Funky Dice: An Exposition

William Gasarch - University of MD

If You Roll Two Standard 6-Sided Dice Then

- 1. 2: (1,1). ONE way. Prob $\frac{1}{36}$.
- 2. 3: (1,2), (2,1). TWO ways. Prob $\frac{1}{18}$.
- 3. 4: (1,3), (2,2), (3,1). THREE ways. Prob $\frac{1}{12}$.
- 4. 5: (1,4), (2,3), (3,2), (4,1). FOUR ways. Prob $\frac{1}{9}$.
- 5. 6: (1,5), (2,4), (3,3), (4,2), (5,1) FIVE ways. Prob $\frac{5}{36}$.

If You Roll Two Standard 6-Sided Dice Then

- 1. 2: (1,1). ONE way. Prob $\frac{1}{36}$.
- 2. 3: (1,2), (2,1). TWO ways. Prob $\frac{1}{18}$.
- 3. 4: (1,3), (2,2), (3,1). THREE ways. Prob $\frac{1}{12}$.
- 4. 5: (1,4), (2,3), (3,2), (4,1). FOUR ways. Prob $\frac{1}{9}$.
- 5. 6: (1,5), (2,4), (3,3), (4,2), (5,1) FIVE ways. Prob $\frac{5}{36}$.
- 6. 7: (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) SIX ways. Prob $\frac{1}{6}$.

If You Roll Two Standard 6-Sided Dice Then

- 1. 2: (1,1). ONE way. Prob $\frac{1}{36}$.
- 2. 3: (1,2), (2,1). TWO ways. Prob $\frac{1}{18}$.
- 3. 4: (1,3), (2,2), (3,1). THREE ways. Prob $\frac{1}{12}$.
- 4. 5: (1,4), (2,3), (3,2), (4,1). FOUR ways. Prob $\frac{1}{9}$.
- 5. 6: (1,5), (2,4), (3,3), (4,2), (5,1) FIVE ways. Prob $\frac{5}{36}$.
- 6. 7: (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) SIX ways. Prob $\frac{1}{6}$.
- 7. 8: (2,6), (3,5), (4,4), (5,3), (6,2) FIVE ways. Prob $\frac{5}{36}$.
- 8. 9: (3,6), (4,5), (5,4), (6,3) FOUR ways. Prob $\frac{1}{9}$.
- 9. 10: (4,6), (5,5), (6,4) THREE ways. Prob $\frac{1}{12}$.
- 10. 11: (5,6), (6,5) TWO ways. Prob $\frac{1}{18}$.
- 11. 12: (6,6) ONE way. Prob $\frac{1}{36}$.

Questions about Dice

1. Can we load two 6-sided dice so that every number from 2 to 12 has the **same** probability. Called **fair sums**.

Questions about Dice

- 1. Can we load two 6-sided dice so that every number from 2 to 12 has the **same** probability. Called **fair sums**.
- 2. Can you label the dice something other than $\{1, \ldots, 6\}$ and $\{1, \ldots, 6\}$ and get the same probabilities you get with standard dice?

Loaded Dice

William Gasarch - University of MD

Fair Die:

$$Pr(1)=Pr(2)=Pr(3)=Pr(4)=Pr(5)=Pr(6)=1/6\sim 0.167$$

Fair Die:

$$Pr(1)=Pr(2)=Pr(3)=Pr(4)=Pr(5)=Pr(6)=1/6\sim 0.167$$

Roll TWO of them.

Fair Die:

$$Pr(1)=Pr(2)=Pr(3)=Pr(4)=Pr(5)=Pr(6)=1/6 \sim 0.167$$

Roll TWO of them.

$$Pr(Sum=2)=1/36$$
 (This is Min $Pr(Sum)$)
 $Pr(Sum=7)=1/6$. (This is Max $Pr(Sum)$)

Fair Die:

$$Pr(1)=Pr(2)=Pr(3)=Pr(4)=Pr(5)=Pr(6)=1/6 \sim 0.167$$

Roll TWO of them.

$$Pr(Sum=2)=1/36$$
 (This is Min $Pr(Sum)$)
 $Pr(Sum=7)=1/6$. (This is Max $Pr(Sum)$)

Sums are Unfair!

Fair Die:

$$Pr(1)=Pr(2)=Pr(3)=Pr(4)=Pr(5)=Pr(6)=1/6\sim 0.167$$

Roll TWO of them.

$$Pr(Sum=2)=1/36$$
 (This is Min $Pr(Sum)$)
 $Pr(Sum=7)=1/6$. (This is Max $Pr(Sum)$)

Sums are Unfair!

How Unfair?: $1/6 - 1/36 \sim 0.139$ unfair.

Def: A **Die** is a 6-tuple $(p_1, p_2, p_3, p_4, p_5, p_6)$ such that $0 \le p_i \le 1$ and $\sum_{i=1}^{6} p_i = 1$.

Def: A **Die** is a 6-tuple $(p_1, p_2, p_3, p_4, p_5, p_6)$ such that $0 \le p_i \le 1$ and $\sum_{i=1}^{6} p_i = 1$.

Our Questions:

1. Does there exist a pair of loaded dice such that the sums all have equal probability 1/11?

Def: A **Die** is a 6-tuple $(p_1, p_2, p_3, p_4, p_5, p_6)$ such that $0 \le p_i \le 1$ and $\sum_{i=1}^{6} p_i = 1$.

Our Questions:

- 1. Does there exist a pair of loaded dice such that the sums all have equal probability 1/11?
- 2. VOTE: YES or NO or UNKNOWN TO SCIENCE.

Def: A **Die** is a 6-tuple $(p_1, p_2, p_3, p_4, p_5, p_6)$ such that $0 \le p_i \le 1$ and $\sum_{i=1}^{6} p_i = 1$.

Our Questions:

- 1. Does there exist a pair of loaded dice such that the sums all have equal probability 1/11?
- VOTE: YES or NO or UNKNOWN TO SCIENCE.
- 3. Answer on next slide.

NO, no such dice can exist!

NO, no such dice can exist! Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

NO, no such dice can exist! Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice. Form polynomials based on the dice.

NO, no such dice can exist! Let (p_1,\ldots,p_6) and (q_1,\ldots,q_6) be dice. Form polynomials based on the dice. $(p_6x^6+p_5x^5+\cdots+p_1x^1)$ and $(q_6x^6+q_5x^5+\cdots+q_1x^1)$.

NO, no such dice can exist! Let (p_1,\ldots,p_6) and (q_1,\ldots,q_6) be dice. Form polynomials based on the dice. $(p_6x^6+p_5x^5+\cdots+p_1x^1)$ and $(q_6x^6+q_5x^5+\cdots+q_1x^1)$. Key

$$(p_6x^6 + p_5x^5 + \dots + p_1x^1)(q_6x^6 + q_5x^5 + \dots + q_1x^1)$$

NO, no such dice can exist!

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

Form polynomials based on the dice.

$$(p_6x^6 + p_5x^5 + \dots + p_1x^1)$$
 and $(q_6x^6 + q_5x^5 + \dots + q_1x^1)$.

$$(p_6x^6 + p_5x^5 + \cdots + p_1x^1)(q_6x^6 + q_5x^5 + \cdots + q_1x^1)$$

The coefficient of x^5 is

$$p_1q_4 + p_2q_3 + p_3q_2 + p_4q_1$$

NO, no such dice can exist!

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

Form polynomials based on the dice.

$$(p_6x^6 + p_5x^5 + \cdots + p_1x^1)$$
 and $(q_6x^6 + q_5x^5 + \cdots + q_1x^1)$.

$$(p_6x^6 + p_5x^5 + \cdots + p_1x^1)(q_6x^6 + q_5x^5 + \cdots + q_1x^1)$$

The coefficient of x^5 is

$$p_1q_4 + p_2q_3 + p_3q_2 + p_4q_1$$
 Does This Mean Something?

NO, no such dice can exist!

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

Form polynomials based on the dice.

$$(p_6x^6 + p_5x^5 + \dots + p_1x^1)$$
 and $(q_6x^6 + q_5x^5 + \dots + q_1x^1)$.

$$(p_6x^6 + p_5x^5 + \cdots + p_1x^1)(q_6x^6 + q_5x^5 + \cdots + q_1x^1)$$

The coefficient of x^5 is

$$p_1q_4 + p_2q_3 + p_3q_2 + p_4q_1$$
 Does This Mean Something?

Yes:

NO, no such dice can exist!

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

Form polynomials based on the dice.

$$(p_6x^6 + p_5x^5 + \cdots + p_1x^1)$$
 and $(q_6x^6 + q_5x^5 + \cdots + q_1x^1)$.

$$(p_6x^6 + p_5x^5 + \cdots + p_1x^1)(q_6x^6 + q_5x^5 + \cdots + q_1x^1)$$

The coefficient of x^5 is

$$p_1q_4 + p_2q_3 + p_3q_2 + p_4q_1$$
 Does This Mean Something?

Yes:

$$p_1q_4 + p_2q_3 + p_3q_2 + p_4q_1 = \text{Prob}(\text{sum} = 5)$$

NO, no such dice can exist!

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

Form polynomials based on the dice.

$$(p_6x^6 + p_5x^5 + \dots + p_1x^1)$$
 and $(q_6x^6 + q_5x^5 + \dots + q_1x^1)$. Key

$$(p_6x^6 + p_5x^5 + \cdots + p_1x^1)(q_6x^6 + q_5x^5 + \cdots + q_1x^1)$$

The coefficient of x^5 is

$$p_1q_4 + p_2q_3 + p_3q_2 + p_4q_1$$
 Does This Mean Something?

Yes:

$$p_1q_4 + p_2q_3 + p_3q_2 + p_4q_1 = \text{Prob}(\text{sum} = 5)$$

The coefficient of x^i is Prob(sum = i)

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice. Assume they yield fair sums, all sums have prob 1/11. Then

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

Assume they yield fair sums, all sums have prob 1/11. Then

$$(p_6x^6+\cdots+p_1x^1)(q_6x^6+\cdots+q_1x^1)=\frac{1}{11}(x^{12}+x^{11}+\cdots+x^2)$$

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

Assume they yield fair sums, all sums have prob 1/11. Then

$$(p_6x^6+\cdots+p_1x^1)(q_6x^6+\cdots+q_1x^1)=\frac{1}{11}(x^{12}+x^{11}+\cdots+x^2)$$

So

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+x^9+\cdots+x+1)$$

Let (p_1, \ldots, p_6) and (q_1, \ldots, q_6) be dice.

Assume they yield fair sums, all sums have prob 1/11. Then

$$(p_6x^6+\cdots+p_1x^1)(q_6x^6+\cdots+q_1x^1)=\frac{1}{11}(x^{12}+x^{11}+\cdots+x^2)$$

So

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+x^9+\cdots+x+1)$$

Continued on Next Slide.

From last slide: If there are two loaded dice that give fair sums then there exist reals (p_1, \ldots, p_6) , (q_1, \ldots, q_6) such that

From last slide: If there are two loaded dice that give fair sums then there exist reals (p_1, \ldots, p_6) , (q_1, \ldots, q_6) such that

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+\cdots+1)$$

From last slide: If there are two loaded dice that give fair sums then there exist reals (p_1, \ldots, p_6) , (q_1, \ldots, q_6) such that

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+\cdots+1)$$

1. $p_6x^5 + \cdots + p_1$: odd-degree poly, so has ≥ 1 real root.

From last slide: If there are two loaded dice that give fair sums then there exist reals (p_1, \ldots, p_6) , (q_1, \ldots, q_6) such that

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+\cdots+1)$$

- 1. $p_6x^5 + \cdots + p_1$: odd-degree poly, so has ≥ 1 real root.
- 2. $q_6x^5 + \cdots + q_1$: odd-degree poly, so has ≥ 1 real root.

From last slide: If there are two loaded dice that give fair sums then there exist reals (p_1, \ldots, p_6) , (q_1, \ldots, q_6) such that

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+\cdots+1)$$

- 1. $p_6x^5 + \cdots + p_1$: odd-degree poly, so has ≥ 1 real root.
- 2. $q_6x^5 + \cdots + q_1$: odd-degree poly, so has ≥ 1 real root.

Does $x^{10} + x^9 + \cdots + x + 1$ have any real roots?

Real Roots of...

Does $x^{10} + x^9 + \cdots + x + 1$ have any real roots?

Does $x^{10} + x^9 + \cdots + x + 1$ have any real roots? Lets factor to find out!

Does $x^{10} + x^9 + \cdots + x + 1$ have any real roots? Lets factor to find out! Bad Idea!

Does $x^{10} + x^9 + \cdots + x + 1$ have any real roots?

Lets factor to find out!

Bad Idea!

Better Idea: Lets anti-factor!

Does $x^{10} + x^9 + \cdots + x + 1$ have any real roots?

Lets factor to find out!

Bad Idea!

Better Idea: Lets anti-factor!

$$x^{11} - 1 = (x - 1)(x^{10} + \dots + x + 1)$$

Does $x^{10} + x^9 + \cdots + x + 1$ have any real roots?

Lets factor to find out!

Bad Idea!

Better Idea: Lets anti-factor!

$$x^{11} - 1 = (x - 1)(x^{10} + \dots + x + 1)$$

- 1. $r \text{ root of } x^{10} + \cdots + x + 1 \implies r \text{ root of } x^{11} 1 \& r \neq 1.$
- 2. $r \text{ root of } x^{11} 1 \& r \neq 1 \implies r \text{ root of } x^{10} + \cdots + x + 1.$

Does $x^{10} + x^9 + \cdots + x + 1$ have any real roots?

Lets factor to find out!

Bad Idea!

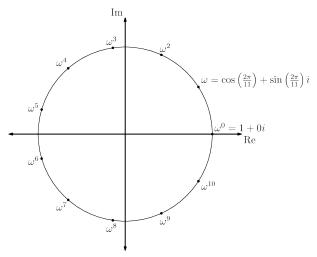
Better Idea: Lets anti-factor!

$$x^{11} - 1 = (x - 1)(x^{10} + \dots + x + 1)$$

- 1. $r \text{ root of } x^{10} + \cdots + x + 1 \implies r \text{ root of } x^{11} 1 \& r \neq 1$.
- 2. $r \text{ root of } x^{11} 1 \& r \neq 1 \implies r \text{ root of } x^{10} + \dots + x + 1.$

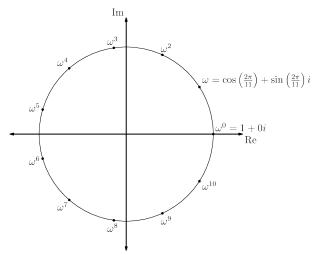
The roots of $x^{11}-1$ are on the complex unit circle. See Next Slide.

The 11th Roots of Unity: Only Real one is 1



1 is only real 11th root of unity.

The 11th Roots of Unity: Only Real one is 1



1 is only real 11th root of unity. $x^{10} + \cdots + 1 = 0$: **no** real roots.

Recap

If there exists two 6-sided dice that give fair sums then there exists reals $p_1, \ldots, p_6, q_1, \ldots, q_6$ such that

Recap

If there exists two 6-sided dice that give fair sums then there exists reals $p_1, \ldots, p_6, q_1, \ldots, q_6$ such that

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+\cdots+1)$$

Recap

If there exists two 6-sided dice that give fair sums then there exists reals $p_1, \ldots, p_6, q_1, \ldots, q_6$ such that

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+\cdots+1)$$

The Left Hand Side has ≥ 2 real roots.

Recap

If there exists two 6-sided dice that give fair sums then there exists reals $p_1, \ldots, p_6, q_1, \ldots, q_6$ such that

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+\cdots+1)$$

The Left Hand Side has ≥ 2 real roots.

The Right Hand Side has 0 real roots.

Recap

If there exists two 6-sided dice that give fair sums then there exists reals $p_1, \ldots, p_6, q_1, \ldots, q_6$ such that

$$(p_6x^5+\cdots+p_1)(q_6x^5+\cdots+q_1)=\frac{1}{11}(x^{10}+\cdots+1)$$

The Left Hand Side has ≥ 2 real roots.

The Right Hand Side has 0 real roots.

Contradiction

For which $d \ge 2$ can you load two d-sided dice to get fair sums? **VOTE**:

1. No *d*.

- 1. No *d*.
- 2. All odd *d*.

- 1. No *d*.
- 2. All odd *d*.
- 3. All prime *d*.

- 1. No d.
- 2. All odd *d*.
- 3. All prime *d*.
- 4. UNKNOWN TO SCIENCE!

For which $d \ge 2$ can you load two d-sided dice to get fair sums? **VOTE**:

- 1. No d.
- 2. All odd *d*.
- 3. All prime *d*.
- 4. UNKNOWN TO SCIENCE!

Answer on next slide

Answer No d.

Answer No d.

1. The proof that for **even d** you **cannot** load two **d**-sided dice to get fair sums is similar to what we did for two 6-sided dice.

Answer No d.

- 1. The proof that for **even d** you **cannot** load two **d**-sided dice to get fair sums is similar to what we did for two 6-sided dice.
- 2. The proof that for **odd** *d* you **cannot** load two *d*-sided dice to get fair sums requires needs a few tricks.

Answer No d.

- 1. The proof that for **even d** you **cannot** load two **d**-sided dice to get fair sums is similar to what we did for two 6-sided dice.
- The proof that for odd d you cannot load two d-sided dice to get fair sums requires needs a few tricks. We leave that to you.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_1, d_2 \ge 2$ such that there are d_1 -sided and d_2 -sided dice that give fair sums?

VOTE: YES or NO or UNKNOWN TO SCIENCE.

Can You Ever Load Dice to Get Fair Sums?

Is there a $d_1, d_2 \ge 2$ such that there are d_1 -sided and d_2 -sided dice that give fair sums?

VOTE: YES or NO or UNKNOWN TO SCIENCE.

Answer on next slide.

A 2-sided die and a 3-sided die can be loaded to get fair sums:

2 sided die: $(\frac{1}{2}, \frac{1}{2})$. 3 sided die: $(\frac{1}{2}, 0, \frac{1}{2})$.

A 2-sided die and a 3-sided die can be loaded to get fair sums:

2 sided die: $(\frac{1}{2}, \frac{1}{2})$.

3 sided die: $(\frac{1}{2}, 0, \frac{1}{2})$.

Prob of a 2 is $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

```
2 sided die: (\frac{1}{2}, \frac{1}{2}).
```

3 sided die:
$$(\frac{1}{2}, 0, \frac{1}{2})$$
.

Prob of a 2 is
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.

Prob of a 2 is
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.
Prob of a 3 is $\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

```
2 sided die: (\frac{1}{2}, \frac{1}{2}).
```

3 sided die:
$$(\frac{1}{2}, 0, \frac{1}{2})$$
.

Prob of a 2 is
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.

Prob of a 2 is
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.
Prob of a 3 is $\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.
Prob of a 4 is $\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

Prob of a 4 is
$$\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.

```
2 sided die: (\frac{1}{2}, \frac{1}{2}).
```

3 sided die:
$$(\frac{1}{2}, 0, \frac{1}{2})$$
.

Prob of a 2 is
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.

Prob of a 2 is
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.
Prob of a 3 is $\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.
Prob of a 4 is $\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

Prob of a 4 is
$$\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.

Prob of a 5 is
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
.

Some people say that using 0 as a probability is **bullshit man!**

Some people say that using 0 as a probability is **bullshit man!**

We turn that objection into a math question:

Some people say that using 0 as a probability is **bullshit man!**

We turn that objection into a math question:

Is there a $d_1, d_2 \ge 2$ such that d_1 -sided and d_2 -sided dice that give fair sums, with all the probs on the dice > 0?

Some people say that using 0 as a probability is **bullshit man!**

We turn that objection into a math question:

Is there a $d_1, d_2 \ge 2$ such that d_1 -sided and d_2 -sided dice that give fair sums, with all the probs on the dice > 0? **VOTE:** YES or NO or UNKNOWN TO SCIENCE!

Can We Get Fair Sums Without Using 0 Prob?

Some people say that using 0 as a probability is **bullshit man!**

We turn that objection into a math question:

Is there a $d_1, d_2 \ge 2$ such that d_1 -sided and d_2 -sided dice that give fair sums, with all the probs on the dice > 0? **VOTE:** YES or NO or UNKNOWN TO SCIENCE!

Answer on Next Slide.

1. Chen, Rao, & Shreve, 1997, see Chen.pdf, showed that if you do not allow 0 then you cannot load dice to get fair sums.

 Chen, Rao, & Shreve, 1997, see Chen.pdf, showed that if you do not allow 0 then you cannot load dice to get fair sums. Their paper inspired the next paper.

- Chen, Rao, & Shreve, 1997, see Chen.pdf, showed that if you do not allow 0 then you cannot load dice to get fair sums. Their paper inspired the next paper.
- 2. Gasarch & Kruskal
 https://www.cs.umd.edu/~gasarch/papers/dice.pdf
 looked at allowing 0. They proved the following:

- Chen, Rao, & Shreve, 1997, see Chen.pdf, showed that if you do not allow 0 then you cannot load dice to get fair sums. Their paper inspired the next paper.
- 2. Gasarch & Kruskal
 https://www.cs.umd.edu/~gasarch/papers/dice.pdf
 looked at allowing 0. They proved the following:
 Def A die (p₁,..., p_n) is nice if it is symmetric and,
 for all i, p_i = 0 or p_i = p₁.

- Chen, Rao, & Shreve, 1997, see Chen.pdf, showed that if you do not allow 0 then you cannot load dice to get fair sums. Their paper inspired the next paper.
- Gasarch & Kruskal https://www.cs.umd.edu/~gasarch/papers/dice.pdf looked at allowing 0. They proved the following:
 Def A die (p₁,..., p_n) is nice if it is symmetric and, for all i, p_i = 0 or p_i = p₁.

Thm Dice D_1, \ldots, D_m have fair sums iff (1) each D_i is nice, and (2) every sum can be rolled in exactly one way.

- Chen, Rao, & Shreve, 1997, see Chen.pdf, showed that if you do not allow 0 then you cannot load dice to get fair sums. Their paper inspired the next paper.
- Gasarch & Kruskal https://www.cs.umd.edu/~gasarch/papers/dice.pdf looked at allowing 0. They proved the following:
 Def A die (p₁,..., p_n) is nice if it is symmetric and, for all i, p_i = 0 or p_i = p₁.

Thm Dice D_1, \ldots, D_m have fair sums iff (1) each D_i is nice, and (2) every sum can be rolled in exactly one way.

Note The Thm can be used to determine, given m_1, \ldots, m_L , is there a set of dice, one m_1 -sided, one m_2 -sided, ..., one m_L -sided that gives fair sums.

- Chen, Rao, & Shreve, 1997, see Chen.pdf, showed that if you do not allow 0 then you cannot load dice to get fair sums. Their paper inspired the next paper.
- Gasarch & Kruskal https://www.cs.umd.edu/~gasarch/papers/dice.pdf looked at allowing 0. They proved the following:
 Def A die (p₁,..., p_n) is nice if it is symmetric and, for all i, p_i = 0 or p_i = p₁.

Thm Dice D_1, \ldots, D_m have fair sums iff (1) each D_i is nice, and (2) every sum can be rolled in exactly one way.

Note The Thm can be used to determine, given m_1, \ldots, m_L , is there a set of dice, one m_1 -sided, one m_2 -sided, ..., one m_L -sided that gives fair sums.

Fame! One paper refers to The Gasarch-Kruskal Thm.

Asgarli, Hartclass, Ostrov, Walden showed the following: https://arxiv.org/pdf/2304.08501.pdf

Asgarli, Hartclass, Ostrov, Walden showed the following: https://arxiv.org/pdf/2304.08501.pdf

Def Let (p_1, \ldots, p_n) and (q_1, \ldots, q_n) be two prob dist. The **distance between them** is $\sum_i (p_i - q_i)^2$. A pair of loaded *n*-sided dice is **optimal** if the distance between its prob of sums and $(\frac{1}{2n-1}, \ldots, \frac{1}{2n-1})$ is minimum over all pairs of loaded dice.

Asgarli, Hartclass, Ostrov, Walden showed the following: https://arxiv.org/pdf/2304.08501.pdf

Def Let (p_1, \ldots, p_n) and (q_1, \ldots, q_n) be two prob dist. The distance between them is $\sum_i (p_i - q_i)^2$. A pair of loaded *n*-sided dice is optimal if the distance between its prob of sums and $(\frac{1}{2n-1}, \ldots, \frac{1}{2n-1})$ is minimum over all pairs of loaded dice.

How far are normal dice from uniform?

$$2(1/11-1/36)^2+2(1/11-1/18)^2+2(1/11-1/12)^2+2(1/9-1/11)^2+$$

$$2(5/36 - 1/11)^2) + (1/6 - 1/11)^2 \sim 0.0217$$

Thm The optimal pair of 6-sided dice is $(\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$ and $(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8})$.

Thm The optimal pair of 6-sided dice is $(\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$ and $(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16})$. Prob(2) = $\frac{1}{16}$

Thm The optimal pair of 6-sided dice is $(\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$ and $(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{8})$. $Prob(2) = \frac{1}{16}$ $Prob(3) = Prob(4) = Prob(5) = Prob(6) = \frac{3}{32}$

Thm The optimal pair of 6-sided dice is $(\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$ and $(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8})$. $Prob(2) = \frac{1}{16}$ $Prob(3) = Prob(4) = Prob(5) = Prob(6) = \frac{3}{32}$ $Prob(7) = \frac{1}{8}$

Thm The optimal pair of 6-sided dice is $(\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$ and $(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8})$. $Prob(2) = \frac{1}{16}$ $Prob(3) = Prob(4) = Prob(5) = Prob(6) = \frac{3}{32}$ $Prob(7) = \frac{1}{8}$ $Prob(8) = Prob(9) = Prob(10) = Prob(11) = \frac{3}{32}$

Thm The optimal pair of 6-sided dice is $(\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$ and $(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16})$. Prob(2) = $\frac{1}{16}$ Prob(3) = Prob(4) = Prob(5) = Prob(6) = $\frac{3}{32}$ Prob(7) = $\frac{1}{8}$ Prob(8) = Prob(9) = Prob(10) = Prob(11) = $\frac{3}{32}$ Prob(12) = $\frac{1}{16}$

Thm The optimal pair of 6-sided dice is $(\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$ and $(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8})$. Prob(2) = $\frac{1}{16}$ Prob(3) = Prob(4) = Prob(5) = Prob(6) = $\frac{3}{32}$ Prob(7) = $\frac{1}{8}$ Prob(8) = Prob(9) = Prob(10) = Prob(11) = $\frac{3}{32}$ Prob(12) = $\frac{1}{16}$

Distance Optimal dice from uniform is ~ 0.0028 .

Thm The optimal pair of 6-sided dice is $(\frac{1}{2}, 0, 0, 0, 0, \frac{1}{2})$ and $(\frac{1}{8}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{8})$. $Prob(2) = \frac{1}{16}$ $Prob(3) = Prob(4) = Prob(5) = Prob(6) = \frac{3}{32}$ $Prob(7) = \frac{1}{8}$ $Prob(8) = Prob(9) = Prob(10) = Prob(11) = \frac{3}{32}$ $Prob(12) = \frac{1}{16}$

Distance Optimal dice from uniform is ~ 0.0028 . Contrast:

Thm The optimal pair of 6-sided dice is $(\frac{1}{2},0,0,0,0,\frac{1}{2})$ and $(\frac{1}{8},\frac{3}{16},\frac{3}{16},\frac{3}{16},\frac{3}{16},\frac{1}{8})$. $\operatorname{Prob}(2) = \frac{1}{16}$ $\operatorname{Prob}(3) = \operatorname{Prob}(4) = \operatorname{Prob}(5) = \operatorname{Prob}(6) = \frac{3}{32}$ $\operatorname{Prob}(7) = \frac{1}{8}$ $\operatorname{Prob}(8) = \operatorname{Prob}(9) = \operatorname{Prob}(10) = \operatorname{Prob}(11) = \frac{3}{32}$ $\operatorname{Prob}(12) = \frac{1}{16}$

Distance Optimal dice from uniform is ~ 0.0028 . Contrast:

Distance Normal dice from uniform is **0.0217**.

The optimal pair of *n*-sided dice is $(\frac{1}{2}, 0, \dots, 0, \frac{1}{2})$

and

$$(\frac{2}{3n-2}, \frac{3}{3n-2}, \dots, \frac{3}{3n-2}, \frac{2}{3n-2}).$$

The optimal pair of *n*-sided dice is $(\frac{1}{2}, 0, \dots, 0, \frac{1}{2})$

and

$$(\frac{2}{3n-2}, \frac{3}{3n-2}, \dots, \frac{3}{3n-2}, \frac{2}{3n-2}).$$

The distance from uniform is $\frac{1}{2(2n-1)(3n-2)}\sim \frac{1}{12n^2}$.

The optimal pair of *n*-sided dice is $(\frac{1}{2}, 0, \dots, 0, \frac{1}{2})$

and

$$(\frac{2}{3n-2}, \frac{3}{3n-2}, \dots, \frac{3}{3n-2}, \frac{2}{3n-2}).$$

The distance from uniform is $\frac{1}{2(2n-1)(3n-2)} \sim \frac{1}{12n^2}$.

Given that I am giving this talk on short notice I didn't work out how close n normal dice are to uniform. I would like one of you to do that soon and email me your calculations and the answer. Would be happy with an approximation like $\frac{1}{an^b}$.

Different Labels on Dice

William Gasarch - University of MD

A **labeling** of a 6-sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6. So (1,2,2,3,5,8) would be allowed.

A **labeling** of a 6-sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6. So (1, 2, 2, 3, 5, 8) would be allowed.

A non-standard labeling is a labeling that is not (1, 2, 3, 4, 5, 6).

A **labeling** of a 6-sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6. So (1,2,2,3,5,8) would be allowed.

A non-standard labeling is a labeling that is not (1, 2, 3, 4, 5, 6).

Is there a non-standard labeling of a pair of 6-sided dice so that the dice yield the **same** probabilities as the standard dice?

A labeling of a 6-sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6. So (1, 2, 2, 3, 5, 8) would be allowed.

A non-standard labeling is a labeling that is not (1, 2, 3, 4, 5, 6).

Is there a non-standard labeling of a pair of 6-sided dice so that the dice yield the same probabilities as the standard dice?

VOTE: YES or NO or UNKNOWN TO SCIENCE!

A **labeling** of a 6-sided die has any positive natural numbers as labels. We allow using a number twice. We allow using numbers higher than 6. So (1, 2, 2, 3, 5, 8) would be allowed.

A **non-standard labeling** is a labeling that is **not** (1, 2, 3, 4, 5, 6).

Is there a non-standard labeling of a pair of 6-sided dice so that the dice yield the **same** probabilities as the standard dice? **VOTE**: YES or NO or UNKNOWN TO SCIENCE! Answer on next slide.

Yes We Kam!

YES. There a non-standard labeling of a pair of 6-sided dice so that the dice yield the SAME probabilities as the standard dice.

Yes We Kam!

YES. There a non-standard labeling of a pair of 6-sided dice so that the dice yield the SAME probabilities as the standard dice.

We prove this on the next slide.

Let Polynomials Do The Work For You!

$$(x^6 + x^5 + x^4 + x^3 + x^2 + x)(x^6 + x^5 + x^4 + x^3 + x^2 + x)$$

Let Polynomials Do The Work For You!

$$(x^6 + x^5 + x^4 + x^3 + x^2 + x)(x^6 + x^5 + x^4 + x^3 + x^2 + x)$$

Look at coefficient of x^6

Let Polynomials Do The Work For You!

$$(x^6 + x^5 + x^4 + x^3 + x^2 + x)(x^6 + x^5 + x^4 + x^3 + x^2 + x)$$

Look at coefficient of x^6

$$x^{1}x^{5} + x^{2}x^{4} + x^{3}x^{3} + x^{4}x^{2} + x^{5}x^{1} = 5x^{6}$$

Let Polynomials Do The Work For You!

$$(x^6 + x^5 + x^4 + x^3 + x^2 + x)(x^6 + x^5 + x^4 + x^3 + x^2 + x)$$

Look at coefficient of x^6

Look at coefficient of
$$x^0$$

$$x^{1}x^{5} + x^{2}x^{4} + x^{3}x^{3} + x^{4}x^{2} + x^{5}x^{1} = 5x^{6}$$

$$= (Number of ways to get 6)x^{6}$$

Let Polynomials Do The Work For You!

$$(x^6 + x^5 + x^4 + x^3 + x^2 + x)(x^6 + x^5 + x^4 + x^3 + x^2 + x)$$

Look at coefficient of x^6

$$x^{1}x^{5} + x^{2}x^{4} + x^{3}x^{3} + x^{4}x^{2} + x^{5}x^{1} = 5x^{6}$$

= (Number of ways to get 6) x^6

Coefficient of x^n is number of ways to get n.

$$(2x^5+3x^2+x)(x^7+4x^3+x) = 2x^{12}+3x^9+9x^8+2x^6+12x^5+4x^4+3x^3+x^2$$

$$(2x^5 + 3x^2 + x)(x^7 + 4x^3 + x) = 2x^{12} + 3x^9 + 9x^8 + 2x^6 + 12x^5 + 4x^4 + 3x^3 + x^2$$

- 1. 12: TWO ways. Prob $\frac{1}{18}$.
- 2. 9: THREE ways. Prob $\frac{1}{12}$.
- 3. 8: NINE ways. Prob $\frac{1}{4}$.
- 4. 6: TWO ways. Prob $\frac{1}{18}$.

$$(2x^5+3x^2+x)(x^7+4x^3+x) = 2x^{12}+3x^9+9x^8+2x^6+12x^5+4x^4+3x^3+x^2$$

- 1. 12: TWO ways. Prob $\frac{1}{18}$.
- 2. 9: THREE ways. Prob $\frac{1}{12}$.
- 3. 8: NINE ways. Prob $\frac{1}{4}$.
- 4. 6: TWO ways. Prob $\frac{1}{18}$.
- 5. 5: TWELVE ways. Prob $\frac{1}{3}$.
- 6. 4: FOUR ways. Prob $\frac{1}{9}$.
- 7. 3: THREE ways. Prob $\frac{1}{12}$.
- 8. 2: ONE ways. Prob $\frac{1}{36}$.

Is there a Non-Standard Labeling That...

Question Is there a nonstandard labeling of two 6-sided dice that gives the same probabilities as the standard dice?

Is there a Non-Standard Labeling That...

Question Is there a nonstandard labeling of two 6-sided dice that gives the same probabilities as the standard dice? **Question Phrased In Terms of Polynomials** Does there exist $a_1 \ge \cdots \ge a_6$ and $b_1 \ge \cdots \ge b_6$ such that

Is there a Non-Standard Labeling That...

Question Is there a nonstandard labeling of two 6-sided dice that gives the same probabilities as the standard dice?

Question Phrased In Terms of Polynomials Does there exist $a_1 \ge \cdots \ge a_6$ and $b_1 \ge \cdots \ge b_6$ such that

$$(x^{a_1} + x^{a_2} + x^{a_3} + x^{a_4} + x^{a_5} + x^{a_6})(x^{b_1} + x^{b_2} + x^{b_3} + x^{b_4} + x^{b_5} + x^{b_6}) =$$

$$(x^6 + x^5 + x^4 + x^3 + x^2 + x)^2.$$

Is there a Non-Standard Labeling That... Cont.

$$(x^{a_1} + x^{a_2} + x^{a_3} + x^{a_4} + x^{a_5} + x^{a_6})(x^{b_1} + x^{b_2} + x^{b_3} + x^{b_4} + x^{b_5} + x^{b_6}) =$$

$$(x^6 + x^5 + x^4 + x^3 + x^2 + x)^2 = x^2(x^5 + x^4 + x^3 + x^2 + x + 1)^2 =$$

$$x^2(x+1)^2(x^2 - x + 1)^2(x^2 + x + 1)^2.$$

Need to factor

$$x^{2}(x+1)^{2}(x^{2}-x+1)^{2}(x^{2}+x+1)^{2}$$
.

into two polynomials, each of which represents a 6-sided die.

Need to factor

$$x^{2}(x+1)^{2}(x^{2}-x+1)^{2}(x^{2}+x+1)^{2}$$
.

into two polynomials, each of which represents a 6-sided die.

Need to factor

$$x^{2}(x+1)^{2}(x^{2}-x+1)^{2}(x^{2}+x+1)^{2}$$
.

into two polynomials, each of which represents a 6-sided die.

$$x(x+1)(x^2+x+1) * x(x+1)(x^2-x+1)^2(x^2+x+1)$$

Need to factor

$$x^{2}(x+1)^{2}(x^{2}-x+1)^{2}(x^{2}+x+1)^{2}$$
.

into two polynomials, each of which represents a 6-sided die.

$$x(x+1)(x^2+x+1) * x(x+1)(x^2-x+1)^2(x^2+x+1)$$

 $x(x+1)(x^2+x+1) = x^4+2x^3+2x^2+x.$
DIE: $(1,2,2,3,3,4)$

Need to factor

$$x^{2}(x+1)^{2}(x^{2}-x+1)^{2}(x^{2}+x+1)^{2}$$
.

into two polynomials, each of which represents a 6-sided die.

$$x(x+1)(x^2+x+1) * x(x+1)(x^2-x+1)^2(x^2+x+1)$$

 $x(x+1)(x^2+x+1) = x^4+2x^3+2x^2+x.$
DIE: $(1,2,2,3,3,4)$
 $x(x+1)(x^2-x+1)^2(x^2+x+1) = x^8+x^6+x^5+x^4+x^3+x.$
DIE: $(1,3,4,5,6,8).$

Need to factor

$$x^{2}(x+1)^{2}(x^{2}-x+1)^{2}(x^{2}+x+1)^{2}$$
.

into two polynomials, each of which represents a 6-sided die.

Finite Number of cases.

DIE: (1, 3, 4, 5, 6, 8).

$$x(x+1)(x^2+x+1) * x(x+1)(x^2-x+1)^2(x^2+x+1)$$

$$x(x+1)(x^2+x+1) = x^4 + 2x^3 + 2x^2 + x.$$
DIE: $(1,2,2,3,3,4)$

$$x(x+1)(x^2-x+1)^2(x^2+x+1) = x^8 + x^6 + x^5 + x^4 + x^3 + x.$$

So desired dice are (1, 2, 2, 3, 3, 4) and (1, 3, 4, 5, 6, 8).

No.

No.

Every way to factor

$$x(x+1)(x^2-x+1)^2(x^2+x+1) = x^8+x^6+x^5+x^4+x^3+x.$$

into two polys of degree 6 is either

No.

Every way to factor

$$x(x+1)(x^2-x+1)^2(x^2+x+1) = x^8+x^6+x^5+x^4+x^3+x.$$

into two polys of degree 6 is either

 \blacktriangleright (1, 2, 3, 4, 5, 6) and (1, 2, 3, 4, 5, 6) (standard).

No.

Every way to factor

$$x(x+1)(x^2-x+1)^2(x^2+x+1) = x^8+x^6+x^5+x^4+x^3+x.$$

into two polys of degree 6 is either

- \blacktriangleright (1, 2, 3, 4, 5, 6) and (1, 2, 3, 4, 5, 6) (standard).
- \blacktriangleright (1,2,2,3,3,4) and (1,3,4,5,6,8).

For which $d \ge 2$ are there two non-standard d-sided dice that have the same prob as standard dice? **VOTE**:

1. All even d.

- 1. All even d.
- 2. All non-prime d

- 1. All even d.
- 2. All non-prime d
- 3. Something Else

- 1. All even d.
- 2. All non-prime d
- 3. Something Else
- 4. UNKNOWN TO SCIENCE!

For which $d \ge 2$ are there two non-standard d-sided dice that have the same prob as standard dice? **VOTE**:

- 1. All even d.
- 2. All non-prime d
- 3. Something Else
- 4. UNKNOWN TO SCIENCE!

Answer on Next Slide

Answer There are two non-standard d-sided dice iff d is non-prime.

Answer There are two non-standard d-sided dice iff d is non-prime.

The proof is similar to what we did, though requires some thought.

For which $d_1, d_2 \ge 2$ are there non-standard d_1 -sided die and d_2 -sided die that have the same prob as standard dice? **VOTE**:

1. One of d_1 , d_2 has to be non-prime.

- 1. One of d_1 , d_2 has to be non-prime.
- 2. Both d_1, d_2 have to be non-prime.

- 1. One of d_1 , d_2 has to be non-prime.
- 2. Both d_1 , d_2 have to be non-prime.
- 3. Something Else

- 1. One of d_1 , d_2 has to be non-prime.
- 2. Both d_1 , d_2 have to be non-prime.
- 3. Something Else
- 4. UNKNOWN TO SCIENCE!

For which $d_1, d_2 \ge 2$ are there non-standard d_1 -sided die and d_2 -sided die that have the same prob as standard dice? **VOTE**:

- 1. One of d_1 , d_2 has to be non-prime.
- 2. Both d_1 , d_2 have to be non-prime.
- 3. Something Else
- 4. UNKNOWN TO SCIENCE!

Answer on Next Slide.

Unknown to ...

Unknown to ...

For which $d_1, d_2 \ge 2$ are there non-standard d_1 -sided die and d_2 -sided die that have the same prob as standard dice?

Unknown to Science

1. George Sicherman first posed the problem and solved it in 1978.

1. George Sicherman first posed the problem and solved it in 1978.

The dice produced are sometimes called **Sicherman Dice**.

1. George Sicherman first posed the problem and solved it in 1978.

The dice produced are sometimes called **Sicherman Dice**. You can buy these dice on the web!

1. George Sicherman first posed the problem and solved it in 1978.

The dice produced are sometimes called **Sicherman Dice**. You can buy these dice on the web!

2. Gasarch has an exposition on this material: https:

//www.cs.umd.edu/~gasarch/BLOGPAPERS/billdice.pdf

1. George Sicherman first posed the problem and solved it in 1978.

The dice produced are sometimes called **Sicherman Dice**. You can buy these dice on the web!

Gasarch has an exposition on this material: https:

//www.cs.umd.edu/~gasarch/BLOGPAPERS/billdice.pdf

3. Gallian and Rusin's paper exactly characterizes when this is possible:

https://www.cs.umd.edu/~gasarch/BLOGPAPERS/nonstandarddice.pdf

The paper only looked at n d-sided dice and I do not know of a later paper. Thats why the question of d_1, d_2 is Unknown to Science.

1. George Sicherman first posed the problem and solved it in 1978.

The dice produced are sometimes called **Sicherman Dice**. You can buy these dice on the web!

Gasarch has an exposition on this material: https:

//www.cs.umd.edu/~gasarch/BLOGPAPERS/billdice.pdf

3. Gallian and Rusin's paper exactly characterizes when this is possible:

https://www.cs.umd.edu/~gasarch/BLOGPAPERS/nonstandarddice.pdf

The paper only looked at n d-sided dice and I do not know of a later paper. Thats why the question of d_1, d_2 is Unknown to Science.

Or maybe just **Unknown to Bill**.

William Gasarch - University of MD

1. Easy to state problems about dice lead to math of interest.

- 1. Easy to state problems about dice lead to math of interest.
- 2. Polynomials are useful for problems with dice since multiplication gives information.

- 1. Easy to state problems about dice lead to math of interest.
- 2. Polynomials are useful for problems with dice since multiplication gives information.
- 3. It is remarkable that a problem about dice lead to looking at complex roots of polynomials!