Subsequence Languages: An Exposition

William Gasarch-U of MD

Definitions

Defintion: Let Σ be a finite alphabet.

- 1. Let $w \in \Sigma^*$. SUBSEQ(w) is the set of all strings you get by replacing some of the symbols in w with the empty string.
- 2. Let $L \subseteq \Sigma^*$. $SUBSEQ(L) = \bigcup_{w \in L} SUBSEQ(w)$.

Example: abaa has the following subsequences: a, b, aa, ab, ba, aaa, aab, aba, baa, abaa.

Easy Theoremss

- 1. If L is regular than SUBSEQ(L) is regular.
- 2. If L is context free than SUBSEQ(L) is context free.
- 3. If L is c.e. than SUBSEQ(L) is c.e.

What about: If L is decidable then SUBSEQ(L) is decidable.

VOTE:

- 1. If L is decidable then SUBSEQ(L) is decidable.
- 2. $(\exists L)[L \text{ decidable but } SUBSEQ(L) \text{ is NOT decidable}].$
- 3. Anyone but Trump. Or Cruz. Or Rubio. Or ... Or Gillmore.

The Surprising Truth

If L is ANY subset of Σ^* then SUBSEQ(L) is regular.

Higman first proved this theorem in the 1950's using different terminology. He used:

Definition: A set together with an ordering (X, \preceq) is a *well quasi* ordering (wqo) if for any sequence x_1, x_2, \ldots there exists i, j such that i < j and $x_i \preceq x_j$.

Note: If (X, \leq) is a wqo then its both well founded and has no infinite antichains.

Closed Downwards

Lemma: Let (X, \leq) be a countable wqo and let $Y \subseteq X$. Assume that Y is closed downward under \leq . Then there exists a finite set of elements $\{z_1, \ldots, z_k\} \subseteq X - Y$ such that

$$y \in Y \text{ iff } (\forall i)[z_i \not\preceq y].$$

(The set $\{z_1, \ldots, z_k\}$ is called an obstruction set (OBS).)

Note: Really hard example: Graph Minor is a wqo, Planar graphs are closed downward, and $OBS = \{K_{3,3}, K_5\}$.

Subsequence Order

Definition: The subsequence order on Σ^* , which we denote \preceq_{subseq} , is defined as $x \preceq_{\text{subseq}} y$ if x is a subsequence of y.

Theorem: $(\Sigma^*, \preceq_{\mathrm{subseq}})$ is a wqo. Proof: Assume not. Obtain MIN BAD SEQUENCE: y_1 is shortest 1st element of a bad sequence.

 y_2 is shortest 2nd element of a bad sequence that begins y_1 . etc.

$$y_1, y_2, \ldots$$

Let
$$y_i = y_i' \sigma_i$$
 where $\sigma_i \in \Sigma$.
Let $Y = \{y_1', y_2', \ldots\}$.

Y is a wqo

Claim: Y is a wqo.

Proof of Claim: Assume not. Bad Seq: $y'_{k_1}, y'_{k_2}, \dots$

$$(k_1 \leq \{k_2, k_3, \ldots\}).$$

Consider:

SEQ:
$$y_1, y_2, \ldots, y_{k_1-1}, y'_{k_1}, y'_{k_2}, \ldots$$

We show there is no i < j with $y_i \leq y_i$, so SEQ is BAD:

$$i < j \le k_1 - 1 \land y_i \preceq y_j \Longrightarrow y_1, y_2, \dots \text{ not BAD}$$

$$i < j \land y'_{k_i} \preceq y'_{k_j} \implies y'_{k_1}, y'_{k_2}, \dots$$
 not BAD

$$i \le k_j \land y_i \preceq y'_{k_j} \Longrightarrow y_i \preceq y'_{k_j} \preceq y'_{k_j} \sigma k_j = y_{k_j}$$
. So y_1, y_2, \ldots not BAD

SO SEQ is BAD.

SEQ begins $y_1, y_2, ..., y_{k_1-1}$.

SEQ k_1 th element is y'_{k_1} which is SHORTER than y_{k_1} .

Contradicts y_1, y_2, \ldots , being a MINIMAL bad sequence.

End of Proof of Claim

Y is a wqo, Σ is a wqo...

Y is a wqo. Σ is a wqo. So $Y \times \Sigma$ is a wqo. Look at the sequence

$$y_1, y_2, \ldots,$$

There exists σ such that infinity many end with σ .

$$y'_{k_1}\sigma, y'_{k_2}\sigma, \dots$$

Since $Y = \{y_1', y_2', \ldots\}$ is wqo $(\exists i < j \text{ with } y_{k_i}' \leq y_{k_j}'$. So $y_{k_i}' \sigma \leq y_{k_j} \sigma$ so $y_{k_i} \leq y_{k_j} \sigma$. SO y_1, y_2, \ldots AINT BAD! Contradiction.

Subseq Theorem

Theorem: Let Σ be a finite alphabet. If $L \subseteq \Sigma^*$ then SUBSEQ(L) is regular.

Proof: Σ is a wqo. Hence $(\Sigma^*, \preceq_{\mathrm{subseq}})$ is a wqo. If $L \subseteq \Sigma^*$ then SUBSEQ(L) is closed under $\preceq_{\mathrm{subseq}}$. So SUBSEQ(L) has a finite obstruction set. Hence regular.

Nonconstructive?

Given a DFA, CFG, P-machine, NP-machine, TM (decidable), TM (c.e.) for a language L, can one actually obtain a DFA for SUBSEQ(L)? For that matter, can you obtain a CFG, etc for SUBSEQ(L)? Gasarch, Fenner, Postow showed all of the NCON below. Leeuwen the CFG/REG CON result. The rest are easy.

	SBSEQ(REG)	SBSEQ(CFG)	SBSEQ(DEC)	SBSEQ(C.E.)
REG	CON	CON	CON	CON
CFG	CON	CON	CON	CON
DEC	NCON	NCON	NCON	CON
C.E.	NCON	NCON	NCON	CON