NIM with Cash

William Gasarch-U of MD John Purtilo- U of MD Douglas Ulrich- U of MD

Standard NIM Games

A is a finite set of natural numbers.

- 1. *n* stones on the table.
- 2. Players alternate rm $a \in A$ stones.
- 3. Play until someone can't move. That player loses.

Notation: $W_A(n) =$ whoever wins if start with n stones.

Example: If $A = \{1, 3, 4\}$ then

Standard NIM Games

A is a finite set of natural numbers.

- 1. *n* stones on the table.
- 2. Players alternate rm $a \in A$ stones.
- 3. Play until someone can't move. That player loses.

Notation: $W_A(n) =$ whoever wins if start with n stones.

Example: If $A = \{1, 3, 4\}$ then

$$W_A(n) = \coprod \text{ iff } n \equiv 0,2 \pmod{7}.$$

Standard NIM Games

A is a finite set of natural numbers.

- 1. *n* stones on the table.
- 2. Players alternate rm $a \in A$ stones.
- 3. Play until someone can't move. That player loses.

Notation: $W_A(n) =$ whoever wins if start with n stones.

Example: If $A = \{1, 3, 4\}$ then

$$W_A(n) = \coprod \text{ iff } n \equiv 0,2 \pmod{7}.$$

Note: NIM is a well known game. NIM and many variants have been studied.

NIM SWITCH THEOREM

Theorem

Let A be a finite set and $n \in N$.

$$W_A(n) = I$$
 iff $(\exists a \in A, a \le n)[W_A(n-a) = II]$.

NIM with Cash (**NWC**)

Let A be a finite subset of N. We assume $1 \in A$ throughout.

- 1. n stones on the table. Player I has d, Player II has e.
- 2. Players alternate rm $a \in A$ stones. If rm a then loses a.
- Play until someone can't move. That player loses.Note: Either there are no stones or that player is broke.

Notation: $W_A^{\operatorname{cash}}(n;d,e)$ is who wins if start with n stones on the table, Player I has d, Player II has e.

NIM WITH CASH SWITCH THEOREM

Theorem

Let A be a finite set and $n, d, e \in N$.

$$W_A^{\operatorname{cash}}(n;d,e) = \mathbf{I} \text{ iff } (\exists a \in A, a \leq n)[W_A(n-a;e,d-a) = \mathbf{II}].$$

Main Question

Given A:

Math Person: We want an exact win condition for $W_A^{\operatorname{cash}}(n;d,e)$. (e.g, Player I wins iff $n \equiv 0 \pmod 8$ and $e < d^2$)

CS Person: Can solve using dynamic programming in $O(n^3)$ time.

Math Person: OKAY. We want an easily understood $(\log n)^{O(1)}$ algorithm to determine $W^{\operatorname{cash}}(n;d,e)$ (assuming constant time arithmetic operations).

Convention: Win Condition means $(\log n)^{O(1)}$ Algorithm

Rich, Poor, and Middle Class

There will be three cases:

- 1. At least one of the players is **Rich!** Using the same strategy as you would in standard NIM is **The Normal Strategy**.
- At least one player is Poor. Always rm 1 until the other player is broke is The Miserly Strategy.
- 3. Both are Middle Class. This is the hard case.

If At Least One Player Is Rich: Example

 $A = \{1, 3, 4\}$. n = 10. Player I needs ??? to win.

If At Least One Player Is Rich: Example

- $A = \{1, 3, 4\}$. n = 10. Player I needs ??? to win.
 - 1. Player I rm 3 leaving 7 stones.
 - 2. Player II rm 1,3,4 leaving 6,4,3 stones.
 - 3. Player I rm 4,4,3 leaving 2,0,0 stones.
 - 4. If 0 stones left then DONE- Player I wins, else there are 2 stones
 - 4.1 Player II rm 1 leaving 1
 - 4.2 Player I rm 1 leaving 0 and he wins!

Player I rm at most 3+4+1=8 stones.

Upshot: If Player I has \$8 then Player I wins no matter how much Player II has. $W^{\operatorname{cash}}(10;8,\infty) = I$. Player I normally.

If At Least One Player Is Rich: How Rich?

$$f^{II}(0)=0$$
 (Player II wins and needs 0 to win.) If $W_A(n)=I$ then

$$f^{I}(n) = \min_{a \in A, a \le n} \{ f^{II}(n-a) + a : W_A(n-a) = II \}$$

If $W_A(n) = II$ then

$$f^{\mathsf{II}}(n) = \max_{a \in A, a \le n} \{ f^{\mathsf{I}}(n-a) \}$$

Easy to prove:

- ▶ If $W_A(n) = I$ then Player I wins $(n; f^I(n), \infty)$.
- ▶ If $W_A(n) = II$ then Player II wins $(n; \infty, f^{II}(n))$.

Note: Only defined $f^{I}(n)$ when $W_{A}(n) = I$. Sim $f^{II}(n)$.

Wrong Guy Problem

What if $W_A(n) = I$ but Player I has $f^I(n) - 1$ dollars? How much does Player II need to win?

If
$$W_A(n) = II$$
 then

$$f^{I}(n) = \min_{a \in A, a \le n} \{ f^{II}(n-a) + a : f^{I}(n-a) = f^{II}(n) \}.$$

It
$$W_A(n) = I$$
 then

$$f^{\mathsf{II}}(n) = \max_{a \in A, a \le n} \{ f^{\mathsf{I}}(n-a) \}.$$

Rich Man Theorem

Theorem

Let A, n, d, e be given. Let f^{I} , f^{II} be as defined above.

- 1. If $d \ge f^{\mathsf{I}}(n)$ and $e < f^{\mathsf{II}}(n)$ then $W_A^{\operatorname{cash}}(n; d, e) = \mathsf{I}$.
- 2. If $d < f^{\dagger}(n)$ and $e \ge f^{\dagger\dagger}(n)$ then $W_A^{\operatorname{cash}}(n; d, e) = \blacksquare$
- 3. If $d \ge f^{\mathsf{I}}(n)$ and $e \ge f^{\mathsf{II}}(n)$ then $W_A^{\operatorname{cash}}(n; d, e) = W_A(n)$.

Upshot: Have covered **ALL** cases where at least one player is rich.

Example $A = \{1, 3, 4\}$

1.
$$f^{\dagger}(7k) = f^{\dagger\dagger}(7k) = 5k$$
.

2.
$$f^{I}(7k+1) = 5k+1$$
 and $f^{II}(7k+1) = 5k$.

3.
$$f'(7k+2) = f''(7k+2) = 5k+1$$
.

4.
$$f^{\dagger}(7k+3) = 5k+2$$
 and $f^{\dagger\dagger}(7k+3) = 5k+1$.

5.
$$f^{I}(7k+4) = 5k+4$$
 and $f^{II}(7k+4) = 5k+2$.

6.
$$f^{I}(7k+5) = f^{II}(7k+5) = 5k+4$$
.

7.
$$f^{I}(7k+6) = 5k+5$$
 and $f^{II}(7k+6) = 5k+4$.

Note: For all sets A we have looked at the functions f^{I} and f^{II} are roughly of the form above.

If At Least One Player is Poor: Example

 $A = \{1, 3, 4\}$. n = 10, Player I has \$4, Player II has \$4.

If At Least One Player is Poor: Example

- $A = \{1, 3, 4\}$. n = 10, Player I has \$4, Player II has \$4.
 - 1. Player II always rm just one stone.
 - 2. Player I runs out of money and loses.

If At Least One Players is Poor: How Poor?

$$g^{I}(n) = \lfloor \frac{n}{2} \rfloor + 1$$

 $g^{II}(n) = \lfloor \frac{n}{2} \rfloor + (n \mod 2)$

Theorem Let $n, d, e \in \mathbb{N}$.

- 1. If $d \ge g^{\mathbf{I}}(n)$ and $e < g^{\mathbf{II}}(n)$ then $W_A^{\operatorname{cash}}(n; d, e) = \mathbf{I}$. (II is poor, I is not)
- 2. If $d < g^{I}(n)$ and $e \ge g^{II}(n)$ then $W_A^{\operatorname{cash}}(n; d, e) = II$. (I is poor, II is not)
- 3. If $d < g^{I}(n)$ and $e < g^{II}(n)$ (both poor) then
 - 3.1 If d > e then $W_A^{\operatorname{cash}}(n; d, e) = I$
 - 3.2 If d = e then $W_A^{\operatorname{cash}}(n; d, e) = \blacksquare$
 - 3.3 If d < e then $W_{\Delta}^{\cosh}(n; d, e) = \blacksquare$

Upshot: Have covered all cases where at least one player is poor.

If Both Players are Middle Class: Example

n=12. Player I needs \$9 to win normally. If Player I has \$8 dollars than Player II can wrong-guy-win with \$9. What if both players have \$8? We are in scenario (12; 8, 8).

If Both Players are Middle Class: Example

- n=12. Player I needs \$9 to win normally. If Player I has \$8 dollars than Player II can wrong-guy-win with \$9. What if both players have \$8? We are in scenario (12; 8, 8).
 - 1. Player I rm 1.
 - 2. If Player II rm 3 or 4 then he is poor and lose. So he rm 1.
 - 3. Game is now (10, 7, 7). Player I is rich and can win normally.

Note: Typical: Play miserly until you are Rich.

If Both Players are Middle Class

Let $n, d, e \in \mathbb{N}$. If any of the following happens then the previous slides determine who wins:

- $ightharpoonup d \geq f^{\mathsf{I}}(n)$
- $ightharpoonup e \ge f^{\parallel}(n)$
- $ightharpoonup d \leq g^{\prime}(n)$
- $ightharpoonup e \leq g^{\parallel}(n)$

Def: Both players are **Middle Class** if none of the above happens.

Different Viewpoint

A is a finite set, $1 \in A$. Normal Nim has periodicity p. (n; d, e) is such that both players are middle class.

We map (n; d, e) to $(n \mod p; b, b^{\dagger})$ where

- ▶ $b = f^{\dagger}(n) d 1$. How much Player I is short of $f^{\dagger}(n)$.
- lacksquare $b^{\dagger}=f^{\dagger\dagger}(n)-e-1.$ How much Player \blacksquare is short of $f^{\dagger\dagger}(n).$

A set A is **nice** if from $(n \mod p, b, b^{\dagger})$ and $a \in A$ you can determine what $(n - a \mod p, b^{\dagger'}, b')$ you are in. We assume A is nice.

The Magic Set X

 $X \subseteq [p] \times \mathbb{N} \times \mathbb{N}$ is **WINNING** if:

I: For all $(i, b, b^{\dagger}) \in X$ if rm 1 get $(i', b^{\dagger'}, b')$ where EITHER

- \blacktriangleright $(i, b^{\dagger'}, b')$ is NOT in X.
- $b' < 0 \text{ and } b^{\dagger'} > 0.$
- ▶ b' < 0 and $b^{\dagger'} < 0$ and $W_A(i') = \blacksquare$.

II: For all $(i, b, b^{\dagger}) \notin X$, if rm $a \in A$ get $(i', b^{\dagger'}, b')$ then EITHER

- $(i',b^{\dagger'},b') \in X.$
- \blacktriangleright $b^{\dagger'} < 0$ and $b' \ge 0$.
- $b^{\dagger'} < 0$ and b' < 0 and $W_A(i') = 1$.

Middle Class Theorem

Theorem

Let A be a nice finite set. Assume there exists an p, X as above. Let $n, d, e \ge 0$ Assume that with (n; d, e) both players are middle class. Let $b = f^{\mathsf{I}}(n) - d - 1$ and $b^{\dagger} = f^{\mathsf{II}}(n) - e - 1$.

$$W_A^{\operatorname{cash}}(n;d,e) = I \text{ iff } (n \bmod p;b,b^\dagger) \in X.$$

Example of a set X

If $A = \{1, 3, 4\}$ then the following set X works. Take the union of the following sets of $(i; b, b^{\dagger})$.

- 1. $i \in \{0, 2, 5\}$ and $b \le |b^{\dagger}/2| \times 2$.
- 2. $i \in \{1, 3, 6\}$ and $b^{\dagger} > \lfloor b/2 \rfloor \times 2$.
- 3. $i \in \{4\}$ and $b^{\dagger} \geq \lfloor b/2 \rfloor \times 2$.

Complete Theorem

Let A be a nice finite set. Let f^{I} , f^{II} , g^{I} , g^{II} be defined as above. Assume there exists an p, X as above. Let $n, d, e \ge 0$.

- 1. If $d \ge f^{\mathsf{I}}(n)$ and $e < f^{\mathsf{II}}(n)$ then $W_A^{\operatorname{cash}}(n; d, e) = \mathsf{I}$.
- 2. If $d < f^{\mathsf{I}}(n)$ and $e \ge f^{\mathsf{II}}(n)$ then $W_A^{\operatorname{cash}}(n;d,e) = \mathsf{II}$
- 3. If $d \ge f^{\mathsf{I}}(n)$ and $e \ge f^{\mathsf{II}}(n)$ then $W_A^{\operatorname{cash}}(n;d,e) = W_A(n)$.
- 4. If $d \ge g^{\mathsf{I}}(n)$ and $e < g^{\mathsf{II}}(n)$ then $W_A^{\operatorname{cash}}(n;d,e) = \mathsf{I}$.
- 5. If $d < g^{\mathsf{I}}(n)$ and $e \ge g^{\mathsf{II}}(n)$ then $W_A^{\operatorname{cash}}(n;d,e) = \mathsf{II}$.
- 6. If $d < g^{I}(n)$ and $e < g^{II}(n)$ (both poor) then
 - 6.1 If d > e then $W_{\Delta}^{\operatorname{cash}}(n; d, e) = I$
 - 6.2 If d = e then $W_A^{\text{cash}}(n; d, e) = \blacksquare$
 - 6.3 If d < e then $W_A^{\cosh}(n; d, e) = \blacksquare$
- 7. If none of the above hold then let $b = f^{\mathsf{I}}(n) d 1$ and $b^{\dagger} = f^{\mathsf{II}}(n) e 1$. Player I wins iff $(n \mod p; b, b^{\dagger}) \in X$.

Upshot: Have covered **ALL** cases.

Conjecture about
$$f^{\mathbf{I}}$$
, $f^{\mathbf{II}}$ for $A = \{L, \dots, M\}$

Conjecture 1: There is an offset Θ , depending on L, M such that

$$(\forall 0 \leq n \leq \Theta - 1)[f^{I}(n), f^{II}(n)]$$
 some stuff]

$$(\forall n \geq \Theta)[f^{\mathsf{I}}(n+L+M)=f^{\mathsf{I}}(n)+M]$$

$$(\forall n \geq \Theta)[f^{\mathsf{II}}(n+L+M)=f^{\mathsf{II}}(n)+M]$$

Conjecture 2:
$$\Theta \le 5(M - L)^2 + 2$$

Conjecture 3: If $M \ge 2L$ then $\Theta = 2(L+1)$.

Conjecture about Magic X for $A = \{L, ..., M\}$

Conjecture: The Magic set X for $A = \{L, ..., M\}$ is (i, b, b^{\dagger}) such that:

- ▶ $0 \le i < L + M$ and $b, b^{\dagger} \ge 0$
- ▶ if i < L then $\left\lfloor \frac{b}{L} \right\rfloor \le \left\lfloor \frac{b^{\dagger}}{L} \right\rfloor$
- ▶ If $L \le i < 2L$ then $\left\lfloor \frac{b}{L} \right\rfloor \le \left\lfloor \frac{b^{\dagger} L}{L} \right\rfloor$
- ▶ If $2L \le i < 3L$ then $\left\lfloor \frac{b}{L} \right\rfloor \le \left\lfloor \frac{b^{\dagger} 3L + i + 1}{L} \right\rfloor$
- ▶ If $i \ge 3L$ then $\left\lfloor \frac{b}{L} \right\rfloor \le \left\lfloor \frac{b^{\dagger}}{L} \right\rfloor$

What Have We Done/What Can We Do

- 1. Have exact win conditions for
 - 1.1 $\{1, L\}$ 1.2 $\{1, L, L+1\}$.
- 2. We have a program that on input A:
 - ightharpoonup Outputs f^{I} , f^{II} , g^{I} , g^{II} (easy).
 - Outputs a conjecture for X (it has never been wrong).
- 3. For $A = \{L, ..., M\}$ we have a conjecture that is surely true.

Future Directions

Conjectures:

- 1. Exists fast alg to find win cond for W_A^{cash} .
- 2. Exists alg to find win cond for W_A^{cash} .
- 3. Exists a win cond for W_A^{cash} .
- 4. The functions f^{\dagger} and $f^{\dagger\dagger}$ are always some sort of mod pattern.