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Abstract
Consider the equation E : x1 + · · · + xk�1 = xk and let k and r be positive integers
such that r | k. The number Sz,2(k; r) is defined to be the least positive integer t
such that for any 2-coloring � : [1, t]! {0, 1} there exists a solution (x̂1, x̂2, . . . , x̂k)

to equation E satisfying
kX

i=1

�(x̂i) ⌘ 0 (mod r). In a recent paper, the first author

posed the question of determining the exact value of Sz,2(k; 4). In this article, we
solve this problem and show, more generally, that Sz,2(k, r) = kr � 2r + 1 for all
positive integers k and r with r | k and k � 2r.

1. Introduction

For r 2 Z+, there exists a least positive integer S(r), called a Schur number, such
that within every r-coloring of [1, S(r)] there is a monochromatic solution to the
linear equation x1 + x2 = x3.

In 1933, Rado [10] generalized the work of Schur to arbitrary systems of linear
equations. For any integer k � 2 and r 2 Z+, there exists a least positive integer
S(k; r), called a generalized Schur number, such that every r-coloring of [1, S(k; r)]
admits a monochromatic solution to the equation E : x1 + · · ·+ xk�1 = xk. Indeed,
Rado’s result proves, in particular, that the number S(k, r) exists (is finite). In [2],
Beutelspacher and Brestovansky proved the exact value S(k; 2) = k2 � k � 1.

Before we analogize the above number, we need the following definition.
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Definition 1. Let r 2 Z+. We say that a set of integers {a1, a2, . . . , an} is r-zero-
sum if

Pn
i=1 ai ⌘ 0 (mod r).

The Erdős-Ginzburg-Ziv Theorem [5] is one of the cornerstones of zero-sum the-
ory (see, for instance, [1] and [9]). It states that any sequence of 2n � 1 integers
must contain an n-zero-sum subsequence of n integers. In recent times, zero-sum
theory has made remarkable progress (see, for instance, [3], [4], [6], [7], [8]).

In [11], the first author replaced the “monochromatic property” of the generalized
Schur number by the “zero-sum property” and introduced the following new number
which is called a zero-sum generalized Schur number.

Notation. Throughout the article, we represent the equation x1 + · · ·+xk�1 = xk

by E .

Definition 2. Let k and r be positive integers such that r | k. We define Sz(k; r)
to be the least positive integer t such that for any r-coloring � : [1, t]! {0, . . . , r�

1} there exists a solution (x̂1, x̂2, . . . , x̂k) to equation E satisfying
kX

i=1

�(x̂i) ⌘ 0

(mod r).

We only make the above defintion (and Defintion 3, below) for r | k since the
coloring of Z+ by coloring every integer with color 1 shows that we cannot guarantee
an r-zero-sum solution if r - k.

Since r | k, note that if (x̂1, x̂2, . . . , x̂k) is a monochromatic solution to equation
E , then clearly it is an r-zero-sum solution. Hence, we get, Sz(k; r)  S(k; r) and
therefore, Sz(k; r) is finite.

In [11], the first author calculated lower bounds of this number for some r. In
particular, he proved the following result.

Theorem 1. [11] Let k and r be positive integers such that r | k. Then,

Sz(k; r) �

8
><

>:

3k � 3 when r = 3;
4k � 5 when r = 4;
2(k2 � k � 1) when r = k is odd.

In the same article, he introduced another number meant only for 2-colorings,
but keeping the r-zero-sum notion.

Definition 3. Let k and r be positive integers such that r | k. We denote by
Sz,2(k; r) the least positive integer such that every 2-coloring of � : [1, Sz,2(k; r)]!

{0, 1} admits a solution (x̂1, x̂2, . . . , x̂k) to equation E satisfying
kX

i=1

�(x̂i) ⌘ 0

(mod r).

Since any 2-coloring of [1, Sz(k; r)] is also an r-coloring (for r � 2), we see that
Sz,2(k; r)  Sz(k; r) and hence Sz,2(k; r) is finite. Furthermore, in the case when
k = r we recover the generalized Schur number S(k; 2).
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In [11], the first author proved the following theorem related to these 2-color
zero-sum generalized Schur numbers.

Theorem 2. [11] Let k and r be two positive integers such that r | k. Then,

Sz,2(k; r) =

8
><

>:

2k � 3; if r = 2
3k � 5; if r = 3 and k 6= 3
k2 � k � 1; if r = k

One notes that the exact values of Sz,2(k; r) for r = 2, 3 and Sz,2(r, r) do not
show any obvious generalization to Sz,2(k; r) for any k which is a multiple of r.
However, the computations given in [11] when r = 4 and k = 4, 8, 12, and when
r = 5 and k = 5, 10, 15, were enough for us to conjecture a general formula, which
turns out to hold. To this end, by Theorem 3 below, we answer a question posed by
the first author in [11] and, more generally, determine the exact values of Sz,2(k; r).

Theorem 3. Let k and r be positive integers such that r | k and k � 2r. Then,
Sz,2(k; r) = rk � 2r + 1.

2. Preliminaries

We start by presenting a pair of lemmas useful for proving our upper bounds.

Lemma 1. Let k and r be positive integers such that r | k and k � 2r. Let
� : [1, rk � 2r + 1] ! {0, 1} be a 2-coloring such that �(1) = �(r � 1) = 0. Then
there exists an r-zero-sum solution to equation E under �.

Proof. Consider the solution (1, 1, . . . , 1, k�1). If �(k�1) = 0, then, since �(1) = 0,
we are done. Hence, we shall assume that �(k � 1) = 1.

Next, we look at the solution

(1, . . . , 1| {z }
k�r

, k � 1, k � 1, k � 1| {z }
r�1

, rk � 2r + 1).

Since �(1) = 0 and �(k�1) = 1, we can assume that �(rk�2r +1) = 0; otherwise,
we have exactly r integers of color 1 and so the solution is r-zero-sum.

Since (1, r, r, . . . , r, rk � 2r + 1) is a solution to E , we can assume that �(r) = 1.
Finally, consider

(r � 1, . . . , r � 1| {z }
r�1

, r, . . . , r| {z }
k�r

, rk � 2r + 1).

Since
�(r � 1) = 0,�(r) = 1, �(rk � 2r + 1) = 0, and r | k, this solution is r-zero-
sum, thereby proving the lemma.
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Lemma 2. Let k and r be positive integers such that r | k and k � 2r. Let
� : [1, rk � 2r + 1] ! {0, 1} be a coloring such that �(1) = 0 and �(r � 1) = 1. If
one of the following holds, then there exists an r-zero-sum solution to equation E:

(a) �(r) = 0;

(b) �(k � 2) = 1;

(c) �(k � 1) = 0;

(d) �(k) = 0

(e) �(rk � 2r � 1) = 0;

(f) �(rk � 2r + 1) = 1.

Proof. We will prove each possibility separately; however, the order in which we do
so matters so we will not be proving them in the order listed.

(c) Consider (1, 1, . . . , 1, k � 1). If �(k � 1) = 0 then this solution is r-zero sum.

(d) By considering the solution (r�1, . . . , r�1, (r�1)(k�1)), we can assume that
�((r � 1)(k � 1)) = 0. Using this in

(1, . . . , 1| {z }
k�r+1

, k, . . . , k| {z }
r�2

, (r � 1)(k � 1))

along with the assumption that �(k) = 0, we have an r-zero-sum solution.

(f) From part (c), we may assume that �(k�1) = 1. Looking at (r�1, . . . , r�1, k�
1, rk�2r+1), since �(k�1) = �(r�1) = 1, and we assume that �(rk�2r+1) = 1,
we have an r-zero sum solution.

(a) From part (f), we may assume that �(rk � 2r + 1) = 0. With this assumption,
we see that (1, r, . . . , r, rk � 2r + 1) is r-zero-sum when �(r) = 0.

(b) From parts (a) and (f), we may assume �(r) = 1 and �(rk�2r +1) = 0. Under
these assumptions, we find that

(1, . . . , 1| {z }
k�r�1

, r, k � 2, . . . , k � 2| {z }
r�1

, rk � 2r + 1)

is an r-zero-sum solution with �(k � 2) = 1.

(e) By considering

(1, . . . , 1| {z }
r�1

, r, . . . , r| {z }
k�2r

, 2r � 3, . . . , 2r � 3| {z }
r

, rk � 2r � 1)

and using r | k, we have an r-zero-sum solution when �(rk � 2r � 1) = 0.
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3. Proof of the Main Result

In this section we prove that Sz,2(k; r) = rk � 2r + 1.

Proof. We start with the lower bound. To prove that Sz,2(k; r) > rk�2r, we consider
the 2-coloring � of [1, rk � 2r] defined by �(i) = 0 for 1  i  k � 2 and �(i) = 1
for k � 1  i  rk � 2r. Assume, for a contradiction, that � admits an r-zero-sum
solution (x̂1, x̂2, . . . , x̂k) to equation E . Then �(x̂i) = 1 for some i 2 {1, 2, . . . , k};
otherwise the solution is monochromatic of color 0, but

Pk�1
i=1 x̂i � k � 1, meaning

that x̂k cannot be of color 0.
Assuming that (x̂1, x̂2, . . . , x̂k) is r-zero-sum and not monochromatic of color 0,

we must have �(xj) = 1 for at least r of the xj ’s. Since the minimum integer under
� that is of color 1 is k � 1, this gives us

k�1X

i=1

xi � (r � 1)(k � 1) + 1(k � r) = rk � 2r + 1 > rk � 2r,

which is out of bounds, a contradiction. Hence, � does not admit an r-zero-sum
solution to E and we conclude that Sz,2(k; r) � rk � 2r + 1.

We now move on to the upper bound. We let � : [1, rk � 2r + 1]! {0, 1} be an
arbitrary 2-coloring. We may assume that �(1) = 0 since � admits an r-zero-sum
solution if and only if the induced coloring � defined by �(i) = 1 � �(i) also does
so.

The cases r = 2, 3 have been done by Theorem 2. Hence, we may assume that
r � 4. We must handle the case r = 4 separately; we start with this case.

We will show that 4k � 7 serves as an upper bound for Sz(4; r). Consider the
following solution to E :

(1, 1, 1, 2, . . . , 2| {z }
k�8

, 3, 3, k, k, 4k � 7).

Noting that r � 1 = 3 and rk � 2r + 1 = 4k � 7, by Lemmas 1 and 2, we may
assume �(3) = 1, �(k) = 1, and �(4k � 7) = 0. Since k is a multiple of 4 and
k � 8, we see that k� 8 is also a multiple of 4. Hence, the color of 2 does not a↵ect
whether or not this solution is 4-zero-sum. Of the integers not equal to 2, we have
exactly four of them of color 1. Hence, this solution is 4-zero-sum. This, along with
the lower bound above, proves that Sz,2(k; 4) = 4k � 7.

We now move on to the cases where r � 5. We proceed by assuming that no
r-zero-sum solution occurs under an arbitrary 2-coloring � : [1, rk�2r+1]! {0, 1}.
From Lemmas 1 and 2, we may assume the following table of colors holds.

color 0 color 1
1 r � 1
k � 2 r
rk � 2r + 1 k � 1

k
rk � 2r � 1.

5



In order for the solution

(1, . . . , 1| {z }
k�r

, k � 2, . . . , k � 2| {z }
r�2

, k + r � 3, rk � 2r + 1)

not to be r-zero-sum, we deduce that �(k + r � 3) = 1. Using this in the solution

(1, . . . , 1| {z }
k�r

, k, . . . , k| {z }
r�2

, k + r � 3, rk � 3)

we may assume that �(rk � 3) = 0. In turn, we use this in

(2, . . . , 2| {z }
k�r�1

, r, r � 1, k, . . . , k| {z }
r�2

, rk � 3)

to deduce that �(2) = 1. Modifying this last solution slightly, we consider

(3, . . . , 3| {z }
k�r�1

, r, r, r, k, . . . , k| {z }
r�3

, rk � 3)

to deduce that �(3) = 1. Finally, since r � 5, we can consider

(2, . . . , 2| {z }
k�2r+6

, 3, . . . , 3| {z }
r�5

, k � 1, . . . , k � 1| {z }
r�2

, rk � 2r � 1).

We see that this solution is monochromatic (of color 1), and, hence, is r-zero-sum.
This proves that Sz,2(k; r)  rk � 2r + 1 for r � 5, which, together with the lower
bound at the beginning of the proof, gives us Sz,2(k; r) = rk � 2r + 1, thereby
completing the proof. 2
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