Muffin Problems

November 20, 2020
Five Muffins, Three Students

How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{3}$ where nobody gets a tiny sliver?
Alan Frank came up with the problem and it was circulating in some math newsgroups around 2010, though I did not know this.
Five Muffins, Three Students, Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{1}{3}$
Can We Do Better?

The smallest piece in the above solution is \(\frac{1}{3} \).

Is there a procedure with a larger smallest piece?

Work on it with your Breakout Rooms Group
YES WE CAN!
YES WE CAN!

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{5}{12}$
Can We Do Better?

The smallest piece in the above solution is \(\frac{5}{12} \).
Can We Do Better?

The smallest piece in the above solution is \(\frac{5}{12} \).

Is there a procedure with a larger smallest piece?
Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$.

Is there a procedure with a larger smallest piece?

Work on it with your Breakout Rooms Group.
5 Muffins, 3 People–Can’t Do Better Than $\frac{5}{12}$

NO WE CAN’T!
5 Muffins, 3 People—Can’t Do Better Than $\frac{5}{12}$

NO WE CAN’T!

There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.
5 Muffins, 3 People—Can’t Do Better Than $\frac{5}{12}$

NO WE CAN’T!
There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it ($\frac{1}{2}, \frac{1}{2}$) and give both $\frac{1}{2}$-sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)
NO WE CAN’T!
There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$-sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$.
(Henceforth: All muffins are cut into 2 pieces.)
NO WE CAN’T!
There is a procedure for 5 muffins, 3 students where each student gets \(\frac{5}{3} \) muffins, smallest piece \(N \). We want \(N \leq \frac{5}{12} \).

Case 0: Some muffin is uncut. Cut it \((\frac{1}{2}, \frac{1}{2}) \) and give both \(\frac{1}{2} \)-sized pieces to whoever got the uncut muffin. (Note \(\frac{1}{2} > \frac{5}{12} \).) Reduces to other cases.

(\textbf{Henceforth:} All muffins are cut into \(\geq 2 \) pieces.)

Case 1: Some muffin is cut into \(\geq 3 \) pieces. Then \(N \leq \frac{1}{3} < \frac{5}{12} \).

(\textbf{Henceforth:} All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: \textbf{Someone} gets \(\geq 4 \) pieces. He has some piece

\[
\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}
\]

Great to see \(\frac{5}{12} \).
General Problem

\[f(m, s) \] be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide \(m \) muffins among \(s \) students so that everyone gets \(\frac{m}{s} \).
General Problem

$f(m, s)$ be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide m muffins among s students so that everyone gets $\frac{m}{s}$.

We have shown $f(5, 3) = \frac{5}{12}$.
FC Thm: If $m > s$ and s does not divide m then

$$f(m, s) \leq \text{FC}(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$
FC Thm: If $m > s$ and s does not divide m then

$$f(m, s) \leq \text{FC}(m, s) = \max\left\{ \frac{1}{3}, \min\left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.
FC Thm: If $m > s$ and s does not divide m then

$$f(m, s) \leq \text{FC}(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.
FC Thm: If $m > s$ and s does not divide m then

$$f(m, s) \leq FC(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lceil 2m/s \rceil} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it ($\frac{1}{2}, \frac{1}{2}$) and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.
FC Thm: If $m > s$ and s does not divide m then

$$f(m, s) \leq \text{FC}(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Alice gets $\geq \left\lceil \frac{2m}{s} \right\rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

FC Thm: If $m > s$ and s does not divide m then

$$f(m, s) \leq \text{FC}(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Alice gets $\geq \left\lfloor \frac{2m}{s} \right\rfloor$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

Alice gets $\leq \left\lfloor \frac{2m}{s} \right\rfloor$ pieces. \exists piece $\geq \frac{m}{s \lfloor 2m/s \rfloor} = \frac{m}{s \lfloor 2m/s \rfloor}$.
FC Thm: If $m > s$ and s does not divide m then

$$f(m, s) \leq \text{FC}(m, s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \left\lceil 2m/s \right\rceil}, 1 - \frac{m}{s \left\lfloor 2m/s \right\rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Alice gets $\geq \left\lceil \frac{2m}{s} \right\rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\left\lceil 2m/s \right\rceil} = \frac{m}{s \left\lceil 2m/s \right\rceil}$.

Alice gets $\leq \left\lfloor \frac{2m}{s} \right\rfloor$ pieces. \exists piece $\geq \frac{m}{s} \left\lfloor \frac{1}{2m/s} \right\rfloor = \frac{m}{s \left\lfloor 2m/s \right\rfloor}$.

The other piece from that muffin is of size $\leq 1 - \frac{m}{s \left\lfloor 2m/s \right\rfloor}$.
THREE Students

We only look at when 3 does not divide the number of muffins. Here is what the FC theorem tells us:

<table>
<thead>
<tr>
<th>m</th>
<th>$f(m, 3) \leq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1/3</td>
</tr>
<tr>
<td>5</td>
<td>5/12</td>
</tr>
<tr>
<td>7</td>
<td>5/12</td>
</tr>
<tr>
<td>8</td>
<td>4/9</td>
</tr>
<tr>
<td>10</td>
<td>4/9</td>
</tr>
</tbody>
</table>
THREE Students

We only look at when 3 does not divide the number of muffins. Here is what the FC theorem tells us:

<table>
<thead>
<tr>
<th>m</th>
<th>$f(m,3) \leq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$1/3$</td>
</tr>
<tr>
<td>5</td>
<td>$5/12$</td>
</tr>
<tr>
<td>7</td>
<td>$5/12$</td>
</tr>
<tr>
<td>8</td>
<td>$4/9$</td>
</tr>
<tr>
<td>10</td>
<td>$4/9$</td>
</tr>
</tbody>
</table>

Try to find the protocol for EIGHT muffins, THREE students, everyone gets $\frac{8}{3}$, and smallest piece is $\frac{4}{9}$.

Solve in Breakout Rooms Groups
\[f(8, 3) = \frac{4}{9} \]

By FC \(f(8, 3) \leq \frac{4}{9} \).
By FC $f(8, 3) \leq \frac{4}{9}$.

We show $f(8, 3) \geq \frac{4}{9}$.
Let $f(8, 3) = \frac{4}{9}$.

By FC $f(8, 3) \leq \frac{4}{9}$.

We show $f(8, 3) \geq \frac{4}{9}$.

1. Divide 8 muffins $\{\frac{4}{9}, \frac{5}{9}\}$.
2. Give 2 students $\{\frac{5}{9}, \frac{5}{9}, \frac{5}{9}, \frac{4}{9}\}$.
3. Give 1 student $\{\frac{4}{9}, \frac{4}{9}, \frac{4}{9}, \frac{4}{9}, \frac{4}{9}, \frac{4}{9}\}$.
FOUR Students

We only look at when 4 and m have no common factors. Here is what the FC theorem tells us:

$$f(m, 4) \leq \frac{3}{8}, \frac{5}{12}, \frac{7}{16}, \frac{9}{20}$$
FOUR Students

We only look at when 4 and \(m \) have no common factors. Here is what the FC theorem tells us:

\[
\begin{array}{|c|c|}
\hline
m & f(m, 4) \leq \\
\hline
5 & 3/8 \\
7 & 5/12 \\
9 & 7/16 \\
11 & 9/20 \\
\hline
\end{array}
\]

Try to find the protocol for SEVEN muffins, FOUR students, everyone gets \(\frac{7}{4} \), and smallest piece is \(\frac{5}{12} \).

Solve in Breakout Rooms Groups
$f(7, 4) = \frac{5}{12}$

By FC $f(7, 4) \leq \frac{5}{12}$.
By FC \(f(7, 4) \leq \frac{5}{12} \).

We show \(f(7, 4) \geq \frac{5}{12} \).
$f(7,4) = \frac{5}{12}$

By FC $f(7,4) \leq \frac{5}{12}$.

We show $f(7,4) \geq \frac{5}{12}$.

1. Divide 6 muffins $\{\frac{5}{12}, \frac{7}{12}\}$.
2. Divide 1 muffins $\{\frac{6}{12}, \frac{6}{12}\}$.
3. Give 2 students $\{\frac{7}{12}, \frac{7}{12}, \frac{7}{12}\}$.
4. Give 2 student $\{\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{6}{12}\}$.
The following is true:

- If $m \geq 4$ and $m \equiv 1, 2 \pmod{3}$ then $f(m, 3) = FC(m, 3)$.
- If $m \geq 5$ and $m \equiv 1, 3 \pmod{4}$ then $f(m, 4) = FC(m, 4)$.
FC Conjecture

The following is true:

- If $m \geq 4$ and $m \equiv 1, 2 \pmod{3}$ then $f(m, 3) = \text{FC}(m, 3)$.
- If $m \geq 5$ and $m \equiv 1, 3 \pmod{4}$ then $f(m, 4) = \text{FC}(m, 4)$.

FC Conjecture

If $m \geq s + 1$ and s, m rel prime then $f(m, s) = \text{FC}(m, s)$.
FC Conjecture

The following is true:

- If \(m \geq 4 \) and \(m \equiv 1, 2 \pmod{3} \) then \(f(m, 3) = FC(m, 3) \).
- If \(m \geq 5 \) and \(m \equiv 1, 3 \pmod{4} \) then \(f(m, 4) = FC(m, 4) \).

FC Conjecture

If \(m \geq s + 1 \) and \(s, m \) rel prime then \(f(m, s) = FC(m, s) \).

Vote YES, NO, Unknown to Science (UN).
The following is true:

- If \(m \geq 4 \) and \(m \equiv 1, 2 \pmod{3} \) then \(f(m, 3) = \text{FC}(m, 3) \).
- If \(m \geq 5 \) and \(m \equiv 1, 3 \pmod{4} \) then \(f(m, 4) = \text{FC}(m, 4) \).

\textbf{FC Conjecture}

If \(m \geq s + 1 \) and \(s, m \) rel prime then \(f(m, s) = \text{FC}(m, s) \).

\textbf{Vote} YES, NO, Unknown to Science (UN).

NO
FIVE Students

We only look at when 4 and m have no common factors. Here is what the FC theorem tells us:

<table>
<thead>
<tr>
<th>m</th>
<th>$f(m, 5) \leq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$2/5$</td>
</tr>
<tr>
<td>7</td>
<td>$1/3$</td>
</tr>
<tr>
<td>8</td>
<td>$2/5$</td>
</tr>
<tr>
<td>9</td>
<td>$2/5$</td>
</tr>
<tr>
<td>11</td>
<td>$11/25$</td>
</tr>
</tbody>
</table>

I am sure you all could do protocols for $f(6, 5), f(7, 5), f(8, 5), f(9, 5)$ that match the bounds here. History I tried to find a protocol for $f(11, 5) \geq 11/25$. I could not. I found a protocol with $f(11, 5) \geq 13/30$. I showed that if there is a protocol it must BLAH. I showed there was NO such protocol with BLAH! and showed $f(11, 5) \leq 13/30$.
We only look at when 4 and m have no common factors. Here is what the FC theorem tells us:

<table>
<thead>
<tr>
<th>m</th>
<th>$f(m, 5)$ \leq</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$2/5$</td>
</tr>
<tr>
<td>7</td>
<td>$1/3$</td>
</tr>
<tr>
<td>8</td>
<td>$2/5$</td>
</tr>
<tr>
<td>9</td>
<td>$2/5$</td>
</tr>
<tr>
<td>11</td>
<td>$11/25$</td>
</tr>
</tbody>
</table>

I am sure you all could do protocols for $f(6, 5)$, $f(7, 5)$, $f(8, 5)$, $f(9, 5)$ that match the bounds here.
We only look at when 4 and m have no common factors. Here is what the FC theorem tells us:

<table>
<thead>
<tr>
<th>m</th>
<th>$f(m, 5) \leq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2/5</td>
</tr>
<tr>
<td>7</td>
<td>1/3</td>
</tr>
<tr>
<td>8</td>
<td>2/5</td>
</tr>
<tr>
<td>9</td>
<td>2/5</td>
</tr>
<tr>
<td>11</td>
<td>11/25</td>
</tr>
</tbody>
</table>

I am sure you all could do protocols for $f(6, 5)$, $f(7, 5)$, $f(8, 5)$, $f(9, 5)$ that match the bounds here.

History I tried to find a protocol for $f(11, 5) \geq \frac{11}{25}$. I could not. I found a protocol with $f(11, 5) \geq \frac{13}{30}$.
FIVE Students

We only look at when 4 and \(m \) have no common factors. Here is what the FC theorem tells us:

\[
\begin{array}{|c|c|}
\hline
m & f(m, 5) \leq \\
\hline
6 & 2/5 \\
7 & 1/3 \\
8 & 2/5 \\
9 & 2/5 \\
11 & 11/25 \\
\hline
\end{array}
\]

I am sure you all could do protocols for \(f(6, 5) \), \(f(7, 5) \), \(f(8, 5) \), \(f(9, 5) \) that match the bounds here.

History I tried to find a protocol for \(f(11, 5) \geq \frac{11}{25} \). I could not. I found a protocol with \(f(11, 5) \geq \frac{13}{30} \).

I showed that if there is a protocol it must BLAH. I showed there was NO such protocol with BLAH! and showed \(f(11, 5) \leq \frac{13}{30} \).
Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M. The other piece from muffin M is the buddy of x.

Note that the buddy of x is of size $1 - x$.
There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece N. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it ($\frac{1}{2}, \frac{1}{2}$) and give both halves to whoever got the uncut muffin. Reduces to other cases.
There is a procedure for 11 muffins, 5 students where each student gets \(\frac{11}{5} \) muffins, smallest piece \(N \). We want \(N \leq \frac{13}{30} \).

Case 0: Some muffin is uncut. Cut it \((\frac{1}{2}, \frac{1}{2})\) and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into \(\geq 3 \) pieces. \(N \leq \frac{1}{3} < \frac{13}{30} \).

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)
\[f(11, 5) = \frac{13}{30}, \text{ Easy Case Based on Students} \]

Case 2: Some student gets \(\geq 6 \) pieces.

\[
N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.
\]
$f(11, 5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

$$N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

Case 3: Some student gets ≤ 3 pieces.

One of the pieces is

$$\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}.$$

Look at the muffin it came from to find a piece that is

$$\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}.$$

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)
Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note \(\leq 11 \) pieces are \(\geq \frac{1}{2} \).

- \(s_4 \) is number of students who get 4 pieces
- \(s_5 \) is number of students who get 5 pieces

\[
4s_4 + 5s_5 = 22 \\
 s_4 + s_5 = 5
\]

\(s_4 = 3 \): There are 3 students who have 4 shares.
\(s_5 = 2 \): There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a **4-share**.
We call a share that goes to a person who gets 5 shares a **5-share**.
\[f(11, 5) = \frac{13}{30}, \text{ Fun Cases} \]

Case 4.1: Some 4-share is \(\leq \frac{1}{2} \).

Alice gets \(w, x, y, z \) and \(w \leq \frac{1}{2} \).

Since \(w + x + y + z = \frac{11}{5} \) and \(w \leq \frac{1}{2} \)

\[
x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}
\]

Let \(x \) be the largest of \(x, y, z \)

\[
x \geq \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}
\]

Look at **buddy** of \(x \).

\[
B(x) \leq 1 - x = 1 - \frac{17}{30} = \frac{13}{30}
\]

GREAT! This is where \(\frac{13}{30} \) comes from!
\[f(11, 5) = \frac{13}{30}, \text{ Fun Cases} \]

Case 4.2: All 4-shares are \(> \frac{1}{2} \). There are 4\(s_4 = 12 \) 4-shares. There are \(\geq 12 \) pieces \(> \frac{1}{2} \). Can’t occur. So we are done!
History and What Else is Known

1. I found the problem in a pamphlet at the Gathering for Gardner Meeting in 2015.
2. I worked on 3 students, 4 students, but got stuck on 5 students until I got the HALF method.
3. I worked on 6 students, 7, etc. Whenever I got stuck I would ask someone to help me.
4. I now have many methods for finding $f(m,s)$: FC, HALF, MID, INT, GAP, TRAIN, Easy-Buddy-Match, Hard-Buddy-Match, Scott's Method. Matrix.
History and What Else is Known

1. I found the problem in a pamphlet at the Gathering for Gardner Meeting in 2015.
History and What Else is Known

1. I found the problem in a pamphlet at the Gathering for Gardner Meeting in 2015.

2. I worked on 3 students, 4 students, but got stuck on 5 students until I got the HALF method.
History and What Else is Known

1. I found the problem in a pamphlet at the Gathering for Gardner Meeting in 2015.
2. I worked on 3 students, 4 students, but got stuck on 5 students until I got the HALF method.
3. I worked on 6 students, 7, etc. Whenever I got stuck I would ask someone to help me.
4. I now have many methods for finding $f(m,s)$: FC, HALF, MID, INT, GAP, TRAIN, Easy-Buddy-Match, Hard-Buddy-Match, Scott’s Method. Matrix.
History and What Else is Known

1. I found the problem in a pamphlet at the Gathering for Gardner Meeting in 2015.
2. I worked on 3 students, 4 students, but got stuck on 5 students until I got the HALF method.
3. I worked on 6 students, 7, etc. Whenever I got stuck I would ask someone to help me.
4. I now have many methods for finding $f(m, s)$: FC, HALF, MID, INT, GAP, TRAIN, Easy-Buddy-Match, Hard-Buddy-Match, Scott’s Method. Matrix.
History and What Else is Known

1. I found the problem in a pamphlet at the Gathering for Gardner Meeting in 2015.

2. I worked on 3 students, 4 students, but got stuck on 5 students until I got the HALF method.

3. I worked on 6 students, 7, etc. Whenever I got stuck I would ask someone to help me.

4. I now have many methods for finding $f(m, s)$: FC, HALF, MID, INT, GAP, TRAIN, Easy-Buddy-Match, Hard-Buddy-Match, Scott’s Method. Matrix.

But wait! There is more! Next Slide!
Fame and Fortune!

Where can I read about all this great stuff!
Fame and Fortune!

Where can I read about all this great stuff!

In my book:
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

Is there a song about this mathematics?
https://www.youtube.com/watch?v=4xQFlsK7jKg&t=1s

Does Alan Frank know about the work?
I gave a talk on this at the MIT combinatorics seminar and I knew Alan Frank was in Boston so we agreed to meet. He gave me \(\frac{5}{12} - \frac{7}{12} \) and one \(\frac{6}{12} - \frac{6}{12} \). I gave him a free signed copy of my book.
Fame and Fortune!

Where can I read about all this great stuff!

In my book:
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

Is there a song about this mathematics?
https://www.youtube.com/watch?v=4xQF1sK7jKg&t=1s
Fame and Fortune!

Where can I read about all this great stuff!

In my book:
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

Is there a song about this mathematics?
https://www.youtube.com/watch?v=4xQFlsK7jKg&t=1s

Does Alan Frank know about the work?
Fame and Fortune!

Where can I read about all this great stuff!

In my book:
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/9811215170

Is there a song about this mathematics?
https://www.youtube.com/watch?v=4xQFlsK7jKg&t=1s

Does Alan Frank know about the work?

I gave a talk on this at the MIT combinatorics seminar and I knew Alan Frank was in Boston so we agreed to meet. He gave me 5 muffins, 4 cut \(\frac{5}{12} - \frac{7}{12} \) and one cut \(\frac{6}{12} - \frac{6}{12} \). I gave him a free signed copy of my book.