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Abstract

For decades researchers have struggled with the problem of
envy-free cake cutting: how to divide a divisible good be-
tween multiple agents so that each agent likes his own allo-
cation best. Although an envy-free cake cutting protocol was
ultimately devised, it is unbounded, in the sense that the num-
ber of operations can be arbitrarily large, depending on the
preferences of the agents. We ask whether bounded protocols
exist when the agents’ preferences are restricted. Our main
result is an envy-free cake cutting protocol for agents with
piecewise linear valuations, which requires a number of op-
erations that is polynomial in natural parameters of the given
instance.

Introduction
More than six decades ago, Steinhaus (1948) posed the prob-
lem of envy-free (EF) cake cutting: when multiple agents
have heterogeneous valuations over a divisible cake, how
can we divide the cake between the agents so that each agent
(weakly) prefers its piece to every other piece? For two
agents, the trivial solution is given by the cut and choose
protocol: one agent divides the cake into two pieces that
it values equally, and the other agent chooses its preferred
piece.

In 1960, Selfridge and Conway independently proposed
an elegant EF cake cutting algorithm for the case of three
agents (see, e.g., (Brams and Taylor 1995)). The gen-
eral case continued to tantalize researchers for decades. In
a 1988 episode of his PBS show, Sol Garfunkel, the fa-
mous mathematical educator, proclaimed it to be one of the
greatest problems of 20th Century mathematics. Finally, in
1995—half a century after the problem was posed—Brams
and Taylor (1995) published an EF cake cutting algorithm
for any number of agents.

Our story would end here (somewhat prematurely), if not
for a disturbing property of the Brams-Taylor algorithm: al-
though it is guaranteed to terminate in finite time, the num-
ber of operations carried out by the protocol can be arbi-
trarily large, depending on the preferences of the agents. In
other words, for every t there are preferences such that the
algorithm performs at least t operations. This is a major
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flaw, especially from the computer scientist’s—or parent’s,
for that matter— point of view; if you start cutting a cake
during your child’s third birthday party, you would like to
finish before he turns eighty!

The problem of designing a bounded EF cake cutting al-
gorithm (where the number of operations depends only on
the number of agents) remains an open problem. In fact,
it is generally believed that such an algorithm does not ex-
ist. Be that as it may, the difficulty seems to stem from the
complexity of agents’ preferences, which are generally rep-
resented by arbitrary continuous density functions. In this
paper, we therefore ask the following question:

Assuming that agents’ preferences are restricted, can
we design bounded (or even computationally efficient)
EF cake cutting algorithms?

Our model and results
Agents’ preferences are represented by valuation functions,
which assign values to given pieces of cake. We consider
several classes of structured, concisely representable valua-
tions that were originally proposed by Chen et al. (2013),
and further studied in several recent papers (Caragiannis,
Lai, and Procaccia 2011; Cohler et al. 2011; Bei et al. 2012;
Brams et al. 2012). An agent with a piecewise uniform
valuation function is interested in a subset of the cake, and
simply wants to receive as much of that subset as possible.
As an intuitive example where piecewise uniform valuations
may arise, suppose that the cake represents access time to a
shared backup server; an agent may be able to use as much
time as it can get, but only when its computer is idle. Agents
with piecewise constant valuations are interested in several
contiguous pieces of cake, so that each piece is valued uni-
formly (one crumb is as good as another) but crumbs from
different pieces are valued differently. This class is more
general than the class of piecewise uniform valuations; in
fact, piecewise constant valuations can approximate general
valuations to an arbitrary precision. Piecewise linear valua-
tions are even more general, and in a sense are almost fully
expressive.

To discuss bounded cake cutting algorithms, we also need
to define which operations the algorithm is allowed to per-
form. Here we draw on the well-studied Robertson-Webb
model (Robertson and Webb 1998; Busch, Krishnamoor-
thy, and Magdon-Ismail 2005; Edmonds and Pruhs 2006;



Woeginger and Sgall 2007; Procaccia 2009), which allows
two types of operations: cut, which returns a piece of cake
with a given value for a given agent, and eval, which queries
an agent on its value for a given piece. This model is es-
sentially beyond reproach as it is sufficient to simulate all
famous discrete cake cutting algorithms.

A natural starting point for our study is the design of EF
cake cutting algorithms for the most restricted of the three
classes, piecewise uniform valuations. Strikingly though,
our first result is that the existence of a bounded EF algo-
rithm for piecewise uniform valuations implies the existence
of a bounded EF algorithm for general valuations. In other
words, EF cake cutting under piecewise uniform valuations
is already as hard as the general case, which is believed to
be impossible!

Nevertheless, the three classes of valuation functions have
a distinct advantage over general valuations in that they can
be parameterized by the number of “pieces” in the word
“piecewise”. For example, in our backup server setting, this
parameter k would represent the number of time intervals in
which the agent’s computer is idle. Can we design EF al-
gorithms that are bounded by a function of the number of
agents n and the number of pieces k? Our answer, which
we view as our main result, is the most positive one could
hope for: even for piecewise linear valuations, we design an
EF cake cutting algorithm whose number of queries (in the
Robertson-Webb model) is bounded by a polynomial func-
tion in n and k. We feel that this strong result alleviates
the tension around the apparent nonexistence of EF cake
cutting algorithms for unrestricted valuations, and paints a
compelling picture of what makes the problem difficult.

Encouraged by this result, we next ask whether we can
strengthen it even further by designing EF algorithms that
satisfy additional desirable properties and run in time that is
bounded by a function of n and k. It turns out that the answer
is negative when the additional property is strategyproof-
ness, in the sense that an agent can never gain from manipu-
lating the algorithm. Moreover, we find that there are no fi-
nite cake cutting algorithms that satisfy Pareto-optimality—
a well-known criterion of economic efficiency—even if one
does not ask for EF.

Related work
Several papers support our premise that EF cake cutting is
extremely difficult. Stromquist (2008) showed that there are
no bounded algorithms, albeit under the strong assumption
that the algorithm must allocate contiguous pieces of cake;
his result was strengthened by Deng et al. (2009), but they
made the same assumption. Procaccia (2009) proved an un-
conditional but rather weak lower bound of Ω(n2) in the
Robertson-Webb model.

Bounded cake cutting algorithms do exist when the num-
ber of agents is very small. As discussed above, the solu-
tions for the cases of two and three agents have long been
known. The cases of four and five agents have recently been
solved (Saberi and Wang 2009), but they require the use of
moving knives.1 For more than five agents, no bounded al-

1The Robertson-Webb model cannot simulate moving knives.

gorithms are known, even if moving knives are allowed.
We obtain a strong positive result by restricting the

agents’ valuations. Alternatively, one can relax the target
property itself, by requiring only approximate EF, so that
envy is bounded by a given ε. This goal is implicit in the
work of Su (1999), and explicit in a paper of Lipton et
al. (2004), who design an ε-EF algorithm whose number of
queries (in the Robertson-Webb model) is polynomial in n
and 1/ε.

Importance in AI
In the last few years there has been a surge of papers on
cake cutting in top AI conferences (Procaccia 2009; Chen et
al. 2013; Caragiannis, Lai, and Procaccia 2011; Cohler et
al. 2011; Brams et al. 2012; Bei et al. 2012). The reason
for this interest is twofold. First, until recently research on
cake cutting was restricted to mathematics, economics, and
political science, but it turns out that the computer science
point of view (especially algorithm design and complexity)
is crucial in addressing some of the key challenges of this
field. Second, fair division is emerging as a central tool for
resource allocation in multiagent systems (Chevaleyre et al.
2006), and specifically fair division of divisible goods is a
crucial component. For example, recent AI work deals with
fair division of divisible computational resources like CPU
and RAM (Gutman and Nisan 2012). See the cake cutting
survey by Procaccia (2013) for more details.

Preliminaries
We model the cake as the real interval [0, 1]. The set of
agents is N = {1, . . . , n}; we also denote [k] = {1, . . . , k}.
Each agent is associated with a value density function vi
whose derivative is undefined or discontinuous only at a fi-
nite number of points.

A piece of cake X is any finite collection of subintervals
of [0, 1]. An agent’s value for a piece of cake X is denoted
by Vi(X) and defined by the integral of its density func-
tion, i.e. Vi(X) ≡

∫
X
vi(x)dx. For an interval [x, y], we

abuse notation by writing Vi(x, y) instead of Vi([x, y]). The
definition implies that agent valuations are additive and non-
atomic, i.e. Vi(x, x) = 0.

We assume that agent valuations are normalized so that
Vi(0, 1) = 1. This assumption is without loss of gener-
ality as the properties we consider (envy-freeness, Pareto-
optimality, strategyproofness) are invariant to scaling the
valuation functions by a constant factor.

Following Chen et al. (2013), we consider three restricted
classes of valuations. We say that an agent has a piecewise
constant valuation when its value density function is piece-
wise constant, that is, [0, 1] can be partitioned into a finite
number of subintervals such that the function is constant on
each interval. We define piecewise linear valuations sim-
ilarly. Piecewise uniform valuations are a special case of
piecewise constant where on each subinterval the density is
either some fixed constant c > 0, or zero. Piecewise uniform
valuations are less expressive than piecewise constant valu-
ations, which are less expressive than piecewise linear valu-
ations. The reader is encouraged to verify that these formal



definitions are consistent with their intuitive interpretations
above.

An allocation (X1, . . . , Xn) assigns a piece of cakeXi to
each agent i such that no two pieces overlap.2 An allocation
is envy-free (EF) if Vi(Xi) ≥ Vi(Xj) for all i, j ∈ N . That
is, each agent prefers its own piece to the piece given to any
other agent.

In the rest of the paper, we assume that we are operating
in the standard Robertson-Webb query model. That is, the
algorithm can only ask agents two types of queries:

1. Eval query: asks agent i ∈ N for its value for the interval
[x, y], that is, eval(i, x, y) = Vi(x, y).

2. Cut query: the query cut(i, x, w) returns the minimum
(leftmost) point y ∈ [0, 1] such that Vi(x, y) = w or
claims impossibility if no such y exists.

For example, consider the cut and choose protocol; it
can be simulated using two queries in the Roberston-Webb
model. First, a cut(1, 0, 1/2) query gives a point w such
that the interval [0, w] is worth 1/2 to agent 1, and hence
the value of the complement [w, 1] is also 1/2. Next, an
eval(2, 0, w) query gives the value of agent 2 for [0, w]. If
this value is at least 1/2, we allocate [0, w] to agent 2 and
[w, 1] to agent 1, and if it smaller than 1/2, we switch the
allocated pieces.

General vs. Piecewise Uniform Valuations
Although confining agent valuations to piecewise uniform
valuations may seem overly restrictive as a first step, our first
result shows that this is not the case. In fact, EF cake cutting
for piecewise uniform valuations is just as hard as EF cake
cutting for general valuations, when seeking algorithms that
are bounded by a function of the number of agents.
Theorem 1. Let A be an algorithm that computes an EF
allocation for n arbitrary piecewise uniform valuations in
less than f(n) queries. ThenA can compute EF allocations
in less than f(n) queries for general valuation functions.

Proof. Let V1, . . . , Vn be general valuation functions for the
agents. Run A on these valuations. There are two cases to
consider.

Case 1: A terminates in f(n) queries or less, and outputs
an allocation (X1, . . . , Xn). We claim that (X1, . . . , Xn) is
EF with respect to V1, . . . , Vn. To prove this, we construct
piecewise uniform valuations Ui based on the queries and
responses when A runs on the Vi. The high-level idea is
to construct Ui which are equivalent to the Vi in the sense
that A would treat them identically, and then prove envy-
freeness of (X1, . . . , Xn) for Vi using the envy-freeness of
(X1, . . . , Xn) for Ui.

Let Wi be the set of all endpoints for all queries and re-
sponses associated with agent i when A runs on valuations
Vi. That is, if we were to construct Wi iteratively with each
query to agent i, then a query and response b = cut(i, a, w)
or w = eval(i, a, b) would add both a and b to Wi.

2Technically we allow overlap at a finite number of points since
valuations are non-atomic.

Similarly, denote by Y the set of all endpoints for the con-
tiguous intervals in the allocation produced by A. That is,
wherever the interval [0, 1] is cut to construct a part of the
final allocation, we place the cut point in Y .

Finally, let Zi = Wi ∪ Y ∪ {0, 1} denote an ordered set
(using the natural ordering on the reals) and zi,j denote the
jth smallest element of Zi. We are now ready to define the
value density function ui (which pins down the valuation
function Ui):

ui(x) =

{
Mi ∃j s.t. x ∈

[
zi,j+1 − Vi(zi,j ,zi,j+1)

Mi
, zi,j+1

]
0 otherwise,

where Mi = maxj

(
Vi(zi,j ,zi,j+1)
zi,j+1−zi,j

)
.

For a given interval [zi,j , zi,j+1], Ui satisfies two crucial
properties:

1. Ui(zi,j , zi,j+1) = Vi(zi,j , zi,j+1), and
2. if Ui(zi,j , zi,j+1) > 0 then there exists ε > 0 such that

for all x ∈ [zi,j+1 − ε, zi,j+1], Ui(x) = Mi.

These two properties imply that (1) A will ask the same
queries and terminate with the same allocation when run on
Ui instead of Vi and (2) Ui(Xi) = Vi(Xi), where Xi is the
piece given to agent i in the allocation returned by A.

To see this, note that the first property ensures all eval
query responses are the same for both Vi and Ui. The two
properties together similarly ensure all cut query responses
are also unaffected; in particular, the second property guar-
antees that cutting slightly to the left of zi,j+1 would give
strictly smaller value, hence the leftmost cut point with the
same value is still zi,j+1. Finally, since Y is included in
Zi, the first property implies that Ui(Xi) = Vi(Xi) for the
allocation returned by A.

Case 2: A terminates in f(n) or more queries. Consider the
queries asked and responses given afterA has asked f(n)−1
queries. Now consider Ui as defined in case 1, except with
Zi = Wi ∪ {0, 1} (we drop the set of points Y since we
do not know the allocation that A will return). Ui satisfies
the property that A will behave the same with respect to Ui
and Vi. However, this means that A will take at least f(n)
queries when operating on Ui, and this contradicts the as-
sumption that A finds an EF allocation in less than f(n)
steps for any piecewise uniform valuations.

Bounded Algorithm for Piecewise Linear
Valuations

We have shown that restricting agents’ valuations to piece-
wise uniform valuations does not make the problem of find-
ing EF allocations any easier. However, these results rely
crucially on the allowance of any number of discontinuities
in the value density functions. In the piecewise uniform
case, the discontinuities are the points where the density
function jumps to a constant c or drops to 0. For piecewise
linear valuations, we refer to the endpoints of the subinter-
vals on which the density is linear (hence these are discon-
tinuities of the derivative of the density function rather than



of the density function itself.) We use the term break points
of the value density function.

In this section, we consider what happens when we bound
the total number of break points across agents’ value density
functions. Even when the agent valuations are piecewise lin-
ear, and assuming that there are at most k break points across
all agents’ valuations, we design a cake cutting algorithm
that finds an EF allocation with at most O(n6k ln k) queries
in the Robertson-Webb model. Before presenting this algo-
rithm we introduce a few definitions and subroutines.

Definition A separating interval of [a, b] is an interval
[α, β] ⊂ [a, b] such that:

1. Vi(α, β) ≤ 1
nVi(a, b) for all i ∈ N , and

2. there exists an agent p such that Vp(α, β) = 1
nVp(a, b).

We refer to p as the champion of the separating interval.

Given an interval [a, b], we construct a cover of separating
intervals. That is, we find a finite set C = {[αij , βij ]} (j
indexes the separating intervals with champion i) such that
[αij , βij ] is a separating interval of [a, b] with champion i
and for every x ∈ [a, b], there exists an i and j such that
x ∈ [αij , βij ]. Algorithm 1 produces exactly this.

Algorithm 1 Cover [a, b] by separating intervals
COVER(a, b)

1. Let C = {}, α = a.
2. Repeat:

(a) Let β ≤ b be the minimal value such that [α, β] is worth
exactly Vi(a, b)/n to some agent i.

(b) If no such β exists, break out of this loop.
(c) C = C ∪ {α, β}.
(d) α = β.

3. Let α∗ be the largest value such that [α∗, b] is worth ex-
actly Vi(a, b)(n− 1)/n to some agent i.

4. Return C ∪ [α, b].

Note that step 2(a) can be simulated with
cut(i, α, Vi(a, b)/n) queries, and step 3 can be simu-
lated with cut(i, 0, Vi(a, b)(n− 1)/n) queries.3 Vi(a, b) can
be obtained via an eval(i, a, b) query.

In each iteration of step 2, we add a separating interval
since we know that [α, β] has value exactly Vi(a, b)/n to
some agent i, and we choose the smallest possible β, all
other agents j have value at most Vj(a, b)/n. What remains
to be shown is that all points are in some separating interval.
We move from left to right in step 2 without skipping over
any points, so the only possible missing points would be in
the case where no viable β exists. However, in this case,
[α, b] has value less than Vi(a, b)/n for all agents i. Step 3
ensures that we cover [α, b] since [α∗, b] has value at least
Vi(a, b)/n for some agent i and therefore α∗ < α.

3Obtaining the largest α∗ may require a cut from right to left,
but this can be avoided by tweaking step 3.

a α β b
separating interval

Figure 1: A sandwich allocation for agents 1 (the champion),
2, and 3, with dotted, solid, and dashed densities, respec-
tively. The value of agent 1 for the separating interval is
V1([a, b])/3. Agent 2 receives the first and fourth quarters
of [a, α] and [β, b]; note that its value for this allocation (the
gray area) is V2([a, α] ∪ [β, b])/2.

Definition The sandwich allocation of [a, b] with respect to
separating interval [α, β] (with champion p) is the alloca-
tion where p receives [α, β] and the remaining agents each
receive some Xj for j ∈ [n− 1], where Xj is defined as:

• [a+ (j − 1)γ, a+ jγ] and [α− jγ, α− (j − 1)γ],
• [β + (j − 1)δ, β + jδ] and [b− jδ, b− (j − 1)δ],

where γ = (α− a)/(2(n− 1)), δ = (b− β)/(2(n− 1)).

In words, the sandwich allocation divides [a, α] to 2(n −
1) subintervals of equal length, and adds subintervals j and
n − j + 1 (enumerating from left to right) to Xj . A similar
process is done for [β, b]. See Figure 1 for an illustration.

We require the following well-known property of piece-
wise linear valuations (Chen et al. 2013; Brams et al. 2012).

Lemma 2. Suppose that an agent has linear value density
on interval [c, d], and that [c, d] is divided into 2k equal
pieces. Let Xj for j ∈ [k] denote the piece formed by com-
bining the jth piece from the left (moving right) and the jth
piece from the right (moving left). That is, X1 is the left-
most and right-most piece, X2 is the second from the left
combined with the second from the right, etc. Then the agent
is indifferent between the Xj .

We can now show that if there are no break points outside
of the separating interval, then the sandwich allocation is EF
(see Figure 1).

Lemma 3. Let [α, β] be a separating interval of [a, b]. Fur-
thermore, suppose that there are no break points in the
agents’ piecewise linear value density functions on [a, α)
and (β, b]. Then the sandwich allocation of [a, b] with sepa-
rating interval [α, β] is EF.

Proof. By assumption there are no break points in [a, α),
(β, b], so each agents’ density function is linear on these in-
tervals. Let p denote the champion of the separating interval.
Lemma 2 tells us that the agents are indifferent among the
pieces given to agents in N \ {p}. Agent i ∈ N \ {p} there-
fore receives value exactly (Vi(a, b)− Vi(α, β))/(n− 1) ≥
Vi(α, β) since Vi(α, β) ≤ Vi(a, b)/n (by the definition of
sandwich allocation).

We can now argue that the sandwich allocation is EF. An
agent in N \ {p} does not envy another agent in the same



set since the agent is indifferent among the pieces given to
agents in N \ {p}. These agents also do not envy agent p
since they receive value at least Vi(α, β) from their pieces.
It remains to show that agent p does not envy any other
agent. Agent p receives value Vi(a, b)/n from its piece.
Since agent p is indifferent among the pieces in N \ {p}, it
receives value (Vi(a, b)−Vi(a, b)/n)/(n−1) = Vi(a, b)/n
for these pieces. Agent p is therefore indifferent among all
the pieces in the sandwich allocation.

We are now ready to give our algorithm that computes an
EF allocation for agents with piecewise linear valuations and
at most k total break points. At a high-level, our algorithm
constructs a cover of separating intervals. For each separat-
ing interval in the cover, we attempt to construct an EF allo-
cation. If any of these attempts are successful, we are done.
Otherwise, we split [a, b] at every endpoint of an interval in
the cover and recurse on these smaller subintervals. Criti-
cally, our allocation is chosen so that if we do indeed require
a split, then we will separate at least two break points.

Algorithm 2 EF procedure for piecewise linear valuations

1. EF-ALLOCATE(0, 1).

EF-ALLOCATE(a, b):
1. Let C = COVER(a, b).
2. For each [α, β] ∈ C, check if the sandwich allocation of

[a, b] for separating interval [α, β] is EF (for all agents). If
it is then return the sandwich allocation.

3. If no separating interval admits an EF sandwich allo-
cation, then let Z be all endpoints of separating in-
tervals in C. Sort Z from smallest to largest, giving
points {z1, . . . , zm}. Recursively call EF-ALLOCATE
on intervals formed by consecutive points in Z (i.e.,
EF-ALLOCATE(zi, zi+1)). Return the allocation formed
by joining the allocations returned by each of these recur-
sive calls.

Theorem 4. Algorithm 2 will terminate, produce an EF al-
location and require at most O(n6k ln k) queries.

Proof. As the algorithm can only return by producing an EF
allocation or recursing, it will produce an EF allocation if it
terminates. Moreover, each iteration of the algorithm will
issue a nonzero number of queries (in order to construct a
cover and sandwich allocations). Therefore, if we show the
number of queries is O(n6k ln k), we will have also shown
the algorithm will terminate and produce an EF allocation.

Lemma 3 tells us that for a separating interval [α, β], the
sandwich allocation is EF if there are no break points in
[a, α), (β, b], or in other words, all break points are included
in [α, β]. If Algorithm 2 does not find an EF allocation in
step 2, then no separating interval in the cover contains all
break points. Therefore, recursing on intervals formed by
consecutive points in Z (the ordered set of endpoints of sep-
arating intervals inC) will separate at least two break points.
If there are at most k break points in [a, b], there can be at
most k − 1 break points in any of the intervals recursed on.

The base case of this recursion is the case where k ≤ 1. If
k = 1, then the sandwich allocation for the separating inter-
val containing the break point will be EF. If k = 0, then the
sandwich allocation of any separating interval will be EF.

Now let us consider the number of queries our algo-
rithm uses. It is not difficult to see that computing the
cover will take at most n3 + n < 2n3 queries and pro-
duce a set of at most cardinality n2 + 1 < 2n2. Moreover,
checking if a sandwich allocation is EF will require at most
4(n − 1)n queries. This is because the sandwich allocation
splits [a, α], [β, b] each into 2(n − 1) intervals, so there are
4(n−1) intervals to ask the agents to evaluate (as there is no
need to evaluate [α, β]). The maximum number of queries
T (n, k) can therefore be implicitly given by:

T (n, k) ≤ 2n3 + 2n2(4(n− 1)n) +

2n2∑
j=1

T (n, kj)

< 8n4 +

2n2∑
j=1

T (n, kj),

where due to the property that we split break points, kj < k
for all j, and due to the property that a break point can appear
in only one of the recursively allocated intervals,

∑2n2

j=1 kj ≤
k.4 We now show by induction that:

T (n, k) ≤
{

8n4 k ≤ 1

24n6k ln k otherwise

As a base case, it is clear the statement holds for k ≤ 1. We
now assume this statement holds true for k, and inductively
establish it for k + 1.

T (n, k + 1) < 8n4 +

2n2∑
j=1

T (n, kj)

≤ 8n4 +
∑
kj≤1

8n4 +
∑
kj>1

24n6kj ln kj

≤ 8n4 + 16n6 +
∑
kj>1

24n6kj ln k

< 24n6 + 24n6 ln k
∑
kj>1

kj

≤ 24n6 + 24n6k ln k

= 24n6(1 + k ln k)

≤ 24n6(k + 1) ln(k + 1),

where the last inequality uses the fact that 1 + k ln k ≤ (k+
1) ln(k + 1) for k ≥ 1. This is easy to see for k ≥ 2 since
1 ≤ ln(k+1), and we can manually verify the case of k = 1.
Therefore, the number of queries made by Algorithm 2 is
O(n6k ln k). Since the number of queries is bounded, we
know that Algorithm 2 terminates (and therefore returns an
EF allocation).

4Technically, a break point can appear in two recursively allo-
cated intervals if it is an endpoint of the cover, but in this case the
break point is an inconsequential break point in the recursed inter-
vals and so we ignore it.



Additional Properties
Theorem 4 is encouraging, and it seems natural to ask
whether one can do better: can we design bounded (in n
and the number of break points k) algorithms that achieve
allocations that are EF and satisfy additional desirable prop-
erties? Unfortunately, for the two prominent properties that
we consider, the answer is negative.

The property of Pareto optimality is a standard notion of
economic efficiency; an allocationX1, . . . , Xn is Pareto op-
timal if there is no other allocation X ′1, . . . , X

′
n such that

Vi(X
′
i) ≥ Vi(Xi) for all i ∈ N , and there exists j ∈ N

such that Vi(X ′i) > Vi(Xi). It turns out that the Robertson-
Webb model does not permit algorithms that produce Pareto
optimal allocations—even if other properties such as envy-
freeness are not required!

Theorem 5. There is no (finite) Pareto optimal cake cutting
algorithm for piecewise constant valuations.

Proof. Suppose A is a cake cutting algorithm and let all n
agents answer queries to A in a way that is consistent with
uniform value density functions (that is, vi(x) = 1 for all
x ∈ [0, 1]). Now take any interval [a, b] of non-trivial length
that is given to a single agent and does not contain any end-
point of any query. Call the owner of this piece agent p.
Change p’s value density to be:

vp(x) =


2 if x ∈

[
a+ b−a

4 , a+b2
]

0 if x ∈
(
a+b
2 , b− b−a

4

]
1 otherwise

Running A on these new valuations (with p changing to
vp and all other agents unchanged) produces the same al-
location as running A on agents with uniform value den-
sity functions as the answers to the eval and cut queries re-
main unaffected. However, the allocation produced by A
is clearly not Pareto optimal as assigning

[
a+b
2 , b− b−a

4

]
to

some other agent would raise the receiver’s utility without
affecting p.

Taking a game-theoretic point of view (Chen et al. 2013),
we would like to design cake cutting algorithms that are
strategyproof, in the sense that agents can never benefit from
answering the algorithm’s queries untruthfully, regardless of
what other agents do. In other words, truthfully answering
the algorithm’s queries must be a dominant strategy.

In contrast to Pareto optimality, strategyproofness alone
can be achieved easily, e.g., by always allocating the entire
cake to a fixed agent. However, if we additionally ask for an
algorithm that is EF and bounded (in n and k), we obtain an
impossibility result even for piecewise constant valuations.
The proof of the following statement is our most technically
intricate, and is relegated to the appendix.

Theorem 6. For any function f : N × N → N and any
number of agents n ≥ 2, there exists no strategyproof and
EF cake cutting algorithm on piecewise constant valuations
that requires at most f(n, k) queries for every number of
break points k.

We can obtain analogs of Theorems 5 and 6 for piecewise
uniform valuations, at the expense of slightly weakening the
algorithm’s computational power: for Pareto optimality we
require the algorithm to be bounded rather than simply finite,
and for strategyproofness and envy-freeness we also require
the number of contiguous intervals in the algorithm’s allo-
cation to be bounded.

Discussion
One of the nice features of piecewise uniform, constant, and
linear valuations is that they can be concisely represented.
For example, a piecewise linear value density function is of
the form f(x) = aj · x + bj on each subinterval Ij , so we
simply need to know aj and bj for all j ≤ k + 1, where k is
the number of break points (including 0 and 1) of the density
function. Given the full, explicit representations it is easy to
compute an EF allocation in polynomial time in the size of
the representation. Several recent papers (Chen et al. 2013;
Cohler et al. 2011; Bei et al. 2012) leverage this insight
by making a powerful assumption: the inputs to the cake
cutting algorithm are the agents’ full valuation functions.

In contrast, our algorithmic model is based on the
Robertson-Webb model. Conceptually, this model captures
what we normally think of as cake cutting protocols. The
Robertson-Webb model is harder than the full revelation
model: any polynomial time algorithm in the former model
gives a polynomial time algorithm in the latter model, but
the converse is not true. To illustrate this difference, observe
that when full piecewise constant valuations are reported, it
is straightforward to achieve a Pareto optimal allocation (via
a linear program that maximizes social welfare), whereas
in the Robertson-Webb model Pareto optimality cannot be
achieved (Theorem 5). In addition, in the full revelation
model it is impossible to reason about general valuations—
which have an infinite representation—hence in that model
there is no analog of our Theorem 1.

In fact, the main open question of Chen et al. (2013) is
whether their protocol can be simulated in the Robertson-
Webb model. Their main result is a strategyproof and EF
algorithm for piecewise uniform valuations that are fully re-
ported to the algorithm. Our results essentially give a neg-
ative answer to this question, with one caveat: they also as-
sume that the algorithm may throw away pieces of cake.5

The most enigmatic question still remains open: is there
a bounded (in n) EF cake cutting algorithm (i.e., one that
can be simulated in the Robertson-Webb model) for general
valuations? Our Theorem 1 may be the key to unlocking
this mystery: whether one aims to prove a possibility or an
impossibility result, one can focus on piecewise uniform val-
uations, which are exactly as hard as the general case.
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Proof of Theorem 6
Suppose for sake of contradiction A is such an algorithm.
Now let ε ∈

(
0, 3−(n+1)f(n,2n)

)
and define the piecewise

uniform valuations U and V as follows. Let [us, ut] be an
interval of length ε/(2n − 3) and [vs, vt] ( [us, ut] with
vt − vs = ε/(2n− 2).

U(x) =

{
1

1−ε/(2n−3) , x /∈ [us, ut]

0, x ∈ [us, ut]

V (x) =

{
1

1−ε/(2n−2) , x /∈ [vs, vt]

0, x ∈ [vs, vt]

Now we consider A given the following n+ 1 settings:

• All agents have valuations U

• Agent 1 is uniform, agent 2 has valuation V , all other
agents have valuation U

• Agent 2 is uniform, agent 3 has valuation V , all other
agents have valuation U
...

• Agent n is uniform, agent 1 has valuation V , all other
agents have valuation U

However, as we have not defined these valuation functions
precisely, we have some freedom in answering the queries
given by A. Specifically, we will answer the queries as to
maximize the size of the interval the break points of U (and
therefore V ) are in. Intuitively, with any single query we can
answer such that the interval we know the break points are
located in is reduced by at most a factor of 3.

Rigorously, let I = [Ileft, Iright] denote the minimally
sized interval we know all break points reside in. Initially,
I = [0, 1]. Now consider the evaluation query eval(i, a, b)
for some i and a < b. If |I

⋂
[a, b]| < 1

3 |I| then assume
there are no break points in [a, b] for any agent, and instead
they are in the largest contiguous interval of I \ [a, b] (which
has length at least 1

3 |I|). Otherwise, assume all break points
are in I

⋂
[a, b]. In this way, no evaluation query can re-

duce I by more than a factor of 3. Similarly, consider a cut
query b = cut(i, a, w). For sake of simplicity, assume that
a ≥ Ileft, since otherwise we can assume we are consider-
ing the query cut(i, Ileft, w− eval(i, a, Ileft)). That is, w is



replaced with w − eval(i, a, Ileft) and a with Ileft. There
are then three cases to consider:
• Case 1: a is on or past the one third mark of I in terms

of length (i.e. a ≥ Ileft + 1
3 |I|). Then assume all break

points are to the left of a, and so all break points are in
[Ileft, a].

• Case 2: a is left of the one third mark, and w <
1
3eval(i, Ileft, Iright). Then answer the cut query as if no
break points exist in [Ileft, a], but assume all break points
are in fact in [b, Iright].

• Case 3: a is left of the one third mark, and w ≥
1
3eval(i, Ileft, Iright). Then assume all break points are
inside [a, a+ 1

3 |I|].
In any case, we are left with again a reduction of I by at
most a factor of 3.

As there are at most (n + 1)f(n, 2n) queries asked, the
condition ε ∈

(
0, 3−(n+1)f(n,2n)

)
ensures we can answer all

queries in a consistent manner such that after all n+ 1 runs
of A, we still have an interval of size at least ε in length to
place all break points. Call this the ε-interval.

We claim that for each of the n+ 1 settings, A must allo-
cate all of the ε-interval to a single agent — ignoring zero-
measure subsets given to other agents. Note that this “single
agent” is not necessarily the same agent for different set-
tings. Intuitively, this is due to the fact thatA does not iden-
tify any properties of any agent valuations in the interval,
except for each agent’s total value of the interval. Rigor-
ously, outside the ε-interval, we may assume U and V are
constant, and it is simple to see that by suitably setting U
and V we can assign all of the value inside the ε-interval to
any agent who receives a non-zero-measure subset of said
interval. Therefore, two agents cannot both have non-zero-
measure subsets of the ε-interval as we can suitably set U
and V such that one of the concerning agents is envious of
another.

Now let p be the agent who is given all of this interval in
the setting with all valuations U , and let q be the agent given
this interval when agent p is uniform, agent p+ 1 (i.e. agent
1 if p = n) is U , and all other agents are V . We claim p = q.

There are two cases we must consider. Suppose instead
q ≡ p+1(mod n). q has valuation V , and by envy-freeness,
must receive a piece of length

(
1− ε

2n−2

)
/n+ ε

2n−2 . The
first term is 1/n of the cake that has non-zero value to q, and
the second is the length of [vs, vt] — which is worthless to q.
Also by envy-freeness, p receives a piece of length 1/n and
the other n−2 agents receives pieces of length (1− ε

2n−3 )/n.
Thus, the total length of cake distributed must be at least:

1− ε
2n−2
n

+
ε

2n− 2
+

1

n
+ (n− 2)

1− ε
2n−3
n

= 1 +
ε

2n(2n− 3)

> 1

which is clearly impossible. Similarly, if q 6≡ p+1 (mod n)
and q 6= p, then the total length of cake distributed also must
be > 1. Thus p = q as claimed.

Now consider the following settings given to A:
1. all agents have valuations U
2. p has uniform valuation, all other agents have valuation U
3. p has uniform valuation, q ≡ p+ 1(mod n) has valuation
V , all other agents have valuation U

Since p receives the ε-interval in setting 1, pmust get a piece
of length at least L = (1 − ε

2n−3 )/n + ε
2n−3 due to envy-

freeness. p must therefore get a piece of length at least L
in setting 2, as otherwise p would be strictly better off by
misrepresenting his/her true valuations asU (forming setting
1). This allows us to bound the amount that q can receive
in setting 2. We can bound this amount by subtracting the
lengths that p must receive in addition to the lengths that
agents other than q and p must receive due to envy-freeness:

1−
(

1− ε
2n−3
n

+
ε

2n− 3

)
− (n− 2)

1− ε
2n−3
n

=1− ε

2n− 3
− n− 1

n

(
1− ε

2n− 3

)
=

1− ε
2n−3
n

Therefore, q receives at most (1 − ε
2n−3 )/n in setting 2.

Finally, consider what occurs if q misrepresents his/her val-
uation as V in setting 2 to form setting 3. Since we have
shown that p must still get all of the ε-interval, q receives a
piece of length at least (1 − ε

2n−2 )/n. As this piece does
not include the ε-interval, it is advantageous for q in setting
2 to falsely report a valuation of V - forming setting 3. This
contradicts the strategyproofness assumption of A.


