∈
Q. Proving the analogous theorem with f(m, s) /∈ Q is our
main goal.) Let 0 < δ < ε be such that β1 − δ ∈ Q. If we
subtract δ from all of the odd-indexed β’s and add δ to all the
even-indexed β’s then we have another solution with minimum
element f(m, s) and at least one less irrational.
End of Proof of Claim 1

The proof above will not work if f(m, s) /∈ Q. The problem
is that in this case, β1 may be equal to f(m, s), so we can’t
necessarily choose δ > 0 and subtract it from each odd-indexed
β while preserving that each nonzero element of the matrix is
at least f(m, s). To proceed, we should require a further re-
striction when we find the sequence βi: instead of just requiring
these values to be irrational, we also want to exclude every odd-
indexed element from being equal to f(m, s). We do this by
defining sets q1POS and q1NEG (you will see the reason for the
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names soon) such that f(m, s) ∈ q1POS− q1NEG. We will find
a sequence such that the odd-indexed β’s are in q1POS and the
even-indexed βs are in q1NEG.

We now proceed with the proof.
Claim 2: If f(m, s) /∈ Q then there is an optimal matrix A with
all rational elements (a contradiction).
Proof of Claim 2:

We show that if there is an optimal solution with irrational
entries then there is an optimal solution with less irrational en-
tries. The claim follows by iterating the process. Note that
this is a proof by contradiction since if every entry is in Q then
f(m, s) is not in the matrix.

Let α1, α2, . . . , αN , αN+1 be such that:

(1) α1, . . . , αN , αN+1 are linearly independent over Q.
(2) All elements of A are linear combinations, with coefficients

in Q, of α1, . . . , αN , αN+1.
(3) α1 = f(m, s) and αN+1 = 1.

Let

q1POS = {q0 +
N∑
i=1

qiαi : q0, . . . , qN ∈ Q, q1 > 0}.

q1NEG = {q0 +
N∑
i=1

qiαi : q0, . . . , qN ∈ Q, q1 < 0}.

Note the following:

• q1POS∩ q1NEG = ∅: This follows from the αi’s being lin-
early independent over Q.
• f(m, s) ∈ q1POS: Take q0 = q2 = q3 = · · · = qN = 0 and
q1 = 1.
• f(m, s) /∈ q1NEG: This follows from q1POS∩ q1NEG = ∅

and f(m, s) ∈ q1POS.
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• If a row has an element of q1POS then it has to have an
element of q1NEG: If not then the row won’t sum to a
rational.
• If a column has an element of q1POS then it has to have an

element of q1NEG: If not then the column won’t sum to a
rational.

Since A is an optimal solution and f(m, s) ∈ q1POS there
is 1 ≤ i1 ≤ m, 1 ≤ j1 ≤ s, β1 ∈ q1POS, such that β1 = xi1,j1 .
Since β1 ∈ q1POS there must be an element of q1NEG in row
i1, say β2 = xi1,j2 . Form a sequence of triples: (ik, jk, βk) such
that:

(1) For all k, βk = xik,jk .
(2) If k is odd then βk ∈ q1POS.
(3) If k is even then βk ∈ q1NEG.
(4) If k is odd then ik+1 = ik.
(5) If k is even then jk+1 = jk.

Since A is finite the sequence eventually repeats. Replace the
sequence with only the finite repeating portion (which will be
an even-length sequence). Renumber so that β2 is the minimum
even-indexed value in the sequence, so β2 ∈ q1NEG. Let

β2 − f(m, s) = ε.

Since f(m, s) ∈ q1POS and β2 ∈ q1NEG, β2 6= f(m, s) so ε > 0.
(This last line is the key to the proof and the reason we defined
q1POS and q1NEG.) Let 0 < δ < ε be such that β2 − δ ∈ Q. If
we subtract δ from all of the even-indexed β’s and add δ to all the
odd-indexed β’s then we have another solution with minimum
element at least f(m, s) and at least one less irrational.
End of Proof of Claim 2
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