The Muffin Problem: Complexity Issues

Guangi Cui - Montgomery Blair HS
John Dickerson- University of MD
Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD
Erik Metz - University of MD
Jacob Prinz-University of MD
Naveen Raman - Richard Montgomery HS
Daniel Smolyak- University of MD
Sung Hyun Yoo - Bergen County Academies (in NJ)

(4 HS, 3 ugrad, 2 prof, 9 total)

How it Began

A Recreational Math Conference (Gathering for Gardner) May 2016

I found a pamphlet:

The Julia Robinson Mathematics Festival:

A Sample of Mathematical Puzzles

Compiled by Nancy Blachman

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{3}$ where nobody gets a tiny sliver?

Five Muffins, Three Students, Proc by Picture

Person	Color	What they Get
Alice	RED	$1 + \frac{2}{3} = \frac{5}{3}$
Bob	BLUE	$1 + \frac{2}{3} = \frac{5}{3}$
Carol	GREEN	$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$

Smallest Piece: $\frac{1}{3}$

Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$. Is there a procedure with a larger smallest piece?

Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$. Is there a procedure with a larger smallest piece? YES WE CAN!

Five Muffins, Three People-Proc by Picture

Person	Color	What they Get
Alice	RED	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Bob	BLUE	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Carol	GREEN	$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$

Smallest Piece: $\frac{5}{12}$

Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$. Is there a procedure with a larger smallest piece? NO WE CAN'T!

Five Muffins, Three People–Can't Do Better Than $\frac{5}{12}$

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.

(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$. (Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: Someone gets \geq 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}$$
 Great to see $\frac{5}{12}$

General Problem

How can you divide and distribute m muffins to s students so that each students gets $\frac{m}{s}$ AND the MIN piece is MAXIMIZED?

An (m, s)-procedure is a way to divide and distribute m muffins to s students so that each student gets $\frac{m}{s}$ muffins.

An (m, s)-procedure is *optimal* if it has the largest smallest piece of any procedure.

f(m, s) be the smallest piece in an optimal (m, s)-procedure.

We have shown $f(5,3) = \frac{5}{12}$.

Note: $f(m, s) \ge \frac{1}{s}$: divide each muffin into s pieces of size $\frac{1}{s}$ and give each student m of them.

Floor-Ceiling Theorem (Generalize $f(5,3) \leq \frac{5}{12}$)

$$f(m,s) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets
$$\geq \left\lceil \frac{2m}{s} \right\rceil$$
 pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

Someone gets
$$\leq \lfloor \frac{2m}{s} \rfloor$$
 pieces. \exists piece $\geq \frac{m}{s} \frac{1}{|2m/s|} = \frac{m}{s|2m/s|}$.

The other piece from that muffin is of size $\leq 1 - \frac{m}{s \lfloor 2m/s \rfloor}$. Notation: FC(m,s) is the upper bound given by this Theorem.

Duality

$$f(5,3) \geq \frac{5}{12}$$

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $(\frac{6}{12}, \frac{7}{12}, \frac{7}{12})$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

Duality

$$f(5,3) \geq \frac{5}{12}$$

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $(\frac{6}{12}, \frac{7}{12}, \frac{7}{12})$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

$$f(3,5)\geq \tfrac{1}{4}$$

- 1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
- 3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
- 4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$

Duality

$$f(5,3) \geq \frac{5}{12}$$

- 1. Divide 4 muffins $\left[\frac{5}{12}, \frac{7}{12}\right]$
- 2. Divide 1 muffin $\left[\frac{6}{12}, \frac{6}{12}\right]$
- 3. Give 2 students $(\frac{6}{12}, \frac{7}{12}, \frac{7}{12})$
- 4. Give 1 students $(\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})$

$$f(3,5) \geq \frac{1}{4}$$

- 1. Divide 2 muffin $\left[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}\right]$
- 2. Divide 1 muffin $\left[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}\right]$
- 3. Give 4 students $(\frac{5}{20}, \frac{7}{20})$
- 4. Give 1 students $(\frac{6}{20}, \frac{6}{20})$

Theorem $f(m,s) = \frac{m}{s} f(s,m)$. (Ind by Erich Friedman)

Conventions

We know and use the following:

- 1. By duality can assume m > s
- 2. If s divides m then f(m, s) = 1 so assume s does not divide m.
- 3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with $2\frac{1}{2}$'s
- 4. If assuming $f(m,s) > \alpha > \frac{1}{3}$, assume all muffin in ≤ 2 pcs.
- 5. $f(m,s) > \alpha > \frac{1}{3}$, so exactly 2 pcs, is common case.

We do not know this but still use: f(m,s) only depends on $\frac{m}{s}$. All of our techniques that hold for (m,s) hold for (Am,As). For particular numbers, we only look at m,s rel prime.

f(m, s):

Does it exist?

If so then is it Rational?

If yes and yes, is it computable?

Exists: Does f(m, s) always exist? Plausible that

$$(\forall \epsilon > 0)[\exists$$
 Proc for (24,11) with all pieces $\geq \frac{19}{44} - \epsilon]$

but

(
$$\forall$$
)Proc for (24,11) some piece $\leq \frac{19}{44}$

Exists: Does f(m, s) always exist? Plausible that

$$(orall \epsilon > 0)[\exists$$
 Proc for (24,11) with all pieces $\geq \frac{19}{44} - \epsilon]$

but

(
$$\forall$$
)Proc for (24,11) some piece $\leq \frac{19}{44}$

Do not worry- does not happen! Yeah!

Exists: Does f(m, s) always exist? Plausible that

(
$$orall \epsilon >$$
 0)[\exists Proc for (24,11) with all pieces $\geq \frac{19}{44} - \epsilon$]

but

(
$$\forall$$
)Proc for (24,11) some piece $\leq \frac{19}{44}$

Do not worry- does not happen! Yeah!

Rational: Plausible that $f(24, 11) = \frac{\pi}{7}$.

Exists: Does f(m, s) always exist? Plausible that

(
$$orall \epsilon >$$
 0)[\exists Proc for (24,11) with all pieces $\geq \frac{19}{44} - \epsilon$]

but

(
$$\forall$$
)Proc for (24,11) some piece $\leq \frac{19}{44}$

Do not worry- does not happen! Yeah!

Rational: Plausible that $f(24, 11) = \frac{\pi}{7}$.

Do not worry- does not happen! Yeah!

Exists: Does f(m, s) always exist? Plausible that

(
$$orall \epsilon >$$
 0)[\exists Proc for (24,11) with all pieces $\geq \frac{19}{44} - \epsilon$]

but

(
$$\forall$$
)Proc for (24,11) some piece $\leq \frac{19}{44}$

Do not worry- does not happen! Yeah!

Rational: Plausible that $f(24, 11) = \frac{\pi}{7}$.

Do not worry- does not happen! Yeah!

Solvable: Plausible that f(m, s) is not computable.

Exists: Does f(m, s) always exist? Plausible that

(
$$orall \epsilon > 0$$
)[\exists Proc for (24,11) with all pieces $\geq \frac{19}{44} - \epsilon$]

but

(
$$\forall$$
)Proc for (24,11) some piece $\leq \frac{19}{44}$

Do not worry- does not happen! Yeah!

Rational: Plausible that $f(24,11) = \frac{\pi}{7}$.

Do not worry- does not happen! Yeah!

Solvable: Plausible that f(m, s) is not computable.

Do not worry- There is a procedure to compute f(m, s)

Exists, Solvable, Rational: LP does not quite work

We try to formula f(m, s) as a Linear Program For $1 \le i \le m$, $1 \le j \le s$, x_{ij} is the fraction of M_i that goes to S_j .

Constraints:

 M_i is size 1: $x_{i1} + \cdots + x_{im} = 1$.

 S_j gets $\frac{m}{s}$: $x_{1j} + \cdots + x_{sj} = \frac{m}{s}$.

Sanity: $0 \le x_{ij} \le 1$

New Var z is min of the x_{ij} : $(\forall i)(\forall j)[z \leq x_{ij}]$

Objective Function: Maximize z

This does not work. Discuss

Exists, Solvable, Rational: LP does not quite work

We try to formula f(m, s) as a Linear Program For $1 \le i \le m$, $1 \le j \le s$, x_{ij} is the fraction of M_i that goes to S_j .

Constraints:

 M_i is size 1: $x_{i1} + \cdots + x_{im} = 1$.

 S_j gets $\frac{m}{s}$: $x_{1j} + \cdots + x_{sj} = \frac{m}{s}$.

Sanity: $0 \le x_{ij} \le 1$

New Var z is min of the x_{ij} : $(\forall i)(\forall j)[z \leq x_{ij}]$

Objective Function: Maximize z

This does not work. Discuss

Possible that M_1 gives NONE to S_2 . So $x_{12} = 0$. What do do?

An Example where LP Does Not Work

$$f(5,3) \geq \frac{5}{12}$$

- 1. Divide $M_1(\frac{6}{12}, \frac{6}{12})$.
- 2. Divide $M_2(\frac{5}{12}, \frac{7}{12})$.
- 3. Divide $M_3(\frac{5}{12}, \frac{7}{12})$.
- 4. Divide $M_4(\frac{5}{12}, \frac{7}{12})$.
- 5. Divide M_5 $(\frac{5}{12}, \frac{7}{12})$.
- 6. Give $S_1\left[\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\right]$ From M_1, M_2, M_3
- 7. Give $S_2\left[\frac{6}{12}, \frac{7}{12}, \frac{7}{12}\right]$ From M_1, M_2, M_3
- 8. Give S_3 $\left[\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}\right]$ From M_1, M_2, M_3, M_4

 M_4 gives NO piece to from S_1 , so $x_{41} = 0$. But we don't want to count that.

Exists, Solvable, Rational: Many LP's do work

Theorem: f(m, s) exists, is rational, and can be computed.

Proof One: Formulate as an LP.

Issue: Some x_{ij} 's are 0. Don't want to count them for max z.

 $(\forall)A\subseteq\{x_{ij}\}$ set all vars in A to 0. Forms LP_A . Solve to get z_A . Max of the z_A is f(m,s).

- 1. Since $0 \le x_{ij} \le 1$, for every A, z_A exists.
- 2. Since all the coefficient in \mathbb{Q} , for all $A, z_A \in \mathbb{Q}$.
- 3. Since LP is computable, for all A, z_A can be computed.
- 4. Since every z_A exists, is rational, and is computable, f(m, s) exist, is rational, and is computable.

Note: Would NEVER use this algorithm!

Formulate as an MIP (Ind Discovery: Veit Elser)

Theorem: f(m, s) exists, is rational, and can be computed.

Proof Two: Formulate as an LP as on prior slide.

Issue: Some x_{ij} 's are 0. Don't want to count them for max z.

Introduce new 0-1 valued variables y_{ij} and constraints:

(1)
$$x_{ij} + y_{ij} \ge \frac{1}{s}$$
 (2) $x_{ij} + y_{ij} \le 1$

- 1) By Eq (1) $x_{ij} = 0 \implies y_{ij} = 1$. Eq (2) satisfied.
- 2) By Eq (2) $x_{ij} > 0 \implies x_{ij} \ge \frac{1}{s} \implies y_{ij} = 0$. Eq (1) satisfied.

Diff Constraints on z: $(\forall i)(\forall j)[z \leq x_{ij} + y_{ij}]$.

 $x_{ij} = 0 \implies y_{ij} = 1 \implies$ Constraint is $z \le 1$ easily satisfied $x_{ii} > 0 \implies y_{ii} = 0 \implies$ Constraint is $z \le x_{ij}$ as it should be

Objective Function: maximize z.

Upper Bound on Complexity of Muffin Problem

Can compute f(m,s) with MIP on O(ms) variables and coefficients in $\{-m,\ldots,m\}$. So time $2^{O(ms)}$.

Upper Bound on Complexity of Muffin Problem

Can compute f(m, s) with MIP on O(ms) variables and coefficients in $\{-m, \ldots, m\}$. So time $2^{O(ms)}$.

MIP is worse than it sounds: input is of length $\lg m + \lg s$.

Upper Bound on Complexity of Muffin Problem

```
Can compute f(m, s) with MIP on O(ms) variables and coefficients in \{-m, \ldots, m\}.
So time 2^{O(ms)}.
```

MIP is worse than it sounds: input is of length $\lg m + \lg s$. We have coded it up and used an MIP package.

Empirical Observations:

- 1. If we provided a very good upper bound then MIP sometimes worked well.
- 2. MIP had a much harder time when *m* is prime. Do not know if this means anything.

Fast(?) Algorithm:

Input: $(m, s), \frac{a}{b}$

Output:

(m, s)-proc, smallest piece $\frac{a}{b}$ OR Gee, Could not find such a proc

4D > 4@ > 4 = > 4 = > 9 Q @

MATRIX Technique: $f(5,3) \ge \frac{5}{12}$

Want proc for $f(5,3) \ge \frac{5}{12}$.

- 1) Guess that the only piece sizes are $\frac{5}{12},\frac{6}{12},\frac{7}{12}$
- 2) **Muffin**=pieces add to 1: $\{\frac{6}{12}, \frac{6}{12}\}$, $\{\frac{5}{12}, \frac{7}{12}\}$. Vectors $\{\frac{6}{12}, \frac{6}{12}\}$ is (0, 2, 0), m_1 muffins of this type. $\{\frac{5}{12}, \frac{7}{12}\}$ is (1, 0, 1), m_2 muffins of this type.
- 3) **Student**=pieces add to $\frac{5}{3}$ { $\frac{6}{12}$, $\frac{7}{12}$, $\frac{7}{12}$ } is (0,1,2), s_1 students of this type. { $\frac{5}{12}$, $\frac{5}{12}$, $\frac{5}{12}$, $\frac{5}{12}$ } is (4,0,0), s_2 students of this type.
- 4) Set up equations:

$$m_1(0,2,0) + m_2(1,0,1) = s_1(0,1,2) + s_2(4,0,0)$$

 $m_1 + m_2 = 5$
 $s_1 + s_2 = 3$

Natural Number Solution: $m_1 = 1$, $m_2 = 4$, $s_1 = 2$, $s_2 = 1$

MATRIX Technique

Want proc for $f(m, s) \ge \frac{a}{b}$.

- 1) Guess that the only piece sizes are $\frac{a}{b}, \dots, \frac{b-a}{b}$
- 2) Muffin=pieces add to 1: Vectors $\vec{v_i}$. x types. m_i muffins of type $\vec{v_i}$
- 3) **Student**=pieces add to $\frac{m}{s}$: Vectors $\vec{u_j}$. y types. s_j students of type $\vec{u_j}$
- 4) Set up equations:

$$m_1 \vec{v}_1 + \dots + m_x \vec{v}_x = s_1 \vec{u}_1 + \dots + s_y \vec{u}_y$$

$$m_1 + \dots + m_x = m$$

$$s_1 + \dots + s_y = s$$

5) Look for Nat Numb sol. If find can translate into procedure.

MATRIX Technique: Clear Fracs version

Want proc for $f(m,s) \ge \frac{a}{b}$. Clear Fracs version.

- 1) Guess that the only piece sizes are $a, \ldots, b-a$
- 2) Muffin=pieces add to $b \times 1 = b$: Vectors $\vec{v_i}$. x types. m_i muffins of type $\vec{v_i}$
- 3) **Student**=pieces add to $b \times \frac{m}{s} = \frac{bm}{s}$: Vectors $\vec{u_j}$. y types. s_j students of type $\vec{u_j}$
- 4) Set up equations:

$$m_1\vec{v}_1 + \dots + m_x\vec{v}_x = s_1\vec{u}_1 + \dots + s_y\vec{u}_y$$

$$m_1 + \dots + m_x = m$$

$$s_1 + \dots + s_y = s$$

5) Look for Nat Numb sol. If find can translate into procedure.

Analysis of MATRIX $(m, s, \frac{a}{b})$

- 1) By **Dynamic Programming** can find sums in $O((b-2a)\frac{bm}{s})$.
- 2) **Empirical:** $b 2a = O(s^2)$. So O(bms).
- 3) Empirical: number of sums is small.
- 4) **Empirical:** If answer is $\frac{a}{b}$ then pieces all have denom b.
- 5) Open: Is MATRIX $(m, s, \frac{a}{b})$ poly in a, b, m, s?

f(m, s): Upper Bounds

Floor-Ceiling Bound

Recall:

$$FC(m,s) = \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

For all $m, s, f(m, s) \leq FC(m, s)$.

- 1. Can compute FC(m, s) in $O(\log m)$. Note: do not need to know the answer ahead of time.
- 2. For all $m \ge 3$, f(m,3) = FC(m,3).
- 3. For all $m \ge 4$, f(m, 4) = FC(m, 4).
- 4. For $3 \le s \le 60$, $s < m \le 70$, m, s rel prime:
 - 4.1 There are 1360 cases total.
 - 4.2 For 927 of the (m, s), f(m, s) = FC(m, s). $\sim 68\%$
 - 4.3 The cases not covered use **interesting** new techniques!

Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M. The other piece from muffin M is the buddy of x.

Note that the buddy of x is of size

$$1 - x$$
.

Example of INT Technique: $f(24, 11) \le \frac{19}{44}$

Assume (24, 11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets \geq 2 shares. We show that there is a piece $\leq \frac{19}{44}$.

Case 1: A student gets ≥ 6 shares. Some piece $\leq \frac{24}{11 \times 6} < \frac{19}{44}$.

Case 2: A student gets \leq 3 shares. Some piece $\geq \frac{24}{11 \times 3} = \frac{8}{11}$. Buddy of that piece $\leq 1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}$.

Case 3: Every muffin is cut in 2 pieces and every student gets either 4 or 5 shares. Total number of shares is 48.

How many students get 4? 5? Where are the Shares?

4-students: a student who gets 4 shares. s_4 is the number of them. 5-students: a student who gets 5 shares. s_5 is the number of them.

4-share: a share that a 4-student who gets. *5-share:* a share that a 5-student who gets.

$$4s_4 + 5s_5 = 48$$

 $s_4 + s_5 = 11$

 $s_4 = 7$. Hence there are $4s_4 = 4 \times 7 = 28$ 4-shares.

 $s_5=4$. Hence there are $5s_5=5\times 4=20$ 5-shares.

Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: There is a share $\geq \frac{25}{44}$. Then its buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Case 3.2: There is a share $\leq \frac{19}{44}$. Duh. Henceforth assume that all shares are in

$$\left(\frac{19}{44},\frac{25}{44}\right)$$

Case 3.3: Some 5-shares $\geq \frac{20}{44}$

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume that Alice 5 pieces A, B, C, D, E and $E \ge \frac{20}{44}$.

Since $A + B + C + D + E = \frac{24}{11}$ and $E > \frac{20}{44}$

$$A + B + C + D \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

Assume A is the smallest of A, B, C, D.

$$A \le \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$$

Henceforth we assume all 5-shares are in

$$\left(\frac{19}{44},\frac{20}{44}\right).$$

Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume that Alice 4 pieces A, B, C, D and $D \le \frac{21}{44}$.

Since $A + B + C + D = \frac{24}{11}$ and $D \le \frac{21}{44}$

$$A+B+C \ge \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

Assume A is the largest of A, B, C.

$$A \ge \frac{75}{44} \times \frac{1}{3} = \frac{25}{44}$$

The buddy of A is of size

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Henceforth we assume all 4-shares are in

$$\left(\frac{21}{44}, \frac{25}{44}\right).$$

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in
$$(\frac{21}{44}, \frac{25}{44})$$
, 5-shares in $(\frac{19}{44}, \frac{20}{44})$.

$$(?? 5-shs)[0 shs](?? 4-shs)$$

$$\frac{19}{44}$$

$$\frac{20}{44}$$

$$\frac{20}{44}$$

$$\frac{21}{44}$$

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in
$$(\frac{21}{44}, \frac{25}{44})$$
, 5-shares in $(\frac{19}{44}, \frac{20}{44})$.

Recall: there are $4s_4 = 4 \times 7 = 28$ 4-shares.

Recall: there are $5s_5 = 5 \times 4 = 20$ 5-shares.

Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in
$$(\frac{21}{44}, \frac{25}{44})$$
, 5-shares in $(\frac{19}{44}, \frac{20}{44})$.

Recall: there are $4s_4 = 4 \times 7 = 28$ 4-shares.

Recall: there are $5s_5 = 5 \times 4 = 20$ 5-shares.

More Refined Picture of What is Going On

Claim 1: There are no shares $x \in \left[\frac{23}{44}, \frac{24}{44}\right]$.

If there was such a share then buddy is in $\left[\frac{20}{44}, \frac{21}{44}\right]$.

More Refined Picture of What is Going On

Claim 1: There are no shares $x \in \left[\frac{23}{44}, \frac{24}{44}\right]$.

If there was such a share then buddy is in $\left[\frac{20}{44}, \frac{21}{44}\right]$. The following picture captures what we know so far.

S4= Small 4-shares

L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \leq 2 L4 shares then he has

$$<2\times\left(\frac{23}{44}\right)+2\times\left(\frac{25}{44}\right)=\frac{24}{11}.$$

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \leq 2 L4 shares then he has

$$<2\times\left(\frac{23}{44}\right)+2\times\left(\frac{25}{44}\right)=\frac{24}{11}.$$

Contradiction: Each 4-student gets ≥ 3 L4 shares. There are $s_4=7$ 4-students. Hence there are ≥ 21 L4-shares. But there are only 20.

INT Technique

INT is generalization of $f(24, 11) \le \frac{19}{44}$ proof.

Definition: Let INT(m, s) be the bound obtained.

- 1. INT proofs can get more complicated than this one.
- 2. INT(m, s) can be computed in $O(\frac{2m \log m}{s})$. Note: do not need to know the answer ahead of time.
- 3. For $1 \le s \le 60$, $s < m \le 70$, m, s rel prime:
 - 3.1 There are 1360 cases total.
 - 3.2 For 927 of the (m, s), f(m, s) = FC(m, s). $\sim 68\%$
 - 3.3 For 268 of the (m, s), f(m, s) = INT(m, s). $\sim 20\%$
 - 3.4 The cases not covered use **interesting** new techniques!

Example of GAPS Technique: $f(31, 19) \le \frac{54}{133}$

We show $f(31,19) \leq \frac{54}{133}$. Assume (31,19)-procedure with smallest piece $> \frac{54}{133}$. By INT-technique methods obtain: $s_3 = 14$, $s_4 = 5$.

We just look at the 3-shares:

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2.
$$J_2 = (\frac{66.5}{133}, \frac{74}{133}) (|J_1| = |J_2|)$$

3.
$$J_3 = (\frac{78}{133}, \frac{79}{133}) (|J_3| = 20)$$

Note: Split the shares of size 66.5 between J_1 and J_2 . **Notation:** An e(1,1,3) students is a student who has a J_1 -share, a J_1 -share, and a J_3 -share.

Generalize to e(i, j, k) easily.

1.
$$J_1 = \left(\frac{59}{133}, \frac{66.5}{133}\right)$$

2.
$$J_2 = (\frac{66.5}{133}, \frac{74}{133}) (|J_1| = |J_2|)$$

3.
$$J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$$

- 1) Only students allowed: e(1,2,3), e(1,3,3), e(2,2,2), e(2,2,3). All others have either $<\frac{31}{19}$ or $>\frac{31}{19}$.
- 2) No shares in $\left[\frac{61}{133},\frac{64}{133}\right]$. Look at J_1 -shares: An e(1,2,3)-student has J_1 -share $>\frac{31}{19}-\frac{74}{133}-\frac{79}{133}=\frac{64}{133}$. An e(1,3,3)-student has J_1 -share $<\frac{31}{19}-2\times\frac{78}{133}=\frac{61}{133}$.
- 3) No shares in $\left[\frac{69}{133}, \frac{72}{133}\right]$: $x \in \left[\frac{69}{133}, \frac{72}{133}\right] \implies 1 x \in \left[\frac{61}{133}, \frac{64}{133}\right]$.

1.
$$J_1 = (\frac{59}{133}, \frac{61}{133})$$

2.
$$J_2 = (\frac{64}{133}, \frac{66.5}{133})$$

3.
$$J_3 = (\frac{66.5}{133}, \frac{69}{133}) (|J_2| = |J_3|)$$

4.
$$J_4 = (\frac{72}{133}, \frac{74}{133}) (|J_1| = |J_4|)$$

5.
$$J_5 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_5| = 20\right)$$

The following are the only students who are allowed.

$$e(1,5,5)$$
.

$$e(3,4,5)$$
.

$$e(4,4,4)$$
.

- e(1,5,5). Let the number of such students be x e(2,4,5). Let the number of such students be y_1 e(3,4,5). Let the number of such students be y_2 . e(4,4,4). Let the number of such students be z. 1) $|J_2| = |J_3|$, only students using J_2 are e(2,4,5) they use one share each, only students using J_3 are e(3,4,5) they use one share each. Hence $y_1 = y_2$. We call them both y.
- 2) Since $|J_1| = |J_4|$, x = 2y + 3z.
- 3) Since $s_3 = 14$, x + 2y + z = 14.
- $(2y+3z)+2y+z=14 \implies 4(y+z)=14 \implies y+z=\frac{7}{2}$. Contradiction.

GAPS Method

GAPS is generalization of $f(24, 11) \le \frac{19}{44}$ proof.

- 1. GAPS proofs can get MUCH more complicated than this one.
- GAPS needs to know the answer ahead of time. Can prob modify so that you do not.
- 3. GAPS fast in practice.
- **4**. For $1 \le s \le 60$, $s < m \le 70$, m, s rel prime:
 - 4.1 There are 1360 cases total.
 - 4.2 For 927 of the (m, s), f(m, s) = FC(m, s). $\sim 68\%$
 - 4.3 For 268 of the (m, s), f(m, s) = INT(m, s). $\sim 20\%$
 - **4.4** For 165 of the (m, s), f(m, s) "=" GAPS(m, s). ~ 12%
 - 4.5 FC, INT, GAPS took care of ALL cases.
- f(m,s) "=" GAPS(m,s): GAPS only verifies upper bounds. No such thing as GAPS(m,s), only GAPS (m,s,α) .

Later Results by Other People

- 1. In Fall 2018 Scott Huddleston had code for an algorithm that, on input m, s, found f(m, s) and the procedure REALLY FAST.
- Jacob and Erik Understand WHAT his algorithm does and Jacob coded it up to make sure he understood it. Jacob's code is also REALLY FAST.
- 3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott's algorithm was fast (poly in m, s).
- Richard Chatwin independently came up with the same algorithm; however, he also has a proof that it works. Its on arixv.
- 5. One corollary of the work: f(m, s) only depends on m/s.

Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced

- ▶ 4 High School students (Guang, Naveen, Naveen, Sunny)
- ▶ 3 college student (Erik, Jacob, Daniel)
- ▶ 1 professor (John D)

that the most important field of Mathematics is Muffinry.