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In this lecture, we explore the CHSH game, a type of 2-player non-local game
where quantum and classical players perform differently. Within the past few
years, there have been single-player versions of this game relying on computa-
tional hardness assumptions. These single-player games are coined interactive
proofs of quantumness (iPoQs). After walking through both problems and tools
to analyze their hardness, I will prove a reduction from CHSH to an iPoQ.
Finally, I explain how one would do the same for generalized CHSH games.
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1 Background Presentation Notes

The following section covers the first presentation (background) for this final
project.

1.1 The CHSH Game

The CHSH game is a 2-player 1-referee interactive game where players are only
allowed to communicate before receiving input from the referee. This type of
game with restricted communication is generally called a non-local game.
In the CHSH game, Alice and Bob each receive a random bit from the Referee
and each output a bit to the Referee. Alice and Bob win if and only if the
XOR of their outputs equals the AND of their inputs. In other words, the win
condition for the CHSH game is – Alice and Bob must output different bits if
and only if their inputs are both 1 (x∧ y = 1 or x+ y = 2)

Figure 1: The CHSH game. Alice and Bob are the non-communicating players.
x and y are inputs, a and b are outputs.

Definition 1 A non-local game is one where the referee asks n players sep-
arate questions and collects their separate answers. The referee’s win condition
is a function of the inputs and answers. The main rule is the n players must
not communicate after receiving their inputs from the referee. The players are
allowed to discuss beforehand.

All optimal quantum strategies require players to prepare entangled qubits dur-
ing pre-game discussion. Experimentally, these non-local games are interesting
because they provide simple, measurable evidence of quantum entanglement.
Note: Because non-local games are played with commuting operators, and be-

2



Scribe: Rushil Dandamudi
Group 4 Date: 11/26/2022

cause faster-than-light communication is impossible1, any game can be viewed
sequentially (i.e. Alice measures before Bob). For this reason, the analysis of a
game can be illustrated by Bob’s potential states after Alice’s measurements.

Definition 2 Steering is the process where one party’s measurements on their
qubit to intentionally manipulate the state of a separate party’s entangled qubit.

This always happens with entanglement, but if the first party is clever and in-
tentional, they can predict and design a strategy for both players. For example,
consider an attempt at making a single-player non-local game. If a Referee
wanted to play the game with Bob and act as Alice, they would steer their en-
tangled qubits to force Bob’s to enter a particular state that matches potential
states after Alice’s measurement. This will be crucial later for the single-prover
Interactive Proofs of Quantumness in section 2.3.

1.1.1 Related Problems

There are other tangential but related problems to the CHSH game. These are
all non-local games, but are different and interesting to explore.

XOR Games Broadly speaking, the CHSH game is a type of XOR game.

Definition 3 Any non-local game where the referee’s win condition depends on
the XOR of Alice and Bob’s outputs is an XOR game.

It is well studied and may generalize to any distribution of inputs and outputs,
along with any desired XOR value c = a⊕ b.

Magic Square Game Another non-local game, the Magic Square game has
the usual three parties but with a 3x3 square. The referee randomly selects a
row and column i,j for Alice and Bob respectively. Alice and Bob must insert 0
or 1 into each location, and they win iff

1. The values in row i add to an even number.

2. The values in column j add to an odd number.

3. Alice and Bob’s values are consistent (they agree at (i, j)).

In general Magic Square games, the square’s dimension can be any size kxk.This
problem has been studied throughout history (since at least 190 BCE) across
the world (China, India, Persia, etc.) for different k.
Classical Value: A quick sketch can illuminate that there is no classical solu-
tion to such a problem. It is impossible to fill a 3x3 grid with 0s and 1s such
that all rows add to even numbers and all columns add to odd numbers. In fact,
out of the 9 locations, there will always be at best 1 location where Alice and

1Called the No-Communication Theorem.
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Bob must disagree (to satisfy the first two properties). Thus, the classical value
of this game is 8/9.
Quantum Value: When Alice and Bob share an entangled state and perform
some predetermined entangled measurements (where each grid location should
correspond to a unique measurement value), they can succeed with probability
1 – better than the CHSH game.

One useful property of the Magic Square game is pseudo-telepathy [2].

Definition 4 A game is pseudo-telepathic if its quantum value is 1, but clas-
sical value is less than 1.

This allows for useful experiments! Assuming the quantum computer is fault
tolerant and minimizing its noise, repeating a non-local game for quantum play-
ers should have success remain ≈ 1, whereas classical players would clearly scale
down to some negligible value. Imagine the probability of 1

xn as n approaches
a large number of iterations.
Brassard et al.’s paper on pseudo-telepathic games[2] lists a variety and many
fall under the class of games called Linear Constraint System games.

Linear Constraint System (LCS) Consider a binary linear system of the
form Mx = b where M ∈ Zmxn

2 and b ∈ Zm
2 . The referee prepares this system

randomly and shares it with Alice and Bob. The referee gives a row r of the
matrix to Alice and an index i of b to Bob. Alice must output a x that satisfies
the constraint Mrx = br, and Bob must output a value for bi. They win iff (1)
they agree at i and (2) Alice’s x satisfies the constraint.[8]

In his outstanding work, Arkhipov reduces from an incidence graph to all
LCS games. Briefly, the mapping works by creating vertices and edges based on
constraints in M and b. By reducing from graph-coloring an incidence graph
to solving an LCS game, Arkhipov shows the NP-Hardness of these non-local
games. He also shows that all pseudo-telepathic graphs contain a combination
of Magic Square graphs and a related graph called the Magic Pentagram (10
variables instead of 9).

Theorem 1 A linear constraint system is pseudo-telepathic iff the associated
incidence graph is non-planar. Also, any pseudo-telepathic (non-planar) inci-
dence graph must have at least 1 Magic Pentagram or Magic Square graph as a
minor.[1]

Other related but more related problems are elaborated in section 2.3.1.

1.2 Unconditional Hardness of Games

The Bell (resp. Tsirelson’s) Inequality is used to bound the classical (resp.
quantum) hardness of playing CHSH games. By upper bounding expectations,
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we can upper bound probability of success (or easiness), which is equivalent to
an ”unconditional” lower bound in the hardness of the game.

1.2.1 Bell and Tsirelson’s Inequalities

To capture the sum of expected correlations in an interesting way that is aligned
with the game, we find the correlation between inputs and outputs for each
case. To express anti-correlation, we use a negative sign as a coefficient for
an expectation. If the probability for equal outputs given certain inputs is
p(a⊕ b = 0|xi, yj) then the corresponding expectation is written as < XiYj >.

Theorem 2 Let S =< X0Y0 > + < X0Y1 > + < X1Y0 > − < X1Y1 >.

• Sc ≤ 2 (CHSH Inequality)[6]

• Sq ≤ 2
√
2 (Tsirelon’s Inequality)[4]

1.2.2 Probability vs Expectation

It is known that the expectation of a measurement is can be related to the
probability like so: < XiYj >= 1

2
(1+ p(a⊕ b = 0|xi, yj))[3].

Here, < XiYj > represents the expected XOR of the outputs from Alice and
Bob given they receive x = i and y = j. For quantum players, this means they
measure Ai and Bj, but for classical players they only perform their specific
classical operations. The above formula comes from the fact that the expected
correlation for Ai and Bj is Tr(AiBjρ) where rho is the outer product of Alice
and Bob’s initial joint state.

Definition 5 In complexity theory, or specifically game theory, the probability
a party wins a game like the non-local games described above is called the value
of the game, where a value of a game G is written as v(G).

We can determine the quantum and classical values of the game using the
above formula, the Bell/Tsirelson’s inequalities and algebra – v(G) = 1

2
(1+ S

4
).

Plugging in the bounds, the classical value becomes .75 and quantum is .85.

Optimal Classical Strategy: The optimal strategy for Alice and Bob is
for both to always output the same bit, say 0. Because the inputs are uniformly
distributed, 3/4 of the time, the right answer is to output the same bit. Figure
2 can simply explain why.

Note: Because the CHSH and other non-local games serve to separate quan-
tum and classical capabilities, a key component of their construction is the op-
timal quantum measurements, and we prove their optimality using Tsirelson’s
inequality. For classical players, we do not imagine their optimal measurements,
but rather use the CHSH inequality to show their maximum likelihood of suc-
cess. This will be important later in section 2.
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Figure 2: Possible strategies for classical players. Incorrect outputs are in red.

1.3 Interactive Proofs of Quantumness (iPoQs)

Interactive Proofs of Quantumness (iPoQs) are a type of Prover-Verifier security
protocol where the Verifier poses questions to the Prover to determine whether
the Prover is quantum (BQP-abilities) or classical (P-abilities). Analyzing the
success-rate for a prover can illuminate to the verifier whether it is quantum or
classical.

In Kahanamoku-Meyer et al., the authors create an iPoQ, Protocol-2, be-
tween a single prover-verifier system using computational hardness of inverting a
Trapdoor Claw-Free Function (TCF) and unconditional hardness of the CHSH
game [7]. By relying on the CHSH game, where quantum and classical par-
ties have a clear (.10) gap, they create a protocol where quantum and classical
provers also have the same gap in success-rate (.10).

Definition 6 A trapdoor claw-free function (TCF) is a k-to-1 function
that is computationally difficult to invert but efficiently invertible with a trapdoor
(usually a bitstring). By default, TCF typically refers to a 2-to1 function.

Protocol-2
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Figure 3: Protocol-2 Details. In the textual description above, 1. refers to
Round 1, 2. to 6-7a, 3. to 6-7b, 4. to 8-9b, and 5. to Round 3.

1. The Verifier, V, prepares a TCF, saves the trapdoor and informs the prover
of the function. The honest (quantum) Prover, P, should prepare a state
that captures all inputs and outputs for this function (superposition).
Measuring the output register would collapse the superposition onto a
single output, which P should output to V. Now, P has committed to a
particular TCF image, y. Because the TCF is 2-to-1, P’s input register,
a superposition of all inputs mapping to y, should capture 2 pre-images.

2. V flips a coin – if it is 0, P must output one pre-image of y. P can easily
do this by measuring (and collapsing) its input register.

3. If it is 1, V sends a random bitstring r. P must create a new qubit, h, and
compute in superposition r · xi for i = {0, 1}. Now, this new qubit stores
a hardcore bit of both pre-images, which is computationally difficult to
learn based on the TCF’s security. Based on the values of r ·xi, it is either
in θ ∈ {0, π/2, π/4}, where θ represents the angle of the state.
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4. After using a QFT (Hadamard) on the input register and measuring it, P
outputs the result to V. This process steers the new ”hardcore” qubit, h,
into one of 4 states – θ ∈ {0, π/2, π/4, 3π/4}.

5. The final step is for V to request a random one of two measurements of
h and P passes if its measurement is likely given the V’s expected h. (V
can compute h using parameters, θ = f(x0, x1, r, d), because it can use
the trapdoor to compute both pre-images).

Although the authors prove security using a reduction from the TCF’s secu-
rity, there is no explicit reduction from the CHSH game. An optimal classical
(resp. honest quantum ) prover succeeds (tight bound) with .75 (resp. .85).
Because these probabilities match the CHSH game, it is reasonable to assume
the reduction exists. I will prove this in the next section.

1.4 Generalized CHSH (Gm1m2n1n2
)

For each choices of measurement operators per player, or more measurement
outcomes per operator, a new inequality and game can be created. In her pa-
per, Stephanie Wehner computes generalized bounds on the sum of the expected
correlations for a games where Alice and Bob have the same number of inputs
and only 2 outputs (Gmm22)[10].

Theorem 3 Let S =
∑m−1

i=0 < XiYi > +
∑m−1

i=0 < Xi+1Yi >, where < XnYm−1 >=
− < X0Ym−1 >.

• S
(mmnn)
c ≤ 2m− 2 (classical)

• S
(mmnn)
q ≤ 2m cos( π

2m
) (quantum)

This is consistent with previous findings. For example for the CHSH game
(G2222), Sc ≤ 2 and Sq ≤ 2

√
2. While the bounds were derived from SDP

strategies, intuitively they make some sense. For classical settings, 2 is maximum
expected classical overlap between measurements, so this means 2m−2

2
= m −

1 expectations remain after considering the measurements can comply with
at most m − 1 correlations out of 2m. While the intuition isn’t as clear for
inequalities that include all m2 permutations, the true bound for this seems to
be m(m− 2) + 2.

For quantum settings, the 2m coefficient clearly comes from the 2m terms in
the sum of expectations S. The cos( π

2m
) term represents the maximum overlap

(angle similarity) between 2 measurement vectors amongst 2m in a space of
(−π/2, π/2].

This means, if I were interested in a modified inequality with a different set
of inputs to sum expected outputs over, say a set of m2 for m2 permutations
of inputs, then the bound would be Sq ≤ m2 cos(π/2m)
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2 In-Depth Report (Findings)

The following section covers the second presentation (new findings) for this final
project. After constructing and analyzing Protocol-2, a natural question is –
what is the quantum and classical hardness of breaking Protocol-3?

2.1 Protocol-k (k = 3)

When there are 3 inputs per player, corresponding to at most 3 measurements a
player could use, this corresponds to CHSH-iPoQ with a new type of TCF. This
TCF is called a 3-to-1 TCF. Clearly, from the name, this TCF has 3 pre-images
for each image, unlike the standard 2 for a typical (2-to-1 ) TCF.

Overall, the protocol is the same as Protocol-2, however in step 8b., the po-
tential states for the “hardcore” qubit now has an angle depending on (x0, x1, x2, r, d)
instead of (x0, x1, r, d)). This means the prover steers towards different states
than those in Protocol-2. I list them below:

• B1 = {0, π/2}

• B2 = {−π
7
, 5π
14

}

• B3 = {π
7
, −5π

14
}

2.2 G3322

Win Condition: I(x+y = 3) = a⊕b. I is the indicator function that outputs
1 if the condition is true and 0 otherwise. This is decided by the table below.
The third column is decided by checking which of Alice’s measurement vector
is closer to Bob’s (correlated or anti-correlated).

x y I(E[a⊕ b] < 0)
0 0 0
0 1 0
0 2 0
1 0 0
1 1 0
1 2 1
2 0 0
2 1 1
2 2 0

Table 1: Correlation of quantum Alice and Bob’s Outputs given they follow
prescribed, optimal measurements. Here, the third column represents the sign
of the expectation of their XOR’ed measurements (whether their outputs are
more likely to be same or different).

Alice’s Measurements: Alice’s angles in G3322 are analogous to these
steered states in Protocol-3 (see steering explanation in section 1.1). Explicitly,
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these measurements are equivalent to Alice and Bob starting with a maximally
entangled state2 and Alice measuring in one of the three bases (pairs of orthog-
onal vectors) listed above. Alice’s answer, a, is 0 if the measurement collapses
to the left angle, and 1 for the right angle.

Bob’s Measurements: Bob’s angles, {0,±.16π}, are determined via nu-
merical optimization. The optimization problem is to find 3 vectors with an-
gles within (−π/2, π/2] that maximize the correlation inequality (saturate the
bound) for G3322.

2.3 Extremal Inequalities

Previously, I described the hardness of the CHSH game and its generalized mod-
ifications using an inequality to upper bound optimal correlations/strategies.
However, there is a better, more geometric interpretation for any Bell inequal-
ity for these CHSH-esque games.

2.3.1 Determining Extremal Inequalities

Let each strategy, or distribution of outputs given inputs, for Alice and Bob in a
CHSH-esque game be represented as a point in d-dimensional space. Grouping
all distributions that can be described classically, we get a convex set, or a
polytope (see Figure 4) in d-dimensional space. Each face/facet of this polytope
represents a set of equivalent Bell inequalities. Two inequalities are equivalent
if simple relabelling and/or scaling maps from one to the other. For G2222

there is only one nontrivial facet. The trivial facet (all probabilities must be
non-negative and ≤ 1 isn’t of interest because these properties must be satisfied
by quantum states too.[5]

While the challenge of computing all of these inequalities is a challenging
search problem. Asymptotically, this problem is NP-Complete. The reverse
problem, verifying an inequality lies in a facet, is co-NP Complete. These prob-
lems are reduced from SAT and 3-colorability.[9] Because computing the max-
imum value of a game requires SDP but with exponentially large inputs, this
task is in EXP. For games like CHSH, however, the XOR operations simplify
the game and the computation falls to PSPACE.[3]

From Collins and Gisin’s work, it is known the maximal value for G3322 is
most likely reachable by the maximally entangled state. While the measure-
ments they suggest do not align with those emulated by the TCF’s steering in
Protocol-3, if the emulated angles θ are offset by Collins and Gisin’s optimal,
θopt, by δ, offsetting their optimal angles for Bob by δ should yield a two sets of
measurements, ({Ai}, {Bj}), equivalent to the optimal suggestions for Alice and
Bob. However, as indicated below, Protocol-3 is more complex than imagined.

2Explaining maximally entangled states is out of scope. The takeaway is that measuring
one qubit in a maximally entangled pair of qubits will result in the other qubit steering to the
same state. This means that Bob’s qubit mimics Alice’s, steering to the same angle.
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Figure 4: Polytope diagram describing the 3 sets of inequalities. NS describes
the correlations impossible even for quantum computers, requiring faster-than-
light communication.[3]

2.3.2 G3322 bounds

The following bounds are numerically determined – they may not hold true for
larger m.

Theorem 4 Let S =< X0Y0 > + < X0Y1 > + < X0Y2 > + < X1Y0 > + <
X1Y1 > − < X1Y2 > + < X2Y0 > − < X2Y1 > + < X2Y2 >.

• S
(3322)
c ≤ 5 = m(m− 2) + 2 → v(G3322) =

1
2
(1+ 5

32 ) = .78

• S
(3322)
q ≤ 3

√
3 = m2 cos( π

2m
) → v(G3322) =

1
2
(1+ 3

√
3

32 ) = .93

2.4 Hardness Reductions

2.4.1 G2222 → Protocol-2

Although the original work by [7] proves security of their protocol to validate
their iPoQ, their security proof is a reduction from the hardness of finding 2
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pre-images for a TCF. In reality, the security of their protocol stems from both
TCF security (inversion hardness) and the CHSH game. There is one reduction
missing, seemingly trivial, that could aid with security proofs for Protocol-3.

I will construct an instance of Protocol-2 from a G2222 instance (x, y). Let
the instance for Protocol-2 by written as (P-2, V-2) where P-2 and V-2 are clas-
sical prover and verifier algorithms for Protocol-2. Let the referee R moderate
classical Alice (A) and Bob (B). R acts as V-2 while A and B jointly act as P-2.

1. R follows the initial procedure for Protocol-2 normally, preparing a TCF
with a trapdoor and informing P-2 about the function.

2. Once P-2 commits to an image of the TCF by sending it to V-2 (or R), R
selects an r and sends it to P-2.

3. Recall R (or V-2) can use the trapdoor to determine x0, x1, the pre-images
of the image from P-2. R chooses a bitstring r based on the following
criteria – given nothing, it seems random, but given x, r · (x0 ⊕ x1) = x.

Randomness Preservation / Indistinguishability: This is pos-
sible because x is random, while the XOR of the pre-images is computa-
tionally difficult to recover (indistinguishable from random). Therefore,
when P-2 receives r from V-2, it is indistinguishable from random.

Completeness / Equivalence with Game: Recall the angle steer-
ing the state in G2222 should depend on x. In Protocol-2, with linear
algebra, it is clear that r · (x0 ⊕ x1) directly determines the basis for the
hardcore qubit h. In other words, x is equivalent to r · (x0 ⊕ x1), so R
choosing r in such a way is ideal.

4. P-2 uses the r and outputs a d to indicate to V-2 the hardcore qubit’s
state.3

5. A reads d and outputs a := (x)(d · (x0 ⊕ x1)) + (1 − x)(r · x0) to R as its
output for G2222.

Here, Bob’s input hasn’t occurred yet, so it is safe for Alice to read
d and even use the trapdoor to compute the pre-images for outputting a.
There is no communication with Bob.

6. R sends y = m (m is the measurement angle from V-2 in Protocol-2 in
the last round) to B. B outputs the same output as P-2 b := b.

Although b depends on all variables affecting a, they are computa-
tionally hidden by either random bitstrings (r) or TCF security.

Now, I will show a successful P-2, (p[pass] ≈ .85), can simulate non-local
(quantum) correlations by helping Alice and Bob win G2222 with ≈ .85 chance.
If b from P-2 is correct with .85 chance, that means the bit matches the expected

3We should be careful with our language and not mention any quantum operations under
the hood (i.e. quantum fourier transform). It is an unsafe assumption when the prover is
classical/an adversary. The only safe assumption is the inputs and outputs.
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measurement given Bob’s input y = m. The expected measurement is deter-
mined by the steered state, hardcore qubit, h, which is steered by the choice of r
and d. Because (by algebra) the steered state is θ ∈ {0, π/2} if x = r·(x0⊕x1) = 0
and θ ∈ {±π/4} otherwise, Alice’s input behavior matches the optimal behavior
in G2222. By linear algebra, Alice outputting a described above steers it in the
expected way. If Alice’s input is x = 0, she outputs d · (x0 ⊕ x1), which is 1
if h’s angle is −π

4
and 0 for π

4
. These angles match the exact qubit angle Bob

would receive if x, a = (0, 0) or (0, 1) in G2222. Similarly, the argument is true
for x = 1. Thus, Alice and Bob’s inputs and outputs directly correlate with the
intended distribution for G2222.

To sum, intuitively the reduction follows because:

1. The distribution of steered states matches G3322. (Alice’s behavior is the
same)

2. Bob’s inputs (measurement angle and steered qubit) matchesG3322. (Bob’s
behavior is the same)

3. Alice and Bob’s inputs are computationally hidden from each other (no-
communication)

2.4.2 Sub-Optimality of Protocol-3

Although it seems the steered states in Protocol-3 match Alice’s measurements
in G3322, the distribution does not match, this results in a sub-optimal value
for the game < .93. Normally, the referee would send input uniformly random
to Alice and Bob, causing each state to be uniformaly random. For Protocol-3,
the distribution is:

x {θ} p(θ)
0 {0, π/2} 10/16

1 {π
7
, −5π

14
} 3/16

2 {−π
7
, 5π
14

} 3/16

Table 2: The distribution of the inputs/steered states for Protocol-3. Prob-
abilities represent match with union of the angles in the set. For individual
probabilities, divide by 2.

This causes the optimal measurement angles listed above, to allow the prover
to succeed with probability .84. On the other hand, the best classical strategy
seems to win with probability .56. It is unclear whether this bound for classical
players is tight (soundness or true best probability for an adversary). But
using numerical optimization, I have determined .84 as the completeness, or
optimal probability for a quantum prover.

Even if I were to modify G to G ′
3322 where the referee sends inputs to Alice

matching the above distribution, her angles are still sub-optimal. Their shift
from θopt is not consistent (δ mentioned above does not have a singular value).
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So, it is impossible to use the TCF’s steered states to reach the maximum value
deemed by the inequalities.

Therefore, it is not possible to get a direct reduction from even G ′
3322 to

Protocol-3. While it may be possible to prove security of Protocol-3 and show
some gap between quantum and classical provers, proper reduction from G3322

requires more massaging.
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