REU-CAAR: You’re Here!
Credit where Credit is Due

Origin of this talk
Origin of this talk

▷ In 2010 a Univ of MD Cybersecurity REU produced a 20-page document:

Cybersecurity Scholars Handbook.
Credit where Credit is Due

Origin of this talk

- In 2010 a Univ of MD Cybersecurity REU produced a 20-page document:

 Cybersecurity Scholars Handbook.

- Bill G modified this

 boring handbook into a **fascinating** ~ 220-slide talk!
Origin of this talk

- In 2010 a Univ of MD Cybersecurity REU produced a 20-page document:
 Cybersecurity Scholars Handbook.
- Bill G modified this boring handbook into a fascinating ~ 220-slide talk!

John: Why are you telling them all that?
Origin of this talk

▶ Bill G modified this boring handbook into a fascinating ∼ 220-slide talk!

John: Why are you telling them all that?
Bill: In academia its very important to credit past work!
Purpose of This Talk
Purpose of This Talk

1. Who are the mentors?
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?
4. What should you expect of us?
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?
4. What should you expect of us?
5. Nuts and bolts of how the program works.
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?
4. What should you expect of us?
5. Nuts and bolts of how the program works.
6. Advice on how to get the most out of this summer!
REU: Research Experience for Undergraduates.
REU: Research Experience for Undergraduates.
CAAR: Combinatorics, Algorithms, and AI for Real Problems.
REU: Research Experience for Undergraduates.
CAAR: Combinatorics, Algorithms, and AI for Real Problems.

Discuss Find a topic within CS that this title does not cover?
REU: Research Experience for Undergraduates.
CAAR: Combinatorics, Algorithms, and AI for Real Problems.

Discuss Find a topic within CS that this title *does not* cover?

Systems, HCI, Software Engineering, anything else?
REU-CAAR: TEAM!
Director and Mentors

1. REU-CAAR Director: William Gasarch
Director and Mentors

1. **REU-CAAR Director:** William Gasarch
2. **Projects and Mentors**
 - Verif. of Quantum Simulation: Andrew C, Dhurv D, Alexy G.
 - Security Estimation for Post-Quantum Crypto: Dana DS.
 - Differential Economics: John D and Ian M.
 - Comparing AI to Human Int. with Regard to Bias: Tom G.
 - Ramsey Theory on Ordered Sets: Bill G.
 - Fair Decision, Resource Allocation Bias: Furong H.
 - Exploring the Hilbert Geometry: Auguste G. and Dave M.
Director and Mentors

1. **REU-CAAR Director:** William Gasarch

2. **Projects and Mentors**

 2.1 Verif. of **Quantum** Simulation: Andrew C, Dhurv D, Alexy G.
1. **REU-CAAR Director:** William Gasarch
2. **Projects and Mentors**
 2.1 Verif. of **Quantum** Simulation: Andrew C, Dhurv D, Alexy G.
 2.2 **Security** Estimation for Post-Quantum Crypto. Dana DS.
1. **REU-CAAR Director:** William Gasarch
2. **Projects and Mentors**
 2.1 Verif. of **Quantum** Simulation: Andrew C, Dhurv D, Alexy G.
 2.2 **Security** Estimation for Post-Quantum Crypto. Dana DS.
 2.3 **Differential** Economics: John D and Ian M.
1. **REU-CAAR Director:** William Gasarch

2. **Projects and Mentors**

 2.1 Verif. of *Quantum* Simulation: Andrew C, Dhurv D, Alexy G.
 2.2 *Security* Estimation for Post-Quantum Crypto. Dana DS.
 2.3 *Differential* Economics: John D and Ian M.
 2.4 Comparing *AI* to Human *Int.* with Regard to Bias: Tom G.
1. **REU-CAAR Director:** William Gasarch

2. **Projects and Mentors**
 2.1 Verif. of **Quantum** Simulation: Andrew C, Dhurv D, Alexy G.
 2.2 **Security** Estimation for Post-Quantum Crypto. Dana DS.
 2.3 **Differential** Economics: John D and Ian M.
 2.4 Comparing **AI** to Human **Int.** with Regard to Bias: Tom G.
 2.5 **Ramsey Theory** on Ordered Sets: Bill G.
1. **REU-CAAR Director:** William Gasarch

2. **Projects and Mentors**

 2.1 Verif. of **Quantum** Simulation: Andrew C, Dhurv D, Alexy G.

 2.2 **Security** Estimation for Post-Quantum Crypto. Dana DS.

 2.3 **Differential** Economics: John D and Ian M.

 2.4 Comparing **AI** to Human **Int.** with Regard to Bias: Tom G.

 2.5 **Ramsey Theory** on Ordered Sets: Bill G.

 2.6 Fair Decision, **Resource Allocation Bias**: Furong H.
Director and Mentors

1. **REU-CAAR Director:** William Gasarch

2. **Projects and Mentors**

 2.1 Verif. of **Quantum** Simulation: Andrew C, Dhurv D, Alexy G.

 2.2 **Security** Estimation for Post-Quantum Crypto. Dana DS.

 2.3 **Differential** Economics: John D and Ian M.

 2.4 Comparing **AI** to Human **Int.** with Regard to Bias: Tom G.

 2.5 **Ramsey Theory** on Ordered Sets: Bill G.

 2.6 Fair Decision, **Resource Allocation Bias**: Furong H.

 2.7 Exploring the **Hilbert Geometry**: Auguste G. and Dave M.
Housing: Jennifer Arseneault
Admin

- **Housing**: Jennifer Arseneault
- **Your Salary**: Jodie Grey
Admin

- **Housing:** Jennifer Arseneault
- **Your Salary:** Jodie Grey
- **Lots of Stuff:** Sharron McElroy
Admin

- **Housing**: Jennifer Arseneault
- **Your Salary**: Jodie Grey
- **Lots of Stuff**: Sharron McElroy
- **Monday Lunches**:
Program Goals and Expectations
1. **Research!** What is Research? Discuss!

- Work on problems where the answers are not already known.
- Expose you to a variety of career paths: Grad School, Industry, Government, Writer for the Simpsons, Hobo, Other.
- Build skills: Team Work, Communication, Project Management.
- Build a network with faculty and students. Useful for the future!
1. **Research!** What is Research? Discuss!
 Work on problems where the answers are not already known.
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry,
Program Goals

1. **Research!** What is Research? Discuss! Work on problems where the answers are not already known.

2. **Expose you to a variety of career paths.** Discuss! Grad School, Industry, Government,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government, Writer for the Simpsons,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government, Writer for the Simpsons, Hobo,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government, Writer for the Simpsons,
 Hobo, Other.

3. **Build skills**
 Team Work,
1. **Research!** What is Research? Discuss! Work on problems where the answers are not already known.

2. **Expose you to a variety of career paths.** Discuss! Grad School, Industry, Government, Writer for the Simpsons, Hobo, Other.

3. **Build skills**
 Team Work, Communication,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
 Team Work, Communication, Project Management.
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
 Team Work, Communication, Project Management.

4. **Build a network** with faculty and students.
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are not already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
 Team Work, Communication, Project Management.

4. **Build a network** with faculty and students.
 Useful for the future!
What the Program Expects of You

1. Show up every weekday. On time and sober. 10A-4P
What the Program Expects of You

1. Show up every weekday. On time and sober. 10A-4P

This is the Wrong Way To Look at the program
What the Program Expects of You

1. Show up every weekday. On time and sober. 10A-4P

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.
What the Program Expects of You

1. Show up every weekday. On time and sober. 10A-4P

This is the Wrong Way To Look at the program

I invite you to talk about jobs you’ve had. I’ll go first.

Upshot
What the Program Expects of You

1. Show up every weekday. On time and sober. 10A-4P

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot

1. This program should not be seen as a job where you put in your 8 hours a day and then you’re free to to what you want.
What the Program Expects of You

1. Show up every weekday. On time and sober. 10A-4P

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot

1. This program should not be seen as a job where you put in your 8 hours a day and then you’re free to do what you want.

2. You are here because you care about Quantum or AI or ML or Bias or Ramsey Theory or Geometry or Security.
What the Program Expects of You

1. Show up every weekday. On time and sober. 10A-4P

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot

1. This program should not be seen as a job where you put in your 8 hours a day and then you’re free to to what you want.

2. You are here because you care about Quantum or AI or ML or Bias or Ramsey Theory or Geometry or Security.

3. So you should want to keep working on your projects, perhaps on a lower level, after you go back to the dorms.
What the Program Expects of You

1. Show up every weekday. On time and sober. 10A-4P

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot

1. This program should not be seen as a job where you put in your 8 hours a day and then you’re free to do what you want.

2. You are here because you care about Quantum or AI or ML or Bias or Ramsey Theory or Geometry or Security.

3. So you should want to keep working on your projects, perhaps on a lower level, after you go back to the dorms.

4. Talk to each other in the dorms about your projects!
What the Program Expects of You: Restart

1. **Show up every weekday.** On time and sober. 10A-4P. You should want to work longer, but prob back in the dorms.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time and sober. 10A-4P. You should want to work longer, but prob back in the dorms.

2. **P**articipate in assessments such as surveys.

3. Actively contribute to your research project and your team.

4. **C**heck e-mail. Reminders, notices, requests will be emailed. (Why? Why? The original handbook did this and I wanted you to see an interesting piece of history.)

5. **E**njoy items 1, 3, 4, 6 on this list.

6. **A**ttend lunches, talks, and other activities. (Talks and some activities joint with REU-BRIDGE.)

7. **G**reat talks: Attend them and at the end of the semester you will give them. (Joint presentation with REU-BRIDGE.)

8. **E**njoy yourselves!

Acronym SPACE AGE
What the Program Expects of You: Restart

1. **S**how up every weekday. On time and sober. 10A-4P. You should want to work longer, but prob back in the dorms.
2. **P**articipate in assessments such as surveys.
3. **A**ctively contribute to your research project and your team.

Acronym SPACE AGE
What the Program Expects of You: Restart

1. **S**how up every weekday. On time and sober. 10A-4P. You should want to work longer, but prob back in the dorms.
2. **P**articipate in assessments such as surveys.
3. **A**ctively contribute to your research project and your team.
4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated *email*? Why? The original handbook did this and I wanted you to see an interesting piece of history.)

5. Enjoy items 1, 3, 4, 6 on this list.
6. **A**ttend lunches, talks, and other activities. (Talks and some activities joint with REU-BRIDGE.)
7. **G**reat talks: Attend them and at the end of the semester you will give them. (Joint presentation with REU-BRIDGE.)
8. **E**njoy yourselves!
What the Program Expects of You: Restart

1. **S**how up every weekday. On time and sober. 10A-4P. You should want to work longer, but prob back in the dorms.
2. **P**articipate in assessments such as surveys.
3. **A**ctively contribute to your research project and your team.
4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history.)
5. **E**njoy items 1,3,4,6 on this list.
6. **A**ttend lunches, talks, and other activities. (Talks and some activities joint with REU-BRIDGE.)
7. **G**reat talks: Attend them and at the end of the semester you will give them. (Joint presentation with REU-BRIDGE.)
8. **E**njoy yourselves!
What the Program Expects of You: Restart

1. **S**how up every weekday. On time and sober. 10A-4P. You should want to work longer, but prob back in the dorms.
2. **P**articipate in assessments such as surveys.
3. **A**ctively contribute to your research project and your team.
4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated *email*? Why? The original handbook did this and I wanted you to see an interesting piece of history.)
5. **E**njoy items 1,3,4,6 on this list.
6. **A**ttend lunches, talks, and other activities. (Talks and some activities joint with REU-BRIDGE.)
What the Program Expects of You: Restart

1. **S**how up every weekday. On time and sober. 10A-4P. You should want to work longer, but prob back in the dorms.

2. **P**articipate in assessments such as surveys.

3. **A**ctively contribute to your research project and your team.

4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history.)

5. **E**njoy items 1,3,4,6 on this list.

6. **A**ttend lunches, talks, and other activities. (Talks and some activities joint with REU-BRIDGE.)

7. **G**reat talks: Attend them and at the end of the semester you will give them. (Joint presentation with REU-BRIDGE.)
1. **S**how up every weekday. On time and sober. 10A-4P. You should want to work longer, but prob back in the dorms.

2. **P**articipate in assessments such as surveys.

3. **A**ctively contribute to your research project and your team.

4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history.)

5. **E**njoy items 1,3,4,6 on this list.

6. **A**ttend lunches, talks, and other activities. (Talks and some activities joint with REU-BRIDGE.)

7. **G**reat talks: Attend them and at the end of the semester you will give them. (Joint presentation with REU-BRIDGE.)

8. **E**njoy yourselves!

Acronym SPACE AGE
Your Mentor’s Role

1. **Role modeling**: Their experiences offer clues for your own professional success story.
Your Mentor’s Role

1. **Role modeling:** Their experiences offer clues for your own professional success story.

2. **Communication:** Explain the project, answer questions, listen to your concerns and ideas, etc.
Your Mentor’s Role

1. **Role modeling:** Their experiences offer clues for your own professional success story.

2. **Communication:** Explain the project, answer questions, listen to your concerns and ideas, etc.

3. **Background:** Explain **why** the research is important! How it fits into other things!
Your Mentor’s Role

1. **Role modeling**: Their experiences offer clues for your own professional success story.

2. **Communication**: Explain the project, answer questions, listen to your concerns and ideas, etc.

3. **Background**: Explain *why* the research is important! How it fits into other things!

4. **Connection**: Help connect you to their colleagues, graduate assistants, others. You will learn as much from them (or more!) as you do from your research tasks!
What Faculty Mentors Expect from You

1. **Communication:**

 - Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.

2. **Assertiveness:**

 - Think for yourself and support your own ideas. Be bold!

3. **Maturity:**

 - Be reliable for what your mentor asks you to do.

4. **Enthusiasm:**

 - Be interested in the project, field, and topic. Become familiar with background literature.

5. **Responsible:**

 - Tell team changes that affect your participation.

6. **Adaptability:**

 - Be flexible and open-minded.

Acronym

CAMERA

Credit

Auguste thought of making the words into an acronym.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.

 CAMERA

 Credit Auguste thought of making the words into an acronym.
What Faculty Mentors Expect from You

1. Communication: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. Assertiveness:
What Faculty Mentors Expect from You

1. Communication: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.

2. Assertiveness: Think for yourself and support your own ideas. Be bold!
What Faculty Mentors Expect from You

1. Communication: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. Assertiveness: Think for yourself and support your own ideas. Be bold!
3. Maturity:
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.

2. **Assertiveness**: Think for yourself and support your own ideas. Be bold!

3. **Maturity**: Be reliable for what your mentor asks you do do.

4. **Enthusiasm**: Be interested in the project, field, and topic. Become familiar with background literature.

5. **Responsible**: Tell team changes that affect your participation.

6. **Adaptability**: Be flexible and open minded.

Acronym CAMRA.
What Faculty Mentors Expect from You

1. Communication: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. Assertiveness: Think for yourself and support your own ideas. Be bold!
3. Maturity: Be reliable for what your mentor asks you do do.
4. Enthusiasm:
WhatFacultyMentorsExpectfromYou

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.

2. **Assertiveness:** Think for yourself and support your own ideas. Be bold!

3. **Maturity:** Be reliable for what your mentor asks you to do.

4. **Enthusiasm:** Be interested in the project, field, and topic. Become familiar with background literature.

5. **Responsible:** Tell team when changes affect your participation.

6. **Adaptability:** Be flexible and open minded.

Acronym: **CAMERA**

Credit: Auguste thought of making the words into an acronym.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness:** Think for yourself and support your own ideas. Be bold!
3. **Maturity:** Be reliable for what your mentor asks you do do.
4. **Enthusiasm:** Be interested in the project, field, and topic. Become familiar with background literature.
5. **Responsible:** Tell team changes that affect your participation.

Acronym: **CAMERA**

Credit Auguste thought of making the words into an acronym.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.

2. **Assertiveness:** Think for yourself and support your own ideas. Be bold!

3. **Maturity:** Be reliable for what your mentor asks you to do.

4. **Enthusiasm:** Be interested in the project, field, and topic. Become familiar with background literature.

5. **Responsible:** Tell team changes that affect your participation.

6. **Adaptability:** Be flexible and open minded.

Acronym: **CAMERA**

Credit: Auguste thought of making the words into an acronym.
What Faculty Mentors Expect from You

1. Communication: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. Assertiveness: Think for yourself and support your own ideas. Be bold!
3. Maturity: Be reliable for what your mentor asks you to do.
4. Enthusiasm: Be interested in the project, field, and topic. Become familiar with background literature.
5. Responsible: Tell team changes that affect your participation.
6. Adaptability: Be flexible and open minded.

Acronym CAMERA.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness:** Think for yourself and support your own ideas. Be bold!
3. **Maturity:** Be reliable for what your mentor asks you to do.
4. **Enthusiasm:** Be interested in the project, field, and topic. Become familiar with background literature.
5. **Responsible:** Tell team changes that affect your participation.
6. **Adaptability:** Be flexible and open-minded.

Acronym **CAMERA**.

Credit Auguste thought of making the words into an acronym.
What if Issues Arise?
1. Speak directly to the individual in a respectful manner. This will let you immediately know if the different treatment is a misunderstanding or a major problem.

2. If you feel uncomfortable, seek advice and guidance from others. Bill Gasarch or Jacquelyn Michaelis (REU-BRIDGE director) can offer assistance and direct you to campus resources for help. Note that in the United States there is Mandatory Reporting: if a mentor or director hears about a case of sexual harassment, they must report it.

3. While this slide is about Sexual Harassment and Discrimination, feel free to talk to Bill Gasarch or Jacquelyn Michaelis about any issue, even if it is uncomfortable.
Sexual Harassment and Discrimination

1. Speak directly to the individual in a respectful manner. This will let you immediately know if the different treatment is a misunderstanding or a major problem.
1. Speak directly to the individual in a respectful manner. This will let you immediately know if the different treatment is a misunderstanding or a major problem.

2. If you feel uncomfortable, seek advice and guidance from others. Bill Gasarch or Jacquelyn Michaelis (REU-BRIDGE director) can offer assistance and direct you to campus resources for help. Note that in the United State there is Mandatory Reporting: if a mentor or director hears about a case of sexual harassment, they must report it.
Sexual Harassment and Discrimination

1. Speak directly to the individual in a respectful manner. This will let you immediately know if the different treatment is a misunderstanding or a major problem.

2. If you feel uncomfortable, seek advice and guidance from others. Bill Gasarch or Jacquelyn Michaelis (REU-BRIDGE director) can offer assistance and direct you to campus resources for help. Note that in the United State there is Mandatory Reporting: if a mentor or director hears about a case of sexual harassment, they must report it.

3. While this slide is about Sexual Harassment and Discrimination, feel free to talk to Bill Gasarch or Jacquelyn Michaelis about any issue, even if it is uncomfortable.
What is you Slack Off?

Good News That You Know:

1. You get a stipend.
2. You get free room, a meal card for the first week, and extra food money.

If you do not live up to your end of the deal you could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).

What is 'your end of the deal':

SPACE AGE and CAMERA
What is you Slack Off?

Good News That You Know:

1. You get a stipend.
What is you Slack Off?

Good News That You Know:

1. You get a stipend.
2. You get free room, a meal card for the first week, and extra food money.

If you do not live up to your end of the deal, you could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).

SPACE AGE and CAMERAS
What is you Slack Off?

Good News That You Know:

1. You get a stipend.
2. You get free room, a meal card for the first week, and extra food money.

If you do not live up to your end of the deal
What is you Slack Off?

Good News That You Know:

1. You get a stipend.
2. You get free room, a meal card for the first week, and extra food money.

If you do not live up to your end of the deal

You could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).
What is you Slack Off?

Good News That You Know:

1. You get a stipend.
2. You get free room, a meal card for the first week, and extra food money.

If you do not live up to your end of the deal
You could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).

What is ‘your end of the deal’:
What is you Slack Off?

Good News That You Know:

1. You get a stipend.
2. You get free room, a meal card for the first week, and extra food money.

If you do not live up to your end of the deal
You could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).

What is ‘your end of the deal’:
SPACE AGE and CAMERA
Complaints In the Past

Over the last year there was only THREE complaints:

- Being Virtual is a Real Downer
- This summer the program is in person!
- Talks should be at 4:00 instead of 3:00 so can get more done
- Done!
- Non Citizens Could not get ID cards
- and hence had to pay Full Price at the Gym
- Mihai Pop of REU-BRIDGE was amazed this was true. I had to remind him that incredibly stupid university rules are not unusual.
- Not enough meat pizza on Game Nights.
Complaints In the Past

Over the last year there was only THREE complaints:

Being Virtual is a Real Downer
Complaints In the Past

Over the last year there was only THREE complaints:

Being Virtual is a Real Downer

This summer the program is in person!
Complaints In the Past

Over the last year there was only THREE complaints:

Being Virtual is a Real Downer

This summer the program is in person!

Talks should be at 4:00 instead of 3:00 so can get more done
Complaints In the Past

Over the last year there was only THREE complaints:

Being Virtual is a Real Downer
This summer the program is in person!

Talks should be at 4:00 instead of 3:00 so can get more done

Done!
Complaints In the Past

Over the last year there was only THREE complaints:

Being Virtual is a Real Downer

This summer the program is in person!

Talks should be at 4:00 instead of 3:00 so can get more done

Done!

Non Citizens Could not get ID cards
and hence had to pay Full Price at the Gym
Complaints In the Past

Over the last year there was only THREE complaints:

Being Virtual is a Real Downer

This summer the program is in person!

Talks should be at 4:00 instead of 3:00 so can get more done

Done!

Non Citizens Could not get ID cards

and hence had to pay Full Price at the Gym

Mihai Pop of REU-BRIDGE was amazed this was true. I had to remind him that incredibly stupid university rules are not unusual.
Complaints In the Past

Over the last year there was only THREE complaints:

Being Virtual is a Real Downer

This summer the program is in person!

Talks should be at 4:00 instead of 3:00 so can get more done

Done!

Non Citizens Could not get ID cards and hence had to pay Full Price at the Gym

Mihai Pop of REU-BRIDGE was amazed this was true. I had to remind him that incredibly stupid university rules are not unusual.

Not enough meat pizza on Game Nights.
Complain SOONER Rather than Later

Better to get a problem resolved EARLY, whatever they are.
Complain SOONER Rather than Later

Better to get a problem resolved EARLY, whatever they are.

Key to a good relationship:
Complain SOONER Rather than Later

Better to get a problem resolved EARLY, whatever they are.

Key to a good relationship:

In any problem or dispute that arises the important thing is
Complain SOONER Rather than Later

Better to get a problem resolved EARLY, whatever they are.

Key to a good relationship:

In any problem or dispute that arises the important thing is

NOT fixing it and making things work out
Better to get a problem resolved EARLY, whatever they are.

Key to a good relationship:

In any problem or dispute that arises the important thing is

NOT fixing it and making things work out

its finding whose to Blame :-)
Schedule and Activities
First Week++ Talks

You should all know about each others projects:
You should all know about each other's projects:

For all projects p
First Week++ Talks

You should all know about each others projects:

For all projects p
there exists a mentor m for project p and a day d such that
You should all know about each others projects:

For all projects p

there exists a mentor m for project p and a day d such that mentor m gives a talk on project p on day d.
You should all know about each others' projects:

For all projects p
there exists a mentor m for project p and a day d such that
mentor m gives a talk on project p on day d.

In symbols

$$(\forall p)(\exists m, d)[MENTOR(p, m) \land TALK(p, m, d)].$$
First Week - Lunch

1. Monday 12:00-1:00 lunch in IRB.
2. This lunch you will play telepictionary!
3. Tu, We, Th, Fr - Lunch in the union or IRB from your meal card.
4. Bill will join you for lunch some of the first week.
First Week - Lunch

1. Monday 12:00-1:00 lunch in IRB.
First Week - Lunch

1. Monday 12:00-1:00 lunch in IRB.
2. This lunch you will play telepictionary!
First Week - Lunch

1. Monday 12:00-1:00 lunch in IRB.
2. This lunch you will play telepictionary!
3. Tu, We, Th, Fr- Lunch in the union or IRB from your meal card.
First Week - Lunch

1. Monday 12:00-1:00 lunch in IRB.
2. This lunch you will play telepictionary!
3. Tu,We,Th,Fr- Lunch in the union or IRB from your meal card.
4. Bill will join you for lunch some of the first week.
First Week

1. Red Tape stuff (hopefully ends Wed).
2. Research—Every afternoon.
First Week

1. Red Tape stuff (hopefully ends Wed).
First Week

1. **Red** Tape stuff (hopefully ends Wed).
2. Research—Every afternoon.
Most Weeks

1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don't blow it all on supercomputer time!
7. At night talk about Quantum ML for Security and Ramseyian Geometry
8. On your own on weekends— Explore Washington DC!
9. Some of these items may change (e.g., a talk on a Tuesday).
Most Weeks

1. Get here by 10:00AM goto your projects room.
Most Weeks

1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)

3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don't blow it all on supercomputer time!
7. At night talk about Quantum ML for Security and Ramseyian Geometry
8. On your own on weekends— Explore Washington DC!
9. Some of these items may change (e.g., a talk on a Tuesday).
Most Weeks

1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don't blow it all on supercomputer time!
7. At night talk about Quantum ML for Security and Ramseyian Geometry
8. On your own on weekends—Explore Washington DC!
9. Some of these items may change (e.g., a talk on a Tuesday).
Most Weeks

1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
Most Weeks

1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
Most Weeks

1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!

At night talk about Quantum ML for Security and Ramseyian Geometry

On your own on weekends—Explore Washington DC!

Some of these items may change (e.g., a talk on a Tuesday).
Most Weeks

1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!
7. At night talk about Quantum ML for Security and Ramseyian Geometry
1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!
7. At night talk about **Quantum ML for Security and Ramseyian Geometry**
8. On your own on weekends— Explore Washington DC!
Most Weeks

1. Get here by 10:00AM goto your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:00 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!
7. At night talk about Quantum ML for Security and Ramseyian Geometry
8. On your own on weekends— Explore Washington DC!
9. Some of these items may change (e.g., a talk on a Tuesday).
1. Very few of you are locals. Use cell phones.
1. Very few of you are locals. Use cell phones. (Serge Brin was a UMCP ugrad, so use Google maps.)

2. Weekends you SHOULD visit Washington DC. Goto the Whitehouse and say hello to President Biden. Jill Biden may help you on your project since her is PhD is in Quantum Ramsey Theory. My wife says I must tell you when I am kidding. I am kidding. She (Jill, not my wife) is the first First Lady to have a PhD. It's in education.
Explore Washington DC On Your Own AND

1. Very few of you are locals. Use cell phones. (Serge Brin was a UMCP ugrad, so use Google maps.)
2. Weekends you SHOULD visit Washington DC.
Explore Washington DC On Your Own AND

1. Very few of you are locals. Use cell phones.
 (Serge Brin was a UMCP ugrad, so use Google maps.)
2. Weekends you SHOULD visit Washington DC.
 Goto the Whitehouse and say hello to President Biden.
Explore Washington DC On Your Own AND

1. Very few of you are locals. Use cell phones. (Serge Brin was a UMCP ugrad, so use Google maps.)
2. Weekends you SHOULD visit Washington DC. Goto the Whitehouse and say hello to President Biden. Jill Biden may help you on your project since her is PhD is in...
Explore Washington DC On Your Own AND

1. Very few of you are locals. Use cell phones.
(Serge Brin was a UMCP ugrad, so use Google maps.)

2. Weekends you SHOULD visit Washington DC.
Goto the Whitehouse and say hello to President Biden.
Jill Biden may help you on your project since her is PhD is in Quantum Ramsey Theory.
1. Very few of you are locals. Use cell phones. (Serge Brin was a UMCP ugrad, so use Google maps.)
2. Weekends you SHOULD visit Washington DC. Goto the Whitehouse and say hello to President Biden. Jill Biden may help you on your project since her is PhD is in Quantum Ramsey Theory. My wife says I must tell you when I am kidding.
Explore Washington DC On Your Own AND

1. Very few of you are locals. Use cell phones. (Serge Brin was a UMCP ugrad, so use Google maps.)

2. Weekends you SHOULD visit Washington DC. Goto the Whitehouse and say hello to President Biden. Jill Biden may help you on your project since her is PhD is in Quantum Ramsey Theory. My wife says I must tell you when I am kidding. I am kidding.
1. Very few of you are locals. Use cell phones. (Serge Brin was a UMCP ugrad, so use Google maps.)

2. Weekends you SHOULD visit Washington DC. Goto the Whitehouse and say hello to President Biden. Jill Biden may help you on your project since her is PhD is in Quantum Ramsey Theory. My wife says I must tell you when I am kidding. I am kidding. She (Jill, not my wife) is the first First Lady to have a PhD.
1. Very few of you are locals. Use cell phones. (Serge Brin was a UMCP ugrad, so use Google maps.)

2. Weekends you SHOULD visit Washington DC. Goto the Whitehouse and say hello to President Biden. Jill Biden may help you on your project since her is PhD is in Quantum Ramsey Theory. My wife says I must tell you when I am kidding. I am kidding. She (Jill, not my wife) is the first First Lady to have a PhD. It’s in education.
Other Things We Will Do

1. Field Trip at Spy Museum (Prob a Monday in July).
2. Lunch where we discuss How to do Bad Science.
3. Lunch where we discuss graduate school (with guests).
4. Game Nights with Pizza!
5. Final presentation the last week.
6. Unexpected things will happen! Always expect the unexpected! (Is that a paradox?)
Other Things We Will Do

1. Field Trip at Spy Museum (Prob a Monday in July).
Other Things We Will Do

1. Field Trip at Spy Museum (Prob a Monday in July).
2. Lunch where we discuss **How to do Bad Science.**
Other Things We Will Do

1. Field Trip at Spy Museum (Prob a Monday in July).
2. Lunch where we discuss How to do Bad Science.
3. Lunch where we discuss graduate school (with guests).
4. Game Nights with Pizza!
5. Final presentation the last week.
6. Unexpected things will happen! Always expect the unexpected! (Is that a paradox?)
Other Things We Will Do

1. Field Trip at Spy Museum (Prob a Monday in July).
2. Lunch where we discuss How to do Bad Science.
3. Lunch where we discuss graduate school (with guests).
4. Game Nights with Pizza!
Other Things We Will Do

1. Field Trip at Spy Museum (Prob a Monday in July).
2. Lunch where we discuss How to do Bad Science.
3. Lunch where we discuss graduate school (with guests).
4. Game Nights with Pizza!
5. Final presentation the last week.
Other Things We Will Do

1. Field Trip at Spy Museum (Prob a Monday in July).
2. Lunch where we discuss How to do Bad Science.
3. Lunch where we discuss graduate school (with guests).
4. Game Nights with Pizza!
5. Final presentation the last week.
6. Unexpected things will happen! Always expect the unexpected!
Other Things We Will Do

1. Field Trip at Spy Museum (Prob a Monday in July).
2. Lunch where we discuss **How to do Bad Science**.
3. Lunch where we discuss **graduate school** (with guests).
4. **Game Nights** with Pizza!
5. **Final presentation** the last week.
6. **Unexpected things** will happen! Always expect the unexpected!
 (Is that a paradox?)
Summary of Projects and People
1. Exploring Hilbert Geometry

2. Elevator Pitch

Computational Geometry asks questions like, Given a set of lines find all of the points of intersection. It is assumed they mean lines in the plane or perhaps \mathbb{R}^n. What if you are in another space? A curved space? What can you do?

You can do this project!

3. Students

Madeline Bumpus, Caesar Dai, Samuel Monoz, Renita Santhoshkumar, Songyu Ye.
Auguste–Dave Geometry Project

1. Exploring Hilbert Geometry

Computational Geometry asks questions like Given a set of lines find all of the points of intersection. It is assumed they mean lines in the plane or perhaps \mathbb{R}^n. What if you are in another space? A curved space? What can you do? You can do this project!

Students: Madeline Bumpus, Caesar Dai, Samuel Monoz, Renita Santhoshkumar, Songyu Ye.
Auguste-Dave Geometry Project

1. Exploring Hilbert Geometry
2. Elevator Pitch
Auguste-Dave Geometry Project

1. Exploring Hilbert Geometry

2. Elevator Pitch
 Computational Geometry asks questions like Given a set of lines find all of the points of intersection. It is assumed they mean lines in the plane or perhaps \mathbb{R}^n. What if you are in another space? A curved space? What can you do?
Auguste-Dave Geometry Project

1. **Exploring Hilbert Geometry**

2. **Elevator Pitch**
 Computational Geometry asks questions like *Given a set of lines find all of the points of intersection*. It is assumed they mean lines in the plane or perhaps \mathbb{R}^n. What if you are in another space? A curved space? What can you do? You can do **This project**!
1. **Exploring Hilbert Geometry**

2. **Elevator Pitch**
 Computational Geometry asks questions like *Given a set of lines find all of the points of intersection.* It is assumed they mean lines in the plane or perhaps \mathbb{R}^n. What if you are in another space? A curved space? What can you do? You can do **This project!**

3. **Students** Madeline Bumpus, Caesar Dai, Samuel Monoz, Renita Santhoshkumar, Songyu Ye.
1. Verification of Quantum Simulation

2. Elevator Pitch

When we have quantum computers we will need to verify that their output is correct. One way to do this is to simulate a quantum computer on a classical device. This project will be about how to do that.

3. Student Ruozchen Gong

4. Misc

There may be grad students and one postdoc Zooming in from China.
1. Verification of Quantum Simulation
1. Verification of Quantum Simulation
2. Elevator Pitch
1. **Verification of Quantum Simulation**

2. **Elevator Pitch**

 When we have quantum computers we will need to **verify** that their output is correct.
1. **Verification of Quantum Simulation**

2. **Elevator Pitch**
 When we have quantum computers we will need to verify that their output is correct.
 One way to do this is to simulate a quantum computer on a classical device.
1. **Verification of Quantum Simulation**
2. **Elevator Pitch**
 When we have quantum computers we will need to verify that their output is correct.
 One way to do this is to simulate a quantum computer on a classical device.
 This project will be about how to do that.
1. **Verification of Quantum Simulation**
2. **Elevator Pitch**
 When we have quantum computers we will need to verify that their output is correct. One way to do this is to simulate a quantum computer on a classical device. This project will be about how to do that.
3. **Student** Ruozchen Gong
Andrew-Dhurv-Alexy Quantum Project

1. Verification of Quantum Simulation

2. Elevator Pitch
 When we have quantum computers we will need to verify that their output is correct.
 One way to do this is to simulate a quantum computer on a classical device.
 This project will be about how to do that.

3. Student Ruozchen Gong

4. Misc There may be grad Students and one postdoc Zooming in from China.
1. Concrete Security Estimation for Post-Quantum Cryptosystems with Side Information

2. Elevator Pitch

Today's crypto systems rely on factoring being a hard problem. Quantum computers can, theoretically, factor very quickly. Hence people are already building post-quantum cryptosystems which means those not based on factoring being hard.

What about non-math attacks like side-channel? Are the new systems secure against those? Let's find out!

3. Students

Michael Gonzalez, Harikesh Kailad, Alexander Lindenbaum.
1. **Concrete Security Estimation for Post-Quantum Cryptosystems with Side Information**

Today's crypto systems rely on factoring being a hard problem. Quantum computers can, theoretically, factor very quickly. Hence people are already building post-quantum cryptosystems which means those not based on factoring being hard. What about non-math attacks like side-channel? Are the new systems secure against those? Let's find out!
Dana’s Security Project

1. Concrete Security Estimation for Post-Quantum Cryptosystems with Side Information
2. Elevator Pitch
Dana’s Security Project

1. **Concrete Security Estimation for Post-Quantum Cryptosystems with Side Information**

2. **Elevator Pitch**
 - Today’s crypto systems rely on **factoring** being a hard problem. Quantum computers can, theoretically, factor very quickly. Hence people are already building post-quantum cryptosystems which means those not based on factoring being hard.
1. **Concrete Security Estimation for Post-Quantum Cryptosystems with Side Information**

2. **Elevator Pitch**
 Today’s crypto systems rely on **factoring** being a hard problem. Quantum computers can, theoretically, factor very quickly. Hence people are already building post-quantum cryptosystems which means those not based on factoring being hard.
 What about non-math attacks like side-channel? Are the new systems secure against those? Let’s find out!
Dana’s Security Project

1. Concrete Security Estimation for Post-Quantum Cryptosystems with Side Information

2. Elevator Pitch
 Today’s crypto systems rely on factoring being a hard problem. Quantum computers can, theoretically, factor very quickly. Hence people are already building post-quantum cryptosystems which means those not based on factoring being hard.
 What about non-math attacks like side-channel? Are the new systems secure against those? Lets find out!

1. Differentiable Economics

2. Elevator Pitch

How do we divide up goods (e.g., children to schools, organs to patients, muffins) in a fair way? What does fair mean? This project will apply AI/ML to these problems.

3. Students

Davidson Cheng, Yang Hong, Reem Al Marzoa, Abdulaziz Memesh.
1. **Differentiable Economics**
John-Ian Diff Eco Project

1. Differentiable Economics
2. Elevator Pitch
1. **Differentiable Economics**

2. **Elevator Pitch**

 How do we divide up goods (e.g., children to schools, organs to patients, muffins) in a fair way? What does fair mean?
1. **Differentiable Economics**
2. **Elevator Pitch**
 How do we divide up goods (e.g., children to schools, organs to patients, muffins) in a fair way? What does fair mean? This project will apply AI/ML to these problems.
1. **Differentiable Economics**

2. **Elevator Pitch**
 How do we divide up goods (e.g., children to schools, organs to patients, muffins) in a fair way? What does fair mean? This project will apply AI/ML to these problems.

3. **Students** Davidson Cheng, Yang Hong, Reem Al Marzoa, Abdulaziz Memesh.
1. Comparing AI to Human Intelligence with Regard to Bias

Humans are biased. AI systems are biased. We want to, of course, combat this for AI systems. (For humans also, but that would be a Psychology REU.)

In what ways are human bias and AI similar? different? Can we identify the source of AI bias? Correct it? We can try!

3. Students

Maya Murry, Anneke Wernerfelt, Dalal Ahmidouch.
1. Comparing AI to Human I with Regard to Bias
Tom’s AI-HI Project

1. Comparing AI to Human I with Regard to Bias
2. Elevator Pitch
1. **Comparing AI to Human I with Regard to Bias**

2. **Elevator Pitch**

 Humans are biased. AI systems are biased. We want to, of course, combat this for AI systems (for humans also, but that would be a Psychology REU).
1. **Comparing AI to Human I with Regard to Bias**

2. **Elevator Pitch**

 Humans are biased. AI systems are biased. We want to, of course, combat this for AI systems (for humans also, but that would be a Psychology REU).

 In what ways are human bias and AI similar? different? Can we identify the source of AI bias? Correct it?
1. **Comparing AI to Human I with Regard to Bias**

2. **Elevator Pitch**

 Humans are biased. AI systems are biased. We want to, of course, combat this for AI systems (for humans also, but that would be a Psychology REU).

 In what ways are human bias and AI similar? different? Can we identify the source of AI bias? Correct it?

 We can try!

Students: Maya Murry, Anneke Wernerfelt, Dalal Ahmidouch.
1. **Comparing AI to Human I with Regard to Bias**

2. **Elevator Pitch**

 Humans are biased. AI systems are biased. We want to, of course, combat this for AI systems (for humans also, but that would be a Psychology REU).

 In what ways are human bias and AI similar? different? Can we identify the source of AI bias? Correct it?

 We can try!

3. **Students** Maya Murry, Anneke Wernerfelt, Dalal Ahmidouch.
1. Ramsey Theory on Ordered Sets

2. Elevator Pitch

If you color \(\mathbb{N} \) (the natural numbers) \underline{RED} and \underline{BLUE}, there will be an infinite \(A \subseteq \mathbb{N} \) that is all the same color. As an ordered set \(A \) looks just like \(\mathbb{N} \).

What happens if you color \(\mathbb{Z} \) (integers), \(\mathbb{Q} \) (rationals), \(\mathbb{R} \) (reals), \(\mathbb{N} \times \mathbb{N} \)? Other sets?

Bill’s Ramsey Project

1. Ramsey Theory on Ordered Sets

If you color \mathbb{N} (the natural numbers) RED and BLUE there will be an infinite $A \subseteq \mathbb{N}$ that is all the same color. As an ordered set A looks just like \mathbb{N}.

What happens if you color \mathbb{Z} (integers)? \mathbb{Q} (rationals)? \mathbb{R} (reals)? $\mathbb{N} \times \mathbb{N}$? Other sets?

Bill’s Ramsey Project

1. Ramsey Theory on Ordered Sets
2. Elevator Pitch
Bill’s Ramsey Project

1. Ramsey Theory on Ordered Sets
2. Elevator Pitch
 If you color \(N \) (the natural numbers) RED and BLUE there will be an infinite \(A \subseteq N \) that is all the same color. As an ordered set \(A \) looks just like \(N \).
1. **Ramsey Theory on Ordered Sets**

2. **Elevator Pitch**
 If you color \(N \) (the natural numbers) **RED** and **BLUE** there will be an infinite \(A \subseteq N \) that is all the same color. As an ordered set \(A \) looks **just like** \(N \).

 What happens if you color \(Z \) (integers)? \(Q \) (rationals)? \(R \) (reals)? \(N \times N \)? Other sets?
Bill’s Ramsey Project

1. Ramsey Theory on Ordered Sets

2. Elevator Pitch
 If you color \mathbb{N} (the natural numbers) RED and BLUE there will be an infinite $A \subseteq \mathbb{N}$ that is all the same color. As an ordered set A looks just like \mathbb{N}.
 What happens if you color \mathbb{Z} (integers)? \mathbb{Q} (rationals)? \mathbb{R} (reals)? $\mathbb{N} \times \mathbb{N}$? Other sets?

Furong’s Fair Div and Bias

1. Fair Division, Resource Allocation, and Bias

At one point it was hoped that automating decisions would decrease human bias. But instead there are times when it inherits human bias. Darn!

This project looks at how to deal with that (and reduce bias) in the context of ML/AI for resource allocation.

3. Students

Suhani Agrawal, Justin Huang, Ben Kreiswirth.
Furong’s Fair Div and Bias

1. Fair Division, Resource Allocation, and Bias

At one point it was hoped that automating decisions would decrease human bias. But instead there are times when it inherits human bias. Darn! This project looks at how to deal with that (and reduce bias) in the context of ML/AI for resource allocation.

Students: Suhani Agrawal, Justin Huang, Ben Kreiswirth.
Furong’s Fair Div and Bias

1. Fair Division, Resource Allocation, and Bias
2. Elevator Pitch

At one point it was hoped that automating decisions would decrease human bias. But instead there are times when it inherits human bias. Darn! This project looks at how to deal with that (and reduce bias) in the context of ML/AI for resource allocation.
Furong’s Fair Div and Bias

1. Fair Division, Resource Allocation, and Bias
2. Elevator Pitch
 At one point it was hoped that automating decisions would decrease human bias. But instead there are times when it inherits human bias. Darn! This project looks at how to deal with that (and reduce bias) in the context of ML/AI for resource allocation.
Furong’s Fair Div and Bias

1. **Fair Division, Resource Allocation, and Bias**

2. **Elevator Pitch**

 At one point it was hoped that automating decisions would **decrease** human bias. But instead there are times when it **inherits** human bias. **Darn!** This project looks at how to deal with that (and reduce bias) in the context of ML/AI for resource allocation.

3. **Students** Suhani Agrawal, Justin Huang, Ben Kreiswirth.
Funding
Who is Funding This?

1. National Science Foundation (NSF).

2. Andrew C had some spare quantum coins.

3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory).

5. Other Schools mini-grants pay stipends.

6. The Winkler Foundation.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory).
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory). This makes sense.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory). This makes sense.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory). This makes sense.
4. Ocular/Brendan Iribe (A VR Company). This makes sense.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory). This makes sense.
4. Ocular/Brendan Iribe (A VR Company). This makes sense.
5. Other Schools mini-grants pay stipends.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory). This makes sense.
4. Ocular/Brendan Iribe (A VR Company). This makes sense.
5. Other Schools mini-grants pay stipends. This makes sense.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory). This makes sense.
4. Ocular/Brendan Iribe (A VR Company). This makes sense.
5. Other Schools mini-grants pay stipends. This makes sense.
6. The Winkler Foundation.
Who is Funding This?

1. National Science Foundation (NSF). This makes sense.
2. Andrew C had some spare quantum coins. This makes sense.
3. Google/An Zhu (An Zhu was an ugrad at UMCP who worked in Theory). This makes sense.
4. Ocular/Brendan Iribe (A VR Company). This makes sense.
5. Other Schools mini-grants pay stipends. This makes sense.
6. The Winkler Foundation. What?
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award
4. Produced Rocky, Goodfellows, Creed
5. For more about him: https://www.imdb.com/name/nm0005563/?ref_=fn_al_nm_1

Why am I telling you this?
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler
Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler

Irwin Winkler is a produce in Hollywood.

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award
4. Produced Rocky, Goodfellows, Creed
5. For more about him: https://www.imdb.com/name/nm0005563/?ref_=fn_al_nm_1

Why am I telling you this?
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler

Irwin Winkler is a produce in Hollywood.

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award
4. Produced Rocky1,2, . . . , Goodfellows, Creed
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler

Irwin Winkler is a produce in Hollywood.

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award
4. Produced Rocky1,2,..., Goodfellows, Creed
5. For more about him:
 https:
 //www.imdb.com/name/nm0005563/?ref_=fn_al_nm_1
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler

Irwin Winkler is a produce in Hollywood.

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award
4. Produced Rocky1,2,..., Goodfellows, Creed
5. For more about him:
 https://www.imdb.com/name/nm0005563/?ref_=fn_al_nm_1

Why am I telling you this?
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to

- Many worthy causes
- Our REU!

Adam Winkler is Irwin's son who administers the foundation. He's a law professor so he gets academia. (The other two sons are in the biz: a director and a writer.)

His most recent book: *We the Corporations: How American Businesses won their civil rights*

It is deeply shocking that We the Corporations is not boring.

Where Does the Winkler Money Go?

Things the NSF won't pay for:

- Money for housing for non-citizens.
- The Monday Lunches.
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and

Where Does the Winkler Money Go?

- Money for housing for non-citizens.
- The Monday Lunches.
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!

Adam Winkler is Irwin’s son who administers the foundation.

Where Does the Winkler Money Go?

- Money for housing for non-citizens.
- The Monday Lunches.
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he gets academia.
(The other two sons are in the biz: a director and a writer.)
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he gets academia. (The other two sons are in the biz: a director and a writer.)

His most recent book:
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he gets academia.
(The other two sons are in the biz: a director and a writer.)
His most recent book: We the Corporations: How American Businesses won their civil rights got this review
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he gets academia. (The other two sons are in the biz: a director and a writer.) His most recent book: We the Corporations: How American Businesses won their civil rights got this review
It is deeply shocking that We the Corporations is not boring.
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he gets academia. (The other two sons are in the biz: a director and a writer.)

His most recent book: We the Corporations: How American Businesses won their civil rights got this review

It is deeply shocking that We the Corporations is not boring.

Where Does the Winkler Money Go?
Things the NSF won’t pay for:
Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he gets academia. (The other two sons are in the biz: a director and a writer.)

His most recent book: We the Corporations: How American Businesses won their civil rights got this review

It is deeply shocking that We the Corporations is not boring.

Where Does the Winkler Money Go?

Things the NSF won’t pay for:

► Money for housing for non-citizens.
The Winkler Foundation

Irwin Winkler has established a Charitable foundation that gives money to (a) many worth causes and (b) our REU!

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he gets academia. (The other two sons are in the biz: a director and a writer.) His most recent book: We the Corporations: How American Businesses won their civil rights got this review It is deeply shocking that We the Corporations is not boring.

Where Does the Winkler Money Go?
Things the NSF won’t pay for:

- Money for housing for non-citizens.
- The Monday Lunches.
Questions from You?

I welcome questions now and anytime!