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A Pedagogical Approach to Ramsey
Multiplicity

Robert Brady William Gasarch

Abstract. It is well known that for all 2-colorings of the edges of K6 there is
a monochromatic triangle. Less well known is that there are two monochromatic
triangles. More generally, for all 2-colorings of the edges of Kn there are asymptoti-
cally at least n3/24 monochromatic triangles. Another way to state this is that the
density of monochromatic triangles is at least 1/4.

The Ramsey Multiplicity of k is (asymptotically) the greatest α such that for
every coloring of Kn the density of monochromatic Kk’s is at least α. This concept
has been studied for many years. We survey the area and provide proofs that are
more complete, more motivated, and use modern notation.

1. INTRODUCTION Throughout this paper we will let n ∈ N be a large
natural number and k ∈ N be a small natural number (i.e. k ≪ n). We are
concerned with coloring the edges of Kn, the complete graph on n vertices. Let
c ∈ N be the number of colors we use to do this. Our objective will be to find
an asymptotic lower bound α on the number of monochromatic copies of Kk in
Kn for various values of k, n, and c.

Many, but not all, of the results in this paper are well established; however,
some of the proofs in the literature are missing or incomplete. Many of the proofs
are not motivated. As such, we present the proofs in a new light, intended to
illuminate the problem solving process while still rigorously proving the main
results.

In Section 2 we show that for all 2-colorings of the edges of K6 there are two
monochromatic K3’s. In Section 3 we use the ideas of the proof in Section 2
for all 2-colorings of the edges of Kn, showing there are asymptotically at least
n3

24 monochromatic K3’s. We view this as saying that 1
4 of the triangles are

monochromatic. Section 4 discusses the best known bounds for c-colorings.
What if we seek monochromatic Kk’s? Section 5 introduces the concept of

Ramsey Multiplicity, which is the fraction of Kk’s that are monochromatic.
We discuss some of the early work and give a lower bound on this fraction. In
Section 6 we improve this lower bound. We offer two proofs of this improved
lower bound. One proof is from the literature. The other is a motivated version
of that proof. The motivated version is, in our opinion, easier to generalize to
c colors, which we state and prove as our final result.

In Section 7 we state the best known bounds for the Ramsey Multiplicity
constants. Finally, In Section 8, we discuss open questions.

2. MONOCHROMATIC TRIANGLES IN ANY 2-COLORING OF
THE EDGES OF K6

Definition 1. We denote the minimum number of monochromatic Kk’s in any
c-coloring of Kn by ψc(k, n).

We give an example by showing that ψ2(3, 6) ≥ 2. The proof is from an
exposition by Dorwart & Finkbeiner [4] based on ideas from Schwenk [8].
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Figure 1. Mixed Triangles

Theorem 2. ψ2(3, 6) ≥ 2
Proof. Let COL : E −→ {red, blue} be an arbitrary 2-coloring of the edges of
our graph. Any triangle in our graph will either have 3 red edges, 3 blue edges,
or it will be mixed with 2 edges of one color and 1 edge of the other. A mixed
triangle would look like the ones in Figure 1.

Let R, B, and M be the sets of red, blue, and mixed triangles respectively.
Then

|R| + |B| + |M | =
(

6
3

)
= 20

We show |M | ≤ 18 which implies |R| + |B| ≥ 2.
In each mixed triangle there will be exactly 2 vertices with both a red and

blue edge coming out of them.
Definition 3. A Mix is an element (v, {u,w}) ∈ V × E s.t. v ̸∈ {u,w} and
COL(v, u) ̸= COL(v, w). MIX is the set of all Mixes.

For example, in our mixed triangles above, the set of Mixes is:

{(v2, {v1, v3}), (v3, {v1, v2}), (v4, {v5, v6}), (v6, {v4, v5})}

Because there are exactly 2 Mixes for each mixed triangle, we see |MIX| =
2|M |. Now we bound |MIX|.

To bound the contribution of a single vertex to MIX, consider the red degree
of each vertex in our graph, dR(v). Since every vertex has degree 5, dB(v) =
5 − dR(v).

Case 1: dR(v) = 5. Then v does not have different colored edges coming out of it so
it contributes 0 to the size of MIX.

Case 2: dR(v) = 4. Then dB(v) = 1 and there are 4 pairs of edges of different colors
coming out of v so this vertex contributes 4 to the size of MIX.

Case 3: dR(v) = 3. Then dB(v) = 2 and there are 3 · 2 = 6 pairs of edges of different
colors coming out of v so this vertex contributes 6 to the size of MIX.
By symmetry we need not consider the cases dR(v) < 3.
So each vertex in our graph will contribute at most 6 to the size of MIX.

With 6 vertices in the graph this means

|MIX| ≤ 6 · 6 = 36 =⇒ |M | ≤ 18 =⇒ |R| + |B| ≥ 2

2 © the mathematical association of america [Monthly 121
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3. MONOCHROMATIC TRIANGLES IN ANY 2-COLORING OF
THE EDGES OF Kn We rephrase Theorem 2:
For all 2-colorings of K6 at least 2

20 = 1
10 of the triangles are guaranteed to be

monochromatic.
What happens if n is large? What should we expect the lower bound on

the fraction of monochromatic triangles to be? We give an informal argument,
credited to Erdős, for why the answer should be 1

4 and then prove it formally.

Informal Argument Lower bounds on the Ramsey numbers are often ob-
tained with the probabilistic method where a color is determined by a fair coin
flip. Hence we assume that the coloring with the least number of monochro-
matic triangles is so determined. Color the edges of Kn as follows; for each edge,
color it R with probability 1

2 , and (hence) B with probability 1
2 .

To get the density of triangles, pick three vertices at random. There are
8 possible ways to 2-color the edges of a triangle and 2 of those result in a
monochromatic triangle. Hence the density of monochromatic triangles is 1

4 .
End of Informal Argument

In the proof of Theorem 2 the red and blue degrees of each vertex played
a role in determining the maximum contribution to our set MIX. We saw the
maximum contribution occurred when the red and blue degrees were close to
equal. It will be useful to formalize this statement when considering coloring
the edges of Kn. We leave the proof of this to the reader.

Lemma 4. Let x, y ∈ N. Then the maximum value of xy is achieved w.r.t. the
constraint x+ y = d for some fixed d ∈ N when x =

⌊
d
2
⌋

(or when y =
⌊

d
2
⌋
).

We now prove a theorem about 2-coloring the edges of Kn. This result was
first proved by Goodman [7] and later a simpler proof was given by Schwenk [8]
using the method of Theorem 2. Both authors demonstrate that the lower bound
from Theorem 5 is tight by construction. Here is a presentation of the proof by
Schwenk, though we have modernized the notation of the original paper.

We split the theorem into two theorems: a lower bound and an upper bound.

Theorem 5. For n ≥ 6 a natural number,

ψ2(3, n) ≥


n3

24 − n2

4 + n
3 , n ≡ 0 (mod 2)

n3

24 − n2

4 + 5n
24 , n ≡ 1 (mod 4)

n3

24 − n2

4 + 5n
24 + 1

2 , n ≡ 3 (mod 4)

Proof. We proceed in a manner analogous to the previous example, constructing
the sets R, B, M , and MIX, noting that |MIX| = 2|M |. To bound |MIX| above
we consider the maximum number of mixed triangles.

Case 1: n ≡ 0 mod 2
The degree of each vertex, n− 1, is odd and therefore from Lemma 4, the

maximum contribution of a given vertex to MIX is n
2 · n−2

2 . So

|M | = |MIX|
2 ≤ n3 − 2n2

8

=⇒ |R| + |B| ≥
(
n

3

)
− n3 − 2n2

8
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= n3

24 − n2

4 + n

3

Case 2: n ≡ 1 mod 4
Each vertex has degree n − 1, which is an even number divisible by 4.

Using Lemma 4, this means we have a maximum contribution of (n−1)2

4 to
MIX from each vertex. Therefore

|M | = |MIX|
2 ≤ n

(n− 1)2

8

=⇒ |R| + |B| ≥
(
n

3

)
− n

(n− 1)2

8

= n3

24 − n2

4 + 5n
24

Case 3: n ≡ 3 mod 4
Since n is odd and n−1

2 is odd, our previous calculation of |MIX| yields an
odd number. Because |M | must be a whole number, MIX can’t be odd and
we take |M | =

⌊
|MIX|

2

⌋
= |MIX|−1

2 .

|M | = |MIX| − 1
2 ≤ n

(n− 1)2

8 − 1
2

=⇒ |R| + |B| ≥
(
n

3

)
− n

(n− 1)2

8 + 1
2

= n3

24 − n2

4 + 5n
24 + 1

2

We now give the upper bound.

Theorem 6. For n ≥ 6 a natural number,

ψ2(3, n) ≤


n3

24 − n2

4 + n
3 , n ≡ 0 (mod 2)

n3

24 − n2

4 + 5n
24 , n ≡ 1 (mod 4)

n3

24 − n2

4 + 5n
24 + 1

2 , n ≡ 3 (mod 4)

Proof. We consider two cases depending on the parity of n.
Case 1: n even

Partition the vertices into two sets of the same size, A = {a1, . . . , ad}
and B = {b1, . . . , bd} where d = n

2 . Color all the edges between vertices in
the same set red and color all edges between vertices in different sets blue.
Figure 2 shows the construction.

We claim there are no blue triangles in this construction. Every set of
3 vertices must have either 2 vertices in A or 2 vertices in B and in both
cases we have a red edge. Therefore we concern ourselves with counting the
number of red triangles in the graph.

4 © the mathematical association of america [Monthly 121
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Figure 2. Edge Coloring of Kn, n Even, with Minimum Number of Monochromatic Triangles

|A| = |B| = n
2 . In each set there are thus

(
n/2

3
)

red triangles.

2 ·
(

n
2
3

)
= n(n− 2)(n− 4)

24 = n3

24 − n2

4 + n

3

Case 2: n odd
We do the case where n ≡ 1 (mod 4); however, we indicate what changes

in the construction if n ≡ 3 (mod 4).
Label one vertex in the graph v, which will have different behavior than

the others. The remaining n− 1 vertices we divide into two sets of the same
size, A = {a1, . . . , ad} and B = {b1, . . . , bd} where d = n−1

2 . Color all the
edges between vertices in the same set red as before, but we also color red
the edges in the following sets:

1. {(ai, v) : 1 ≤ i ≤ n−1
4 } (If n ≡ 3 (mod 4) then the upper bound is n−3

4 .)
2. {(bj , v) : 1 ≤ j ≤ n−1

4 } (If n ≡ 3 (mod 4) then the upper bound is n−3
4 .)

3. {(ai, bj) : i = j and i, j ≥ n+3
4 } (If n ≡ 3 (mod 4) then the lower bound

is n+1
4 .)

We color the remaining edges blue. Figure 3 shows the construction when
n ≡ 1 (mod 4).

We now count the monochromatic triangles in this construction. In sets
A and B we have

2
(

(n− 1)/2
3

)
= (n− 1)(n− 3)(n− 5)

24 = n3

24 − 3n2

8 + 23n
24 − 15

24

red triangles. Through vertex v we have

2
(

(n− 1)/4
2

)
= (n− 1)(n− 5)

16 = n2

16 − 3n
8 + 5

16

red triangles formed in the upper half of our diagram, and we have

n− 1
4 ·

(
n− 1

4 − 1
)

= (n− 1)(n− 5)
16 = n2

16 − 3n
8 + 5

16
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Figure 3. Edge Coloring of Kn, n ≡ 1 (mod 4), with Minimum Number of Monochromatic
Triangles

blue triangles formed in the lower half of our diagram. Hence the number of
monochromatic triangles that pass through v is

n2

8 − 3n
4 + 5

8 .

Therefore the total number of monochromatic triangles is

n3

24 − 3n2

8 + 23n
24 − 15

24 + n2

8 − 3n
4 + 5

8 = n3

24 − n2

4 + 5n
24

The construction we provide in Theorem 6 has the property that approxi-
mately half the edges are of each color. Erdős [5] conjectured this type of graph
was the worst case for all colorings, which was true for k = 3. Is it true for
general k? Alas, no. Thomason [9] proved this was not the case for k ≥ 4.

4. WHAT ABOUT MORE COLORS? With monochromatic triangles in
2-colorings completely solved using elementary techniques, one could ask if
we can extrapolate these ideas to more colors. Cummings et al. [3] gives an
asymptotic bound for c = 3, but for c > 3 the best known upper and lower
bounds are far from tight. In this Section we state and provide an interpretation
of the best known bounds for these problems. We begin by defining the Ramsey
numbers.

Definition 7. Rc(k) is the smallest n ∈ N such that, for any c-coloring of the
edges of Kn, there is a monochromatic Kk.

We make use of the following bounds on Rc(3).

6 © the mathematical association of america [Monthly 121
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Theorem 8.
1. (Exoo et al. [10]) Rc(3) ≥ (3.199 . . .)c ≥ 2Ω(c).
2. (Xiaodong et al. [11]) Rc(3) ≤ 2.55c! ≤ 2O(c log c).

Theorem 8 combined with the work of Fox [6] and Cummings et al. [3] gives
the following as the best known bounds for c ≥ 3.

Theorem 9. For large n:
1. (Fox [6])

(a) For any c-coloring of the edges of Kn the proportion of triangles that
are monochromatic is ≥

(Rc(3)
3
)−1

. By Theorem 8.2 this proportion is
≥ 1

2O(c log c) .
(b) There is a c-coloring of the edges of Kn such that the proportion of

triangles that are monochromatic is ≤ (Rc−1(3) − 1)1−c. By Theo-
rem 8.1 this proportion is ≤ 1

2Ω((c−1)2) .

2. (Cummings et al. [3])
(a) For any 3-coloring of the edges of Kn, the proportion of triangles that

are monochromatic is ≥ 1
25 .

(b) There is a 3-coloring of the edges of Kn such that the proportion of
triangles that are monochromatic is ≤ 1

25 .

5. RAMSEY MULTIPLICITY

Definition 10. The Ramsey Multiplicity given by:

RMc(k) = lim
n→∞

ψc(k, n)(
n
k

)
represents the minimum density of monochromatic subgraphs of size k in any
c-coloring of Kn as n gets large.

Example 11.
1. By Theorems 5 and 6, RM2(3) = 1

4 .
2. By Theorem 9.2, RM3(3) = 1

25 .
3. By Theorem 9.1, for fixed c,

1
2O(c log c) ≤ RMc(3) ≤ 1

2Ω((c−1)2) .

That these limits exist for all c, k was first claimed by Erdős [5] without
proof. Other authors have quoted it; however, to our knowledge, a proof has
never been written down. We do so.

Lemma 12. ∀c, k,RMc(k) exists and is finite.

Proof. RMc(k) ≤ 1,∀c, k is clear. Now we must argue that the sequence

ψc(k, n)(
n
k

)
January 2014] 7



Mathematical Assoc. of America American Mathematical Monthly 121:1 September 6, 2023 3:11 p.m. main.tex page 8

is non-decreasing in n.
Consider a c-coloring of the graph G = Kn+1. Let Gv be the subgraph of

G given by removing the vertex v (and its associated edges). Thus Gv is a c-
coloring of Kn and as such it will have at least ψc(k, n) monochromatic Kk’s.
This is true for any subgraph Gv and therefore

number of monochromatic Kk’s in Gv ≥ ψc(k, n)

There are n + 1 choices for Gv and as such there are (n + 1) · ψc(k, n) total
monochromatic Kk’s that can be counted in the associated subgraphs. We are
counting some of these Kk multiple times. How many times are we counting
each? Each monochromatic Kk only appears once in a particular choice of Gv

and the number of choices for v for which this Kk appears is n+ 1 − k, choosing
any vertex from our set of n+ 1 which is not part of the Kk. Therefore:

ψc(k, n+ 1) ≥ n+ 1
n+ 1 − k

ψc(k, n)

Thus,

ψc(k, n+ 1)(
n+1

k

) /
ψc(k, n)(

n
k

) = (n+ 1 − k)ψc(k, n+ 1)
(n+ 1)ψc(k, n)

≥ (n+ 1)ψc(k, n)
(n+ 1)ψc(k, n) = 1

So our sequence is non-decreasing in n and upper bounded by 1 which means
the limit exists ∀c, k.

We now turn our attention to finding lower bounds on these constants for
different values of c and k. First we must state a well-known bound on the
Ramsey numbers.
Theorem 13. R2(k) ≤ 4k.

Theorem 13 is folklore, and while there are better upper bounds (see Con-
lon [1]), we don’t need to make use of them. With this result we can derive a
loose bound on RM2(k). The proof of the following Theorem is due to Erdős [5].
We present it using modern notation and supply some of the missing details.

Theorem 14. RM2(k) ≥
( 1

4
)k2

Proof. Let R = R2(k). Let A = {A1, · · · , A(n
R)} be an enumeration of all R-

subsets of [n]. We will iterate the following process to find a lower bound on
the number of monochromatic Kk’s while A is not empty:
1. Choose Ai ∈ A.
2. There is a monochromatic Kk in Ai, which increases our count. Call it C.
3. Remove from A every Ai containing C.

Every iteration produces a distinct monochromatic Kk and we are removing
at most

(
n−k
R−k

)
elements from A. Hence:

ψ2(k, n) ≥
(

n
R

)(
n−k
R−k

) = n!
R!(n−R)! · (n−R)!(R− k)!

(n− k)! = n!
(n− k)! · (R− k)!

R!

8 © the mathematical association of america [Monthly 121
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Now we take the lower bound RM2(3) by utilizing Theorem 13:

RM2(k) = lim
n→∞

ψ2(k, n)(
n
k

) ≥
n!

(n−k)! · (R−k)!
R!(

n
k

) = k!(R− k)!
R!

= 1
R

· 2
R− 1 · · · k

R− k + 1 ≥ 1
Rk

≥ 1
(4k)k

= 1
4k2

To get a sense of how this lower bound compares to known values, we utilize
RM2(3) = 1

4 which we computed earlier. Theorem 14 gives RM2(3) ≥ 1
432 =

1
262144 , which is a significant disparity.

6. COMPARING TWO PROOFS OF A TIGHTER BOUND In this
section we give two proofs of an improvement to Theorem 14. They are both
the same proof and due to Conlon [2]. The first one is essentially what Conlon
presented. It is straightforward but unmotivated and hard to generalize to c
colors. The second one is motivated and from it one can see how to generalize
it to c colors.
Notation 15. For the remaining Theorems we will use the notationOa,b(f(a, b, n))
to denote that the function f has a coefficient of the highest-order term which
depends on a and b.

As an example, in Theorem 17 we write Oa,b(na−1) to suggest the highest
order term is f(a, b)na−1 where f(a, b) is some function of a and b (e.g. f(a, b) =
2ab).

Conlon’s Proof
Lemma 16. Let n ≫ d and 0 < x < 1. Then(

x(n− 1)
d

)
≈ xd

(
n

d

)
.

Proof. See Appendix A.

We want a better lower bound on RM2(k) than was shown in Theorem 14.
We only care about what happens when n is large. However, in the proof of
Theorem 17 we need to formally bound n below for the induction to proceed,
hence the condition in the Theorem statement n ≥ 3a+b.
Theorem 17. Let a, b ≥ 1 be natural numbers, and let n ≥ 3a+b. Then in any
red/blue-coloring of the edges of Kn there are at least:

2−a(b−2)−(a+1
2 )
(
n

a

)
−Oa,b(na−1)

red Ka’s OR at least:

2−b(a−2)−(b+1
2 )
(
n

b

)
−Oa,b(nb−1)

blue Kb’s.
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Proof. We induct on a+ b.
Base Case: a+ b = 2.

2−1(1−2)−(2
2)
(
n

1

)
= n

and since we can think of every vertex being a monochromatic K1 in either
color, the statement holds.

Induction Hypothesis: The theorem is true for all (a0, b0, n0) such that a0 +
b0 < a+ b and n0 ≥ 3a0+b0 .

Induction Step: We show the theorem is true for (a, b, n) with n ≥ 3a+b.
Assume we are given a red/blue coloring of the edges of Kn.
For each vertex vi there is a color Ci s.t. there are at least n−1

2 neighbors to
which it is connected by Ci. Either there are at least n

2 vertices associated with
red or there are at least n

2 vertices associated with blue. Suppose WLOG these
vertices are red and call them {v1, · · · , vn

2
}. For all i, let Vi be the respective

red neighbors of vi.
We apply the induction hypothesis to the subgraph induced by each Vi sepa-

rately. Each subgraph has at least n−1
2 vertices and by the induction hypothesis

we know:

n ≥ 3a+b =⇒ n− 1 ≥ 3a+b − 1

=⇒ n− 1
2 ≥ 3a+b − 1

2 ≥ 3a+b−1

So we can apply the induction hypothesis to the triple
(
a− 1, b, n−1

2
)
.

For each Vi, our induction hypothesis tells us there are either:

2−(a−1)(b−2)−(a
2)
(

n−1
2

a− 1

)
−Oa,b((n/2)a−2)

red Ka−1’s OR at least:

2−(b)(a−3)−(b+1
2 )
(

n−1
2
b

)
−Oa,b((n/2)b−1)

blue Kb’s.
First suppose there exists some i for which the latter case holds for Vi. Then

the number of blue Kb’s is at least:

2−(b)(a−3)−(b+1
2 )
(

n−1
2
b

)
−Oa,b((n/2)b−1)

= 2−(b)(a−3)−(b+1
2 )2−b

(
n

b

)
−Oa,b(nb−1) (Lemma 16)

= 2−(b)(a−2)−(b+1
2 )
(
n

b

)
−Oa,b(nb−1)

10 © the mathematical association of america [Monthly 121
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completing the proof. Therefore we assume for all i, Vi instead has at least:

2−(a−1)(b−2)−(a
2)
(

n−1
2

a− 1

)
−Oa,b((n/2)a−2)

red Ka−1’s. By our assumption, since each Vi is connected to vi by red edges,
each of these forms a red Ka. It is possible we have counted each of these a
times (once per each vertex), and there are at least n

2 of them so in total we
have at least:

1
a

· n2

(
2−(a−1)(b−2)−(a

2)
(

n−1
2

a− 1

)
−Oa,b((n/2)a−2)

)

= n

2a

(
2−(a−1)(b−2)−(a

2)21−a

(
n

a− 1

)
−Oa,b(na−2)

)
(Lemma 16)

= 2−(a−1)(b−2)−(a
2)2−a

(
n

a

)
−Oa,b(na−1)

= 2−(a−1)(b−2)−(a+1
2 )
(
n

a

)
−Oa,b(na−1)

> 2−(a)(b−2)−(a+1
2 )
(
n

a

)
−Oa,b(na−1)

red Ka’s.

Corollary 18. RM2(k) ≥
(

1
2

√
2

)k2(1−o(1))

Proof. In Theorem 17, let a = b = k. Then

ψ2(k, n) ≥ 2−k(k−2)−(k+1
2 )
(
n

k

)
−Ok(nk−1)

= 2− 3
2 k2+ 3

2 k

(
n

k

)
−Ok(nk−1)

=
( 1

2
√

2

)k2−k
(
n

k

)
−Ok(nk−1)

So

RM2(k) = lim
n→∞

ψ2(k, n)(
n
k

) ≥
( 1

2
√

2

)k2(1−o(1))
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Another Version of the Proof Theorem 17 is succinct and the proof is easy
to follow. A curious reader may wonder where the leading coefficients came
from; we must postpone this exploration until our next result. As a comparison
with the bound we computed for RM2(3) earlier, this result gives us:

RM2(3) ≥
( 1

2
√

2

)32

≈ 1
11585

We now step back and consider the problem in generality. Due to the defi-
nition of Ramsey Multiplicity, we want to construct a function whose leading
term is a product of some coefficient with

(
n
k

)
. If we structure the Theorem in

a similar way, this function can depend on both a and b to represent different
sized subgraphs for each color. The lower order terms are of no consequence as
we plan to take a limit. With this in mind, we state and prove a similar result
to Theorem 17 as a second method of obtaining the bound in Corollary 18.

Rather than simply state the Theorem in its entirety upfront, we methodi-
cally proceed from our general statement and derive relations on our functions.
Then, under certain intuitive, relaxed conditions, we use these relations to pro-
vide a recurrence for our functions. Finally we solve the recurrence and realize
the same bound from Corollary 18.

Theorem 19. Let a, b ≥ 1 be natural numbers, and n ≥ 3a+b. Let T = T (a, b)
and U = U(a, b) be functions (determined later). Then in any red/blue-coloring
of the edges of Kn there are at least:

T

(
n

a

)
−Oa,b(na−1)

red Ka’s OR at least:

U

(
n

b

)
−Oa,b(nb−1)

blue Kb’s.

Proof. We wish to prove this by induction, in a similar manner to the previous
Theorem, but because we will later determine T and U , we only end up with a
set of relations for these functions in order for our inductive proof to work.

Again we induct on a+ b.
Base Case: a+ b = 2. Note that if a = 1 or b = 1 we have n monochromatic
Ka’s or Kb’s respectively. So we can simply set:

T (a, 1) = T (1, b) = U(a, 1) = U(1, b) = 1,∀a, b (1)

Induction Hypothesis: The theorem is true for all (a0, b0, n0) such that a0 +
b0 < a+ b and n0 ≥ 3a0+b0 .

Induction Step: We show the theorem is true for (a, b, n) with n ≥ 3a+b.
Assume we are given a red/blue coloring of the edges of Kn.
Every vertex v is connected to either n−1

2 vertices by blue edges or n−1
2

vertices by red edges. Additionally, either the first case occurs n
2 times or the

12 © the mathematical association of america [Monthly 121
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second case occurs n
2 times. We will first work through the case where we have

n
2 vertices {vi} each connected to n−1

2 vertices (respectively Vi) by blue edges
and the remaining cases follow similarly.

We apply our induction hypothesis to the subgraph induced by each Vi sep-
arately, similar to the process in Theorem 17. Our induction hypothesis says
for each Vi we must have at least:

T (a, b− 1)
(

n−1
2
a

)
−Oa,b(na−1)

red Ka’s OR at least:

U(a, b− 1)
(

n−1
2

b− 1

)
−Oa,b(nb−2)

blue Kb−1’s.
If the first case occurs for any of the vertices, then (making use of Lemma 16)

we have at least:

T (a, b− 1)
(

n−1
2
a

)
−Oa,b(na−1) =

(1
2

)a

T (a, b− 1)
(
n

a

)
−Oa,b(na−1)

red Ka’s. To complete our proof from here we would need the following relation
on T : (1

2

)a

T (a, b− 1) ≥ T (a, b) (2)

If this case does not occur for any of the vertices, then for each vertex set Vi

our Inductive Hypothesis says we have at least:

U(a, b− 1)
(

n−1
2

b− 1

)
−Oa,b(nb−2)

blue Kb−1’s. By our assumption, since each Vi is connected to vi by blue edges,
each of these forms a blue Kb. It is possible we have counted each of these b
times (once per each vertex of the Kb), and there are at least n

2 of them so in
total we have at least:

1
b

· n2

(
U(a, b− 1)

(
n−1

2
b− 1

)
−Oa,b(nb−2)

)

= 1
b

· n2

(
U(a, b− 1)

(1
2

)b−1
(

n

b− 1

)
−Oa,b(nb−2)

)

=
(1

2

)b

U(a, b− 1)
(
n

b

)
−Oa,b(nb−1)

blue Kb’s. To complete our proof from here we would need the following relation
on U : (1

2

)b

U(a, b− 1) ≥ U(a, b) (3)

January 2014] 13



Mathematical Assoc. of America American Mathematical Monthly 121:1 September 6, 2023 3:11 p.m. main.tex page 14

If we worked through the other cases, we would similarly obtain the following
relations on T and U :

(1
2

)a

T (a, b− 1) ≥ T (a, b)

(1
2

)b

U(a, b− 1) ≥ U(a, b)(1
2

)a

T (a− 1, b) ≥ T (a, b)

(1
2

)b

U(a− 1, b) ≥ U(a, b)(1
2

)a

T (a− 1, b) ≥ T (a, b)

(1
2

)b

U(a− 1, b) ≥ U(a, b)

Note the redundancy in some of these equations. This is actually due to an
arbitrary, although understandable choice we made earlier in the proof. We will
revisit this observation shortly.

For clarity we will now list our required relations on T and U to complete
the proof.

T (a, 1) = U(1, b) = 1,∀a, b (4)(1
2

)a

T (a, b− 1) ≥ T (a, b) (5)

(1
2

)b

U(a, b− 1) ≥ U(a, b) (6)(1
2

)a

T (a− 1, b) ≥ T (a, b) (7)

(1
2

)b

U(a− 1, b) ≥ U(a, b) (8)

Note 20. Early on in the induction step of the proof of Theorem 19 we said
Every vertex v is connected to either n−1

2 vertices · · · . This is true, but our
choice of the fraction 1

2 may not have been optimal. Indeed it is not! Conlon
shows that better results can be obtained by having the fraction depend on
a and b. We offer some intuition as to why this might be true. Consider the
scenario where b is much larger than a, say b = 100a. In this scenario we could
imagine the worst-case graph may be one with significantly more blue edges
than red edges, and could thus imagine tweaking our proof to account for this
possibility. Still, our choice of 1

2 yields a non-trivial bound with a simple proof
that still contains most of the ideas of the original proof.
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In Section 7 we state a result of Conlon who provides a numerical solution to
the recurrence given in Equations 4 - 8, although the methods used are beyond
the scope of this paper. Now we proceed to show how to obtain the same bound
referenced earlier using these relations.

Corollary 21. RM2(k) ≥
(

1
2

√
2

)k2(1−o(1))

Proof. We wish to maximize the quantity T (k, k), noting that the relations are
symmetric in T and U when a = b = k.

To do this, imagine a lattice of points {1 ≤ a ≤ k} × {1 ≤ b ≤ k}. To reach
the point (k, k) we must begin along an edge and sequentially take steps, in-
creasing by one our 1st or 2nd coordinate. Each of these steps comes at a multi-
plicative cost of 2−a or 2−b in our respective coordinates. Importantly, because
T (a, b) must be smaller than the product of each step, we need to minimize the
quantity over all possible step sequences. Let us formalize this process with a
definition:
Definition 22. Let [x] × [y] be an integer lattice of points. A path P in this
lattice to (x, y) is defined as a sequence of points {ai, bi}i=0,··· ,t which satisfies
the following properties:

1. a0 = 1 or b0 = 1
2. a1 ̸= 1 and b1 ̸= 1
3. (ai, bi) = (ai−1 + 1, bi−1) or (ai, bi) = (ai−1, bi−1 + 1)
4. (at, bt) = (x, y)

We will denote by Px,y the set of all paths to (x, y).
Using this definition and notation we can succinctly describe our optimization

problem as:

T (k, k) = min
P ∈Pk,k

Πt
i=12−ai

To minimize this product, we wish to maximize the exponents {ai} as quickly
as possible and this can be done with the path (2, 1), (2, 2), (3, 2), (4, 2), · · · ,
(k, 2), (k, 3), · · · , (k, k).

T (k, k) = min
P ∈Pk,k

Πt
i=12−ai

= 2−(2+
∑k

i=2 i+
∑k

i=2 k)

= 2−(2−1+(k(k+1)/2)+k(k−1))

= 2−( 3
2 k2− 1

2 k+1)

=
( 1

2
√

2

)k2(1−o(1))

Conlon states the process used to obtain the bounds for 2-colorings is also
effective for c-colorings, but does not explore this in his original work. We now
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offer our main result, a generalization of the previous Theorems for c-colorings.
The technique used to solve the problem will be exactly as presented in the
proof of Theorem 19 and the subsequent Corollary 21.

Theorem 23. Let c ≥ 2 represent the number of colors, m = {m1, · · · ,mc}
with mi ≥ 1 ∀i, and n ≥ (c+ 1)

∑
mi . Let {Ui = Ui(m)}c

i=1 be functions (deter-
mined later). Then in any c-coloring of the edges of Kn there are at least:

U1

(
n

m1

)
−Om(nm1−1)

monochromatic Km1 ’s OR at least:

...

OR at least:

Uc

(
n

mc

)
−Om(nmc−1)

monochromatic Kmc ’s.

Proof. We prove this by induction on
∑

i mi.
Base Case: Any mi = 1. Then we have n monochromatic Kmi

’s. In this case
we may set U = 1 if there is a 1 in any coordinate of the vector m.

Induction Hypothesis: The theorem is true for all (m0, n0) such that∑
m0i

<
∑
mi and n0 ≥ (c+ 1)

∑
m0i .

Induction Step: We show the theorem is true for (m, n) with n ≥ (c+ 1)
∑

mi .
Assume we are given a c-coloring of the edges of Kn.
For each vertex v there must be a color Ci for which there are at least n−1

c
edges of this color connecting v to other vertices. Across all vertices, choose the
color Ci which occurs the most often, which results in a set {vi} of size at least
n
c
. WLOG suppose this color is C1. Let Vi be the set of vertices connected to

each vi by color C1.
We apply the induction hypothesis to the subgraph induced by each Vi sepa-

rately. Each subgraph has at least n−1
c

vertices and by the induction hypothesis
we know:

n ≥ (c+ 1)
∑

mi =⇒ n− 1 ≥ (c+ 1)
∑

mi − 1

=⇒ n− 1
c

≥ (c+ 1)
∑

mi − 1
c

≥ (c+ 1)(
∑

mi)−1

So we can apply our induction hypothesis to the tuple
(
m1 − 1,m2, · · · ,mc,

n−1
c

)
.

By our inductive hypothesis this means there are at least:

U1(m1 − 1,m2, · · · ,mc)
(

n−1
c

m1 − 1

)
−Om(nm1−2)
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monochromatic Km1 ’s of color C1 OR at least:

U2(m1 − 1,m2, · · · ,mc)
(

n−1
c

m2

)
−Om(nm2−1)

monochromatic Km2 ’s of color C2 OR at least:

U3(m1 − 1,m2, · · · ,mc)
(

n−1
c

m3

)
−Om(nm3−1)

monochromatic Km3 ’s of color C3 OR at least:

...

Uc(m1 − 1,m2, · · · ,mc)
(

n−1
c

mc

)
−Om(nmc−1)

monochromatic Kmc ’s of color Cc.
For 2 ≤ j ≤ c, our argument proceeds in the following way.

Uj(m1 − 1,m2, · · · ,mc)
(

n−1
c

mj

)
−Om(nmj−1) =

(1
c

)mj

Uj(m1 − 1,m2, · · · ,mc)
(
n

mj

)
−Om(nmj−1)

=⇒
(1
c

)mj

Uj(m1 − 1,m2, · · · ,mc) ≥ Uj(m1,m2, · · · ,mc)

If none of these cases happens, since all of our vertices are connected to
each of their corresponding vertex sets by the same color, C1, our Inductive
Hypothesis states we have at least:

U1(m1 − 1,m2, · · · ,mc)
(

n−1
c

m1 − 1

)
−Om(nm1−2)

monochromatic Km1 ’s. There are n
c

vertex sets, but each monochromatic Km1
may be overcounted m1 times and thus:

n

c
· 1
m1

(
U1(m1 − 1,m2, · · · ,mc)

(
n−1

c

m1 − 1

)
−Om(nm1−2)

)

=
(1
c

)m1

U1(m1 − 1,m2, · · · ,mc)
(
n

m1

)
−Om(nm1−1)

=⇒
(1
c

)m1

U1(m1 − 1,m2, · · · ,mc) ≥ U1(m1,m2, · · · ,mc)
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The relations we desire on {U} must hold for each color and each coordinate
of our vector m, so we are left with the following set of relations that must be
satisfied for our Theorem to hold:

U(m01 , · · · ,m0i
= 1, · · · ,m0c) = 1, 1 ≤ i ≤ c, 1 ≤ m0j

≤ mj , ∀i, j (9)

c− maxi{m0i
}U(m01 , · · · ,m0i

− 1, · · · ,m0c) ≥ U(m01 , · · · ,m0c),∀i (10)

Corollary 24. RMc(k) ≥
(( 1

c

)c− 1
2

)k2(1−o(1))

Proof. Similar to our construction of the function T in the proof of Corollary 21
we wish to find paths, now in a c-dimensional lattice. The minimizing path to
reach (k, · · · , k) can be done with the path (2, · · · , 2, 1), (2, · · · , 2, 2), (3, · · · ,
2, 2), (4, · · · , 2, 2), · · · , (k, · · · , 2, 2), (k, 3, · · · , 2, 2), · · · , (k, k, 2, · · · , 2, 2),
· · · , (k, k, · · · , k, 2), · · · , (k, · · · , k). Thus

U(k, · · · , k) = min
P ∈Pk,··· ,k

Πt
i=1c

−ai

= c−(2+
∑k

i=2 i+(c−1)
∑k

i=2 k)

= c−((2−1+k(k+1)/2)+(c−1)k(k−1))

= c−((c− 1
2 )k2−(c− 3

2 )k+1)

=
((1

c

)c− 1
2
)k2(1−o(1))

7. TIGHTER BOUNDS Conlon provides an analytic approximation to the
solution of the recurrence given in Equations 4 - 8. Keep in mind that our
arbitrary choice of the fraction 1

2 was not optimal and their work utilizes a
more general recurrence.

Theorem 25. Let tϵ(x) be a function with tϵ(0) = ϵ and satisfying the differ-
ential equation:

t′ϵ(x) = log tϵ(x) tϵ(x)(1 − tϵ(x)
x− (1 − x)tϵ(x)

Let L = limϵ→0 tϵ(1) and C = (L(1 − L))−1/2, then

RM2(k) ≥ C−k2(1−o(1)

A numeric approximation yields the value C ≈ 2.18. This is the best known
bound and we therefore have the following result:

RM2(3) ≥
( 1

2.18

)32

≈ 1
1112
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Their analysis is simple enough to follow, but goes beyond the scope of this
paper. From a quick glance it is not immediately obvious to us how their process
could be generalized for c-colorings, but that is an area for further research.

8. OPEN PROBLEMS

Open 26.
1. The results on ψ2(3, n) are obtained with completely elementary tech-

niques. Can this be done for ψ2(4, n)? ψ3(3, n)?, ψ2(5, n)?
2. Obtain an easier proof of Theorem 25. One litmus test is if the proof easily

generalizes to c colors.
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the London Mathematical Society, s2-39(2):246–255, 04 1989.

10. Geoffrey Exoo, Stanislaw Radziszowski, Xu Xiaodong, and Xie Zheng. Constructive lower
bounds on classical multicolor Ramsey numbers. Electronic Journal of Combinatorics,
11(R35), 2004.

11. Xu Xiaodong, Xie Zheng, and Chen Zhi. Upper bounds for Ramsey number rn(3) and
Schur numbers (in Chinese). Mathematics in Economics, 19(1):81–84, 2002.

A. APPENDIX Proof of Lemma 16

Proof. We wish to show for n large, d ≪ n, and 0 < x < 1 fixed:(
x(n− 1)

d

)
= xd

(
n

d

)
−O(nd−1)

We carefully keep track of the sign of the lower order term for completeness,
though this is not strictly necessary for our earlier results because we are taking
the limit as n −→ ∞.

(
x(n− 1)

d

)
= x(n− 1) · (x(n− 1) − 1) · · · (x(n− 1) − d+ 1)

d!
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=
(x(n− 1))d −

[∑d−1
i=1 i

]
(x(n− 1))d−1

d! +O(nd−2)

= xd (n− 1)d

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

= xdn
d

d! − xd (d− 1)(n− 1)d−1

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

= xd

(
n

d

)
− xd

(
n

d

)
+ xdn

d

d! − xd (d− 1)(n− 1)d−1

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

= xd

(
n

d

)
− xdn

d

d! + xd

[∑d−1
i=1 i

]
nd−1

d! + xdn
d

d!

− xd (d− 1)(n− 1)d−1

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

= xd

(
n

d

)
+ xd

[∑d−1
i=1 i

]
nd−1

d! − xd (d− 1)(n− 1)d−1

d! − xd−1

[∑d−1
i=1 i

]
(n− 1)d−1

d! +O(nd−2)

Comparing the coefficients of nd−1 in the second and fourth terms of this
last equation, since x < 1 we see that of the fourth term is larger in absolute
value and thus: (

x(n− 1)
d

)
= xd

(
n

d

)
−O(nd−1)
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