Subsequence Languages: An Exposition

William Gasarch-U of MD

Definitions

Defintion: Let Σ be a finite alphabet.

- 1. Let $w \in \Sigma^*$. SUBSEQ(w) is the set of all strings you get by replacing some of the symbols in w with the empty string.
- 2. Let $L \subseteq \Sigma^*$. $SUBSEQ(L) = \bigcup_{w \in L} SUBSEQ(w)$.

End of Definition

Example: abaab has the following subsequences: a, b, aa, ab, ba, bb, aaa, abb, aba, abb, baa, bab, aaab, abaab, abaab.

Easy Theorems

- 1. If L is regular than SUBSEQ(L) is regular.
- 2. If L is context free than SUBSEQ(L) is context free.
- 3. If L is c.e. than SUBSEQ(L) is c.e.

What about: If L is decidable then SUBSEQ(L) is decidable.

VOTE: TRUE of FALSE.

The Surprising Truth

If L is ANY subset of Σ^* WHATSOEVER then SUBSEQ(L) is regular.

Higman first proved this theorem in the 1950's using different terminology.

Well Quasi Orderings

Definition: A set together with an ordering (X, \preceq) is a *well quasi ordering* (wqo) if for any sequence x_1, x_2, \ldots there exists i, j such that i < j and $x_i \preceq x_j$.

End of Definition

Note: If (X, \leq) is a wqo then its both well founded and has no infinite antichains.

Equiv to WQO

Lemma: The following are equivalent:

- \blacktriangleright (X, \preceq) is a wqo,
- For any sequence $x_1, x_2, ... \in X$ there exists an *infinite* ascending subsequence.

End of Lemma

Try yourself in groups.

Proof

Let x_1, x_2, \ldots , be an infinite sequence. Define the following coloring:

$$COL(i,j) =$$

- ▶ UP if $x_i \leq x_j$.
- ▶ DOWN if $x_i \prec x_i$.
- ▶ INC if x_i and x_i are incomparable.

By Ramsey there is homog set. If colored DOWN or INC then violates wqo. So must be UP.

Cross Product

Definition: If (X, \leq_1) and (Y, \leq_2) are wqo then we define \leq on $X \times Y$ as $(x, y) \leq (x', y')$ if $x \leq_1 y$ and $x' \leq_2 y'$.

Closed Under Cross Product

Lemma: If (X, \leq_1) and (Y, \leq_2) are wqo then $(X \times Y, \leq)$ is a wqo $(\leq$ defined as in the above definition).

End of Lemma

Try yourself in groups.

Proof

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$ be an infinite sequence of elements from $A \times B$.

Define the following coloring:

$$COL(i,j) =$$

- ▶ UP-UP if $x_i \preceq x_i$ and $y_i \preceq y_i$.
- ▶ UP-DOWN if $x_i \leq x_i$ and $y_i \leq y_i$.
- ▶ UP-INC if $x_i \leq x_i$ and y_i, y_i are incomparable.
- ▶ DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP, INC-DOWN, INC-INC are defined similarly.

Use Ramsey's Theorem. UP-UP is the only possible color of a homog set, else either X or Y is not a wqo.

Closed Downwards

Lemma: Let (X, \leq) be a countable wqo and let $Y \subseteq X$. Assume that Y is closed downward under \leq . Then there exists a finite set of elements $\{z_1, \ldots, z_k\} \subseteq X - Y$ such that

$$y \in Y \text{ iff } (\forall i)[z_i \not\preceq y].$$

(The set $\{z_1, \ldots, z_k\}$ is called an *obstruction set.*)

End of Lemma

Try yourself in groups.

Proof

Let OBS be the set of elements z such that

- 1. $z \notin Y$.
- 2. Every $y \leq z$ is in Y.

OBS finite

Claim 1: *OBS* **is finite** Try yourself in groups.

OBS finite

Claim 1: *OBS* **is finite** Try yourself in groups.

Proof of Claim 1: Every $z, z' \in OBS$ are incomparable: Assume NOT. Then $(\exists z, z')[z \preceq z']$. $z \in Y$ by part 2 of the definition of OBS. But if $z \in Y$ then $z \notin OBS$. Contradiction.

Assume that OBS is infinite. Then the elements of OBS (in any order) form an infinite anti-chain. Contradicts wqo.

End of Proof of Claim 1

Finish it Up

Let
$$OBS = \{z_1, z_2, ...\}$$
. Claim 2: For all y :

$$y \in Y \text{ iff } (\forall i)[z_i \not\preceq y].$$

Try yourself in groups.

Finish it Up

Let $OBS = \{z_1, z_2, \ldots\}.$

Claim 2: For all y:

$$y \in Y \text{ iff } (\forall i)[z_i \not\preceq y].$$

Try yourself in groups.

Proof of Claim 2: Contrapositive:

$$y \notin Y \text{ iff } (\exists i)[z_i \leq y].$$

Assume $y \notin Y$. If $y \in OBS$ DONE. If $y \notin OBS$ then $(\exists z_1)[z_1 \notin Y \land z_1 \prec y]$. If $z \in OBS$ DONE. If not then repeat. If process STOPS then DONE. If not then $\cdots z_{17} \prec z_{16} \prec \cdots \prec z_1 \prec y]$, violates wqo.

End of Proof of Claim 2 and of Proof

Subsequence Order

The subsequence order on Σ^* :, which we denote \leq_{subseq} , is defined as $x \leq_{\text{subseq}} y$ if x is a subsequence of y.

Main Theorem

Theorem: $(\Sigma^*, \preceq_{\text{subseq}})$ is a wqo.

Proof

Assume not. Obtain MIN BAD SEQUENCE

$$y_1, y_2, \dots$$

Let
$$y_i = y_i' \sigma_i$$
 where $\sigma_i \in \Sigma$.
Let $Y = \{y_1', y_2', \ldots\}$.

Y is a wqo

Claim: Y is a wqo.

Proof of Claim: Assume not.

Bad Sequence: $y'_{k_1}, y'_{k_2}, \dots$ (can take $k_1 \leq \{k_2, k_3, \dots\}$).

Consider: $y_1, y_2, \dots, y_{k_1-1}, y'_{k_1}, y'_{k_2}, \dots$

This is BAD:

if $i < j \le k_1 - 1$ and $y_i \le y_j$ then y_1, y_2, \ldots is not BAD.

if i < j and $y'_{k_i} \leq y'_{k_i}$ then $y'_{k_1}, y'_{k_2}, \ldots$ is not BAD.

if $i \le k_j$ an $y_i \le y'_{k_j}$ then $y_i \le y'_{k_j} \le y'_{k_j} \sigma k_j = y_{k_j}$. KEY: $i < k_j$. So y_1, y_2, \ldots is not BAD.

SO y_1, y_2, \ldots is BAD. It begins $y_1, y_2, \ldots, y_{k_1-1}$. Its k_1 th element is y'_{k_1} which is SHORTER than y_{k_1} . Contradicts y_1, y_2, \ldots , being a MINIMAL bad sequence.

End of Proof of Claim

Y is a wqo, Σ is a wqo...

Y is a wqo. Σ is a wqo. So $Y \times \Sigma$ is a wqo. Look at the sequence

$$(y_1', \sigma_1), (y_2', \sigma_2), \ldots$$

where $y_i = y_i' \sigma_i$. There exists i < j with $(y_i', \sigma_i) \prec_{\text{cross}} (y_j', \sigma_j)$. Hence $y_i' \sigma_i \prec_{\text{subseq}} y_j' \sigma_j$. Hence $y_i \prec y_j$. Contradicts y_1, y_2, \ldots being BAD.

Subseq Theorem

Theorem: Let Σ be a finite alphabet. If $L \subseteq \Sigma^*$ then SUBSEQ(L) is regular.

Proof: Σ is a wqo. Hence $(\Sigma^*, \preceq_{\mathrm{subseq}})$ is a wqo. If $L \subseteq \Sigma^*$ then SUBSEQ(L) is closed under $\preceq_{\mathrm{subseq}}$. So SUBSEQ(L) has a finite obstruction set. Hence regular.

Nonconstructive?

Given a DFA, CFG, P-machine, NP-machine, TM (decidable), TM (c.e.) for a language L, can one actually obtain a DFA for SUBSEQ(L)? For that matter, can you obtain a CFG, etc for SUBSEQ(L)? Gasarch, Fenner, Postow showed all of the NCON below. Leeuwen the CFG/REG CON result. The rest are easy.

	SBSEQ(REG)	SBSEQ(CFG)	SBSEQ(DEC)	SBSEQ(C.E.)
REG	CON	CON	CON	CON
CFG	CON	CON	CON	CON
DEC	NCON	NCON	NCON	CON
C.E.	NCON	NCON	NCON	CON