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tIn the 
ake 
utting problem, n � 2 players want to 
ut a 
ake into n pie
es so thatevery player gets a `fair' share of the 
ake by his own measure. Two results are given.A positive result: For every " > 0, there exists a 
ake division s
heme for n players thatuses at most 
"n 
uts (with free evaluation queries), and in whi
h ea
h player 
an enfor
eto get a share of at least (1� ")=n of the 
ake a

ording to his own private measure.A negative result: In a 
ertain 
ake 
utting model, every fair 
ake division proto
olfor n players must use 
(n logn) 
uts and evaluation queries in the worst 
ase. Up toa small 
onstant fa
tor, this lower bound mat
hes a 
orresponding upper bound in thesame model by Even & Paz from 1984.1 Introdu
tionThe poem \The voi
e of the lobster" by Lewis Carroll [2℄ gives a 
lassi
al example for theunfair division of a 
ommon resour
e:\I passed by his garden, and marked, with one eye,How the owl and the panther were sharing a pie.The panther took pie-
rust, and gravy, and meat,While the owl had the dish as its share of the treat."Note that pie-
rust, gravy, and meat might be of 
ompletely di�erent value to the owl andto the panther. Is there any proto
ol whi
h enables owl and panther to divide the food intotwo pie
es su
h that both will get at least half of it by their own measure? The answer tothis question is yes, and there is a fairly simple and fairly old solution des
ribed by HugoSteinhaus [10℄ from 1948: The owl 
uts the food into two pie
es, and the panther 
hooses itspie
e out of the two. The owl is sure to get at least half the food if it 
uts two equal pie
esby its measure. The panther is sure to get at least half the food by its measure by 
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Problem des
ription. In a more general and a more mathemati
al formulation, there isa 
ertain resour
e C (hereinafter referred to as: the 
ake), and there are n players 1; : : : ; n.Without mu
h loss of generality and in agreement with the 
ake 
utting literature, we willassume throughout the paper that C = [0; 1℄ is the unit interval and the 
uts divide the 
akeinto its subintervals. Every player p (1 � p � n) has his own private measure �p on suÆ
ientlymany subsets of C. These measures �p are assumed to be well-behaved; this means that theyare:� De�ned on all �nite unions of intervals.� Non-negative: For all X � C, �p(X) � 0.� Additive: For all disjoint subsets X;X 0 � C, �p(X [X 0) = �p(X) + �p(X 0)� Divisible: For every measurable X � C and 0 � � � 1, there exists X 0 � X with�p(X 0) = ��p(X).� Normalized: �p(C) = 1.All these assumptions are standard assumptions in the 
ake 
utting literature, sometimessubsumed in a 
on
ise statement that ea
h �p is a probability measure de�ned on Lebesguemeasurable sets and absolutely 
ontinuous with respe
t to Lebesgue measure. We stress thatthe divisibility of �p forbids 
on
entration of the measure in one or more isolated points. Asone 
onsequen
e of this, 
orresponding open and 
losed intervals have the same measure, andthus we do not need to be overly formal about the endpoints of intervals.The 
ake C is to be divided among the n players a

ording to some �xed 
ake divisionproto
ol, whi
h is an intera
tive pro
edure for the players that guides and 
ontrols the divisionpro
ess of the 
ake C. Typi
ally it 
onsists of 
ut requests like \Cut 
ake pie
e Z into twoequal pie
es, a

ording to your measure!" and evaluation queries like \Is your measure of
ake pie
e Z1 less, greater, or equal to your measure of 
ake pie
e Z2?" or \What is yourmeasure of 
ake pie
e Z1?". Eventually, the proto
ol assigns to the players pairwise disjointsubsets of the 
ake. A 
ake division proto
ol is not a priori aware of the measures �p, but itwill learn something about them during its exe
ution, and the answers may in
uen
e whi
h
ut requests and evaluation queries are issued in the future (i.e., the proto
ol is adaptive). Astrategy of a player is an adaptive sequen
e of moves 
onsistent with a given proto
ol.A 
ake division proto
ol is (perfe
tly) fair, if every player p has a strategy that guaranteeshim a pie
e of size at least �p(C)=n a

ording to his own measure �p. So, even in 
ase n� 1players would all plot up against a single player and would 
oordinate their moves, then thissingle player will still be able to get his share of �p(C)=n. This is 
alled simple fair divisionin the literature.We also 
onsider approximately fair proto
ols. A 
ake division proto
ol is �-fair, if everyplayer p has a strategy that guarantees him a pie
e of size at least ��p(C) a

ording to hisown measure �p. Note that a proto
ol for n players is perfe
tly fair if and only if it is 1=n-fair.The 
omplexity of a 
ake 
utting proto
ol is generally measured by the number of 
utsperformed in the worst 
ase. We dis
uss the exa
t de�nition of this measure and the notionof a 
ake 
utting proto
ol later.The 
entral open problem in this area is whether there exist perfe
tly fair n-player proto-
ols that only use O(n) 
uts. This problem was expli
itly formulated by Even & Paz [3℄, andessentially goes ba
k to Steinhaus [10℄. The general belief is that no su
h proto
ol exists.2



Previous results. In the 1940s, the Polish mathemati
ians Bana
h and Knaster designeda simple fair 
ake division proto
ol that uses O(n2) 
uts in the worst 
ase; this proto
ol wasexplained and dis
ussed in 1948 by Steinhaus [10℄. In 1984, Even & Paz [3℄ used a divide-and-
onquer approa
h to 
onstru
t a better deterministi
 proto
ol that only uses O(n log n)
uts in the worst 
ase. Remarkably, Even & Paz [3℄ also design a randomized proto
ol thatuses an expe
ted number of O(n) 
uts.Tighter results are known for small values of n: For n = 2 players, the Steinhaus proto
olyields a perfe
tly fair proto
ol with a single 
ut. For n = 3 and n = 4 players, Even & Paz [3℄present perfe
tly fair proto
ols that make at most 3 and 4 
uts, respe
tively. Webb [12℄presents a perfe
tly fair proto
ol for n = 5 players with 6 
uts.Approximately fair proto
ols were studied by Robertson & Webb [7℄. For any n � 2, theydesign 1=(2n � 2)-fair proto
ols that make only n� 1 
uts, and they show that this result isbest possible for n� 1 
uts. This result was redis
overed independently by Krumke et al [4℄.The problem of establishing lower bounds for 
ake 
utting goes ba
k at least to Bana
h(see [10℄). Even & Paz [3℄ expli
itly 
onje
ture that there does not exist a fair deterministi
proto
ol with O(n) 
uts. Robertson & Webb [8℄ support and strengthen this 
onje
tureby saying they \would pla
e their money against �nding a substantial improvement on then log2 n [upper℄ bound".One basi
 diÆ
ulty in proving lower bounds for 
ake 
utting is that most papers deriveupper bound results and to do that, they simply des
ribe a 
ertain pro
edure that performs
ertain steps, and then establish 
ertain ni
e properties for it, but they do not provide aformal de�nition or a framework. Even & Paz [3℄ give a proof that for n � 3, no proto
olwith n�1 
uts exists; sin
e n�1 
uts are the smallest possible number, su
h proto
ols wouldneed to be rather spe
ial (in parti
ular they would have to assign a single subinterval to ea
hplayer) and not mu
h formalism is needed. Webb [12℄ shows that for n = 5, no perfe
tly fairproto
ol exists that uses only 5 
uts, and thus his proto
ol with 6 
uts is optimal.Only re
ently, Robertson & Webb [7, 8℄ give a more pre
ise de�nition of a proto
ol that
overs all the proto
ols given in the literature. This de�nition avoids some pathologi
alproto
ols, but it is still quite general and no super-linear lower bounds are known.A re
ent paper [5℄ by Magdon-Ismail, Bus
h & Krishnamoorthy proves an 
(n log n) lowerbound for a 
ertain non-standard 
ake 
utting model: The lower bound does not hold for thenumber of performed 
uts or evaluation queries, but for the number of 
omparisons neededto administer these 
uts.For more information on this fair 
ake 
utting problem and on many of its variants, werefer the reader to the books by Brams & Taylor [1℄ and by Robertson & Webb [8℄.Our 
ontribution and organization of the paper. In Se
tion 2 we formally de�ne �rstthe Robertson-Webb 
ake 
utting model and then we introdu
e a 
ertain restri
tion of thismodel. The restri
tion has two requirements: (i) ea
h player re
eives a single subinterval ofthe 
ake and (ii) the evaluation queries are 
ounted towards the 
omplexity of the proto
oltogether with 
uts. Our model is also general enough to 
over the O(n log n) 
ut deterministi
proto
ol of Even & Paz [3℄, and we believe that it is fairly natural. We dis
uss some of theissues related to the formal de�nition of both models, and we put it into 
ontext with otherresults from the 
ake 
utting literature.In Se
tion 3 we design proto
ols with O(n) 
uts that 
ome arbitrarily 
lose to being 1=n-fair. Namely, for every " > 0, there exists a (1� ")=n-fair 
ake division proto
ol for n players3



su
h that at most O(n) 
uts are made. This proto
ol is in the Robertson-Webb model, thuswe do not 
ount the evaluation queries towards its 
omplexity (their number is O(n2)). Onthe other hand, the proto
ol still obeys the �rst requirement in the de�nition of restri
tedproto
ols, i.e., ea
h player re
eives a single subinterval of the 
ake.In Se
tion 4 we then show that in our restri
ted model, every deterministi
 fair 
akedivision proto
ol for n players must use 
(n log n) 
uts and evaluation queries in the worst
ase. This result yields the �rst super-linear lower bound on the number of 
uts for simplefair division (in our restri
ted model), and it also provides a mat
hing lower bound for theresult in [3℄.Se
tion 5 gives the dis
ussion and open problems.This paper 
overs the results of extended abstra
ts [13, 9℄.2 The restri
ted 
ake 
utting modelA general assumption in the 
ake 
utting literature is that at the beginning of an exe
utiona proto
ol has absolutely no knowledge about the measures �p, ex
ept that they are de�nedon intervals, non-negative, additive, divisible, and normalized. The proto
ol issues queriesto the players, the players rea
t, the proto
ols observes their rea
tions, issues more queries,observes more rea
tions, and so on, and so on, and in the end the proto
ol assigns the 
akepie
es to the players.De�nition of the Robertson-Webb model and our restri
ted model. We re
all thatthe 
ake C is represented by the unit interval. For a real number � with 0 � � � 1, the �-pointof a player p is the in�mum of all numbers x for whi
h �p([0; x℄) = � and �p([x; 1℄) = 1 � �holds.In the Robertson-Webb model, the following two types of queries are allowed.Cut(p;�): Player p 
uts the 
ake at his �-point (where 0 � � � 1). The value xof the �-point is returned to the proto
ol.Eval(p;x): Player p evaluates the value of the 
ut x, where x is one of the 
utspreviously performed by the proto
ol. The value �p(x) is returned to the proto
ol.The proto
ol 
an also assign an interval to a player; by doing this several times, a player mayend up with a �nite union of intervals.Assign(p;xi; xj): Player p is assigned the interval [xi; xj ℄, where xi � xj are two
uts previously performed by the proto
ol or 0 or 1. All the intervals assigned tothe players are required to be pairwise disjoint.The 
omplexity of a proto
ol is given by the number of 
uts performed in the worst 
ase, i.e.,evaluation queries may be issued for free.In our restri
ted model, the additional two restri
tions are:Assign(p;xi; xj) is used only on
e for ea
h p. Hen
e, in the restri
ted model everyplayer ends up with a single (
ontiguous) subinterval of the 
ake.4



The 
omplexity of a proto
ol is given by the number of 
uts plus evaluation queries,i.e., ea
h evaluation query 
ontributes to the 
omplexity the same as a 
ut. Notethat this also 
overs 
ounting only the number of 
uts in proto
ols that do notuse evaluation queries at all.Dis
ussion of the restri
ted model. The 
urrently best deterministi
 proto
ol for exa
tfair division of Even & Paz [3℄ does not need evaluation queries and assigns single intervals;we provide a mat
hing bound within these restri
tions.Nevertheless, both restri
tions of our model are essential. Our proto
ol from Se
tion 3 aswell as proto
ols in [4, 6, 7℄, espe
ially those that a
hieve not exa
tly but only approximatelyfair division, do use evaluation queries, sometimes even a quadrati
 number of them. Therandomized proto
ol of Even & Paz [3℄ also uses evaluation queries in addition to expe
tedO(n) 
uts; the expe
ted number of evaluation queries is �(n log n).We feel that the other restri
tion, that every player must re
eive a single, 
ontiguoussubinterval of the 
ake, is perhaps even stronger. By imposing this restri
tion, it seems thatwe severely 
ut down the set of possible proto
ols; in parti
ular, for some instan
es, thesolution is essentially unique (see our lower bound). Note, however, that all known dis
rete
ake 
utting proto
ols from the literature produ
e solutions where every player ends up witha 
ontiguous subinterval. For instan
e, all the proto
ols in [3, 4, 6, 7, 10, 12℄ as well as ourproto
ol from Se
tion 3 have this property. In parti
ular, the divide-and-
onquer proto
olsof Even & Paz [3℄, both deterministi
 and randomized, assign single 
ontiguous subintervalto ea
h player, as noted above.Dis
ussion of the Robertson-Webb model. The Robertson-Webb model restri
ts theformat of queries to 
uts at � points and evaluation queries. This restri
tion is severe, butit is 
ru
ial and essentially unavoidable. Su
h a restri
tion must be imposed in one form orthe other, just to prevent 
ertain uninteresting types of `
heating' proto
ols from showing upwith a linear number of 
uts. Consider the following `
heating' proto
ol:Phase 1. Every player makes a 
ut that en
odes his i=n-points with 1 � i � n�1(just �x any bije
tive en
oding of n�1 real numbers from [0; 1℄ into a single numberfrom [0; 1℄).Phase 2. The proto
ol exe
utes the Bana
h-Knaster proto
ol in the ba
kground(Bana
h-Knaster [10℄ is a fair proto
ol that only needs to know the positions of thei=n-points). That is, the proto
ol determines the relevant 
uts without performingthem.Phase 3. The proto
ol tells the players to perform the relevant n�1 
uts for theBana
h-Knaster solution. If a player does not perform the 
ut that he announ
edduring the �rst phase, he is punished and re
eives an empty pie
e (and his pie
eis added to the pie
e of some other player).Clearly, every honest player will re
eive a pie
e of size at least 1=n. Clearly, the proto
ol alsoworks in the friendly environment where every player truthfully exe
utes the orders of theproto
ol. And 
learly, the proto
ol uses only 2n�1 
uts|a linear number of 
uts. Moreover,there are (straightforward) implementations of this proto
ol where every player ends up witha single subinterval of the 
ake. In 
ake 
utting models that allow announ
ements of arbitrary5



real numbers, the 
uts in (Phase 1) 
an be repla
ed by dire
t announ
ements of the i=n-pointpositions; this yields fair proto
ols with only n� 1 
uts.These `
heating' proto
ols are arti�
ial, unnatural and uninteresting, and it is hard toa

ept them as valid proto
ols. In the Robertson-Webb model they 
annot o

ur, sin
e theyviolate the form of queries. (One 
ould try to argue that the players might disobey the queriesand announ
e any real number. However, this fails, sin
e the de�nition of a proto
ol enfor
esthat a player that honestly answers allowed queries should get a fair share.)Se
ond important issue is that in the Robertson-Webb model it is suÆ
ient to assumethat all players are honest, i.e., exe
ute the 
ommands \Cut at an �-point" and evaluationqueries truthfully. Under this assumption all of them get a fair share. Often in the literature,a proto
ol has no means of enfor
ing a truthful implementation of these 
uts by the players,sin
e the players may 
heat, and lie, and try to manipulate the proto
ol; the requirement isthan that any honest player gets a fair share, regardless of the a
tions of the other players.In the Robertson-Webb model, any proto
ol that works for honest players 
an be easilymodi�ed to the general 
ase as follows. As long as the answers of a player are 
onsistent withsome measure, the proto
ol works with no 
hange, as it assigns a fair share a

ording to thismeasure (and if the player has a di�erent measure, he lied and has no right to 
omplain). If anin
onsisten
y is revealed (e.g., a violation of non-negativity), the proto
ol has to be modi�edto ignore the answers from this player (or rather repla
e them by some trivial 
onsistent
hoi
es).Of 
ourse, in general, the honesty of players is not a restri
tion on the proto
ol, buta restri
tion on the environment. Thus it is of no 
on
ern for our lower bound argumentwhi
h uses only honest players. On the other hand, it simpli�es the presentation of proto
ols;
ompare, for example, the presentation of the same approximately fair proto
ol in Se
tion 3and in the 
onferen
e paper [13℄.In some details our des
ription of the model is di�erent than that of Robertson & Webb.Their formulation in pla
e of evaluation queries is that after performing the 
ut, its value inall the players' measures be
omes known. This 
overs all the possible evaluation queries, soit is 
learly equivalent if we do not 
ount the number of these queries. However, the numberof evaluations is an interesting parameter, whi
h is why we 
hose this formulation.Robertson & Webb also allow 
ut requests of the form \
ut this pie
e into two pie
eswith a given ratio of their measures". This is very useful for an easy formulation of re
ursivedivide-and-
onquer proto
ols. Again, on
e free evaluation queries are allowed, this is no moregeneral, as we know all the measures of all the existing pie
es. Even if we 
ount evaluationqueries, we 
an �rst evaluate the 
uts that 
reated the pie
e, so su
h a non-standard 
ut isrepla
ed by two evaluations and a standard 
ut at some �-point.Finally, instead 
utting at the �-point, Robertson &Webb allow an honest player to returnany x with �p([0; x℄) = �, i.e., we require the answer whi
h is the minimum of the honestanswers a

ording to Robertson & Webb. This is a restri
tion if the instan
e 
ontains non-trivial intervals of measure zero for some players, otherwise the answer is unique. However,any su
h instan
e 
an be repla
ed by a sequen
e of instan
es with measures that are very 
loseto the original ones and have non-zero density everywhere. If done 
arefully, all the �-pointsin the sequen
e of modi�ed instan
es 
onverge to the �-points in the original instan
e. Thusthe restri
tion to a parti
ularly 
hosen honest answer is not essential as well; on the otherhand, it keeps the des
ription of our lower bound mu
h simpler.6



3 The approximately fair proto
olIn this se
tion we present the 
ake division proto
ol that uses only a linear number of 
utsand a
hieves an approximately fair solution.Theorem 1 For every " > 0, there exists a 
onstant 
" > 0 and a (1�")=n-fair 
ake divisionproto
ol for n players su
h that at most 
"n 
uts are made. The number of evaluation queriesis O(n2).We de�ne a re
ursive proto
ol P (t) that is based on an integer parameter t � 1; later weset t to be about 1=". The steps (S0){(S5) of proto
ol P (t) are des
ribed in Figure 1.(S0) If there are n � 2t� 1 players, the 
ake is divided using the deterministi
 proto
olof Even & Paz. STOP.(S1) Ea
h of the �rst 2t players p (p = 1; : : : ; 2t) makes a 
ut 
p = Cut(p; 1=2).(S2) Let 
� be the median of the numbers 
1; : : : ; 
2t, i.e., the t-th smallest numberamong them. The 
ut 
� divides the 
ake C = [0; 1℄ into a left pie
e CL = [0; 
�℄and a right pie
e CR = [
�; 1℄.(S3) Every player p = 1; : : : ; n answers an evaluation query xp = Eval(p; 
�).(S4) Sort the numbers xp; let � be a permutation su
h that x�(1) � x�(2) � � � � � x�(n).Let i be the smallest index su
h that x�(i) � i�1n�1 . (This is de�ned, as x�(n) � 1.)Let L = f�(1); �(2); : : : ; �(i� 1)g and R = f�(i); : : : ; �(n)g.(S5) The players in L re
ursively share the left pie
e CL.The players in R re
ursively share the right pie
e CR.Figure 1: The proto
ol P (t) for n players.As presented, it is assumed that the 
ake and the measures of the players are renormalizedafter ea
h re
ursive 
all. Sin
e the 
ake is divided at a point 
� su
h that we know all thevalues Eval(p; 
�), it is easy to implement this.Note that the sets L and R in step (S5) give a partition of all the players. The nextlemma guarantees that both sets in the partition are suÆ
iently large, and that ea
h player
onsiders the pie
e of the 
ake to whi
h it is assigned in step (S6) suÆ
iently large, given howmany people will split it.Lemma 2 The sets L and R 
hosen in step (S4) satisfy:(i) jLj � t and jRj � t.(ii) For every player p 2 L, xp � jLj � 1n� 1 .(iii) For every player p 2 R, 1� xp � jRj � 1n� 1 .Proof. By the 
hoi
e of 
� in step (S2), there are t players p su
h that xp � 1=2 (evenamong the �rst 2t players). Consequently, for j � t, we have x�(j) � 1=2 > (j � 1)=(n � 1),7



as n � 2t � 2j; we 
on
lude that i in step (S4) is at least t + 1 and thus jLj � t. Similarly,there are t players p su
h that xp � 1=2. Thus x�(n�t+1) � 1=2 < (n� t)=(n� 1), as n � 2t;we 
on
lude that i in step (S4) is at most n� t+ 1 and thus jRj � t.For p 2 L, using the de�nition of i in step (S4), we have xp � x�(jLj) > (jLj � 1)=(n � 1)For p 2 R, using the de�nition of i in step (S4), we have xp � x�(jLj+1) � jLj=(n � 1).Thus 1� xp � 1� jLj=(n� 1) = (jRj � 1)=(n� 1)Next we analyze the fairness of the proto
ol.Lemma 3 Let n � t. Then every player p is assigned at least a fra
tion (t� 1)=(t(n� 1)) ofthe 
ake C. Consequently, the proto
ol P (t) is (1� 1=t)=n-fair.Proof. The proof of the �rst 
laim is by indu
tion on n. For n � 2t � 1, step (S0) appliesand p gets a fra
tion of at least 1=n � (t� 1)=(t(n� 1)), using t � n to obtain the inequality.For n � 2t, by Lemma 2(i), jLj � t and jRj � t in step (S4), thus we 
an use theindu
tion assumption for the re
ursive invo
ations of the proto
ol. Note also that by de�nitionxp = �p(CL) and 1� xp = �p(CR). We distinguish two 
ases.If in step (S4) the proto
ol assigns player p to L, then, using the indu
tive assumptionand Lemma 2(ii), player p re
eives at leastt� 1t(jLj � 1) � xp � t� 1t(jLj � 1) � jLj � 1n� 1 = t� 1t(n� 1) :If in step (S4) the proto
ol assigns player p to R, then, using the indu
tive assumptionand Lemma 2(iii), player p re
eives at leastt� 1t(jRj � 1) � (1� xp) � t� 1t(jRj � 1) � jRj � 1n� 1 = t� 1t(n� 1) :This 
ompletes the indu
tive proof of the �rst 
laim.To 
on
lude that the proto
ol is (1�1=t)=n-fair, note that (t�1)=(t(n�1)) � (1�1=t)=nfor n � t. In n < t, step (S0) applies and thus the proto
ol is 1=n-fair.It remains to examine the 
omplexity of the proto
ol.Lemma 4 If the 
ake is divided among n players a

ording to proto
ol P (t), then the playersaltogether make at most 2t(n� 1) 
uts. The number of evaluation queries is at most n2=t.Proof. By indu
tion on the number n of players. If n � 2t� 1, proto
ol P (t) be
omes theEven & Paz proto
ol. Hen
e, there are at most n log2 n � 2t(n � 1) 
uts and no evaluationqueries. For n � 2t, there are 2t 
uts made in step (S1). Moreover, by the indu
tiveassumption there are at most 2t(jLj � 1) and at most 2t(jRj � 1) 
uts made in the re
ursionin step (S6). Altogether, this yields at most 2t(jLj + jRj � 1) = 2t(n � 1) 
uts. Thereare n evaluation queries in step (S3), so by indu
tion, the number of evaluation queries isn+ (jLj2 + jRj2)=t � n2=t, using jLj; jRj � t and jLj+ jRj = n.Finally, let us prove Theorem 1. We use the proto
ol P (t) with t = d1="e. By Lemma 3,the proto
ol is (1� ")=n-fair. By Lemma 4, the total number of 
uts is at most 2d1="e(n� 1)and hen
e grows linearly in the number n of players; in addition the number of evaluationqueries is quadrati
 in n. 8



4 The proof of the lower boundIn this se
tion, we will prove the following theorem by means of an adversary argument in ade
ision tree.Theorem 5 In the restri
ted 
ake 
utting model of Se
tion 2 (where ea
h player is assigneda single interval), every deterministi
 fair 
ake division proto
ol for n players uses at least
(n log n) 
uts and evaluation queries in the worst 
ase.The adversary 
ontinuously observes the a
tions of the deterministi
 proto
ol, and herea
ts by �xing the measures of the players appropriately.Let us start by des
ribing the spe
i�
 
ake measures �p that the we uses in the inputinstan
es. Let " < 1=n4 be some small positive real number. For i = 1; : : : ; n we denote byXi � [0; 1℄ the set 
onsisting of the n points i=(n+ 1) + k" with 1 � k � n. Moreover, we letX = S0�i�nXi. For p = 1; : : : ; n, by de�nition the player p has his 0-point at position 0. Thepositions of the i=n-points with 1 � i � n are �xed by the adversary during the exe
utionof the proto
ol: The i=n-points of all players are taken from Xi, and distin
t players re
eivedistin
t i=n-points. As one 
onsequen
e, all the i=n-points of all players will lie stri
tly tothe left of all the (i+ 1)=n-points of all players.All the 
ake value for player p is 
on
entrated in tiny intervals Ip;i of length " that are
entered around his i=n-points: For i = 0; : : : ; n, the measure of player p has a sharp peakwith value i=(n2 + n) immediately to the left of his i=n-point and a sharp peak with value(n � i)=(n2 + n) immediately to the right of his i=n-point. Note that the measure betweenthe i=n-point and the (i+ 1)=n-point indeed adds up to 1=n. Moreover, the measures of thetwo peaks around every i=n-point add up to 1=(n + 1), and the intervals that support thesepeaks for di�erent players are always disjoint, with the ex
eption of the intervals Ip;0 that arethe same for all the players. We do not expli
itly des
ribe the shape of the peaks; it 
an bearbitrary, but determined in advan
e and the same for ea
h player.For every player p, the portions of the 
ake between interval Ip;i and interval Ip;i+1 havemeasure 0 and hen
e are worthless to p. By our de�nition of �-points, every �-point ofplayer p will fall into one of his intervals Ip;i with 0 � i � n. If a player p 
uts the 
ake atsome point x 2 Ip;i, then we denote by 
p(x) the 
orresponding i=n-point of player p.Lemma 6 Let x be a 
ut that was done by player s, and let y � x be another 
ut that wasdone by player t. Let J = [x; y℄ and J 0 = [
s(x); 
t(y)℄. If �p(J ) � 1=n holds for someplayer p, then also �p(J 0) � 1=n.Proof. (Case 1) If s = p and t = p, then let Ip;j and Ip;k be the intervals that 
ontain thepoints 
p(x) and 
p(y), respe
tively. Then �p(J ) � 1=n implies k � j + 1. The measure�p(J 0) is at least the measure (n � j)=(n2 + n) of the peak immediately to the right of thej=n-point plus the measure k=(n2 + n) immediately to the left of the k=n-point, and thesetwo values add up to at least 1=n.(Case 2) If s = p and t 6= p, then let Ip;j be the interval that 
ontains 
p(x). Then�p(J ) � 1=n implies that J and J 0 both 
ontain Ip;j+1, and again �p(J 0) is at least 1=n.Note that the argument works also if j = 0.(Case 3) The 
ase s 6= p and t = p is symmetri
 to the se
ond 
ase above.(Case 4) If s 6= p and t 6= p, then the interval between x and 
s(x) and the interval betweeny and 
t(y) both have measure 0 for player p. By moving these two 
uts, we do not 
hangethe value of J for p. 9



We 
all a proto
ol primitive, if in all of its 
ut operations Cut(p;�) the value � is of theform i=n with 0 � i � n.Lemma 7 For every proto
ol P in the restri
ted model, there exists a primitive proto
ol P 0in the restri
ted model, su
h that for every 
ake 
utting instan
e I of the restri
ted formdes
ribed above,� P and P 0 make the same number of 
uts on I,� if P applied to instan
e I assigns to player p a pie
e J of measure �p(J ) � 1=n, thenalso P 0 applied to instan
e I assigns to player p a pie
e J 0 of measure �p(J 0) � 1=n.Proof. Proto
ol P 0 imitates proto
ol P. Whenever P requests player p to 
ut at his �-pointx with 0 < � < 1, then P 0 
omputes the unique integer k withkn+ 1 < � � k + 1n+ 1Then P 0 requests player p to 
ut the 
ake at his k=n-point. Note that by the 
hoi
e of k, thisk=n-point equals 
p(x). The value of the 
uts at x and 
p(x) is the same for all the playersother than p, thus any following answer to an evaluation query is the same in P 0 and P.Furthermore, sin
e the shape of the peaks is predetermined and the same for all the players,from the 
ut of P 0 at 
p(x) we 
an determine the original 
ut of P at x. Consequently P 0 
ansimulate all the de
isions of P. When assigning pie
es, ea
h original 
ut x of P is repla
edby the 
orresponding 
ut 
p(x) of P 0. Clearly, both proto
ols make the same number of 
uts,and Lemma 6 yields that if P is fair, then also P 0 is fair.Hen
e, from now on we may 
on
entrate on some �xed primitive proto
ol P�, and onthe situation where all 
uts are from the set X. The strategy of the adversary is based on apermutation � of the integers 1; : : : ; n; this permutation � is kept se
ret and not known tothe proto
ol P�.Now assume that at some point in time proto
ol P� asks player p to perform a 
ut at hisi=n-point. Then the adversary �xes the measures as follows:� If �(p) < i, then the adversary assigns the i=n-point of player p to the smallest point inthe set Xi that has not been used before.� If �(p) > i, then the adversary assigns the i=n-point of player p to the largest point inthe set Xi that has not been used before.� If �(p) = i, then the adversary assigns the i=n-point of player p to the ith smallest pointin the set Xi.Consequently, any possible assignment of i=n-points to points in Xi has the following form:The player q with �(q) = i sits at the ith smallest point. The i� 1 players with �(p) � i� 1are at the �rst (smallest) i� 1 points, and the n� i players with �(p) � i+ 1 are at the last(largest) n � i points. The pre
ise ordering within the �rst i � 1 and within the last n � iplayers depends on the behavior of the proto
ol P�. When proto
ol P� terminates, then theadversary �xes the ordering of the remaining i=n-points arbitrarily (but in agreement withthe above rules). 10



Lemma 8 If �(p) � i � �(q) and p 6= q, then in the ordering �xed by the adversary thei=n-point of player p stri
tly pre
edes the i=n-point of player q.Proof. Immediately follows from the adversary strategy above.If the proto
ol P� asks a player p an evaluation query on an existing 
ut at i=n-pointof player p0, the 
urrent assignment of i=n-points to points in Xi and the permutation �determine if the i=n-point of player p is smaller or larger than that of p0 (for all the possibleresulting assignment obeying the rules above). This is all that is ne
essary to determine thevalue of the 
ut, and thus the adversary 
an generate an honest answer to the query.At the end, the primitive proto
ol P� must assign intervals to players: P� sele
ts n � 1of the performed 
uts, say the 
uts at positions 0 � y1 � y2 � � � � � yn�1 � 1; moreover, wede�ne y0 = 0 and yn = 1. Then for i = 1; : : : ; n, the interval [yi�1; yi℄ goes to player �(i),where � is a permutation of 1; : : : ; n.Lemma 9 If the primitive proto
ol P� is fair, then(a) yi 2 Xi holds for 1 � i � n� 1.(b) The interval [yi�1; yi℄ 
ontains the (i� 1)=n-point and the i=n-point of player �(i), forevery 1 � i � n.Proof. (a) If y1 is at an 0=n-point of some player, then y1 = 0 and pie
e [y0; y1℄ has measure0 for player �(1). If yn�1 2 Xn, then pie
e [yn�1; yn℄ has measure at most 1=(n+1) for player�(n). If yi�1 2 Xj and yi 2 Xj for some 2 � i � n � 1 and 1 � j � n� 1, then player �(i)re
eives the pie
e [yi�1; yi℄ of measure at most 1=(n+1). This leaves the 
laimed situation asthe only possibility.(b) Player �(i) re
eives the 
ake interval [yi�1; yi℄. By the statement in (a), this interval
an not 
over player �(i)'s measure-peaks around j=n-points with j < i � 1 or with j > i.The two peaks around the (i � 1)=n-point of player �(i) yield only a measure of 1=(n + 1);thus the interval 
annot avoid the i=n-point. A symmetri
 argument shows that the interval
annot avoid the (i� 1)=n-point of player �(i).Lemma 10 For any permutation � 6= id of the numbers 1 : : : n, there exists some 1 � i � nwith �(i + 1) � i � �(i).Proof. Take the minimum i with �(i+ 1) � i.Finally, we 
laim that � = ��1. Suppose otherwise. Then � Æ � 6= id and by Lemma 10there exists an i su
h that �(�(i + 1)) � i � �(�(i)):Let p := �(i + 1) and q := �(i), let zp denote the i=n-point of player p, and let zq denotethe i=n-point of player q. Lemma 8 yields zp < zq. A

ording to Lemma 9(b), point zpmust be 
ontained in [yi; yi+1℄ and point zq must be 
ontained in [yi�1; yi℄. But this implieszp � yi � zq and blatantly 
ontradi
ts zp < zq.11



This 
ontradi
tion shows that the assignment permutation � of proto
ol P� must be equalto the inverse permutation of �. Hen
e, for ea
h permutation � the primitive proto
ol mustrea
h a di�erent leaf in the underlying de
ision tree. After an evaluation query Eval(p;x),where x is a result of Cut(p0; i=n), for p 6= p0 and 1 � i < n, the proto
ol is returned oneof only two possible answers, namely i=(n + 1) or (i + 1)=(n + 1), indi
ating if Cut(p; i=n)is before or after x in Xi (if p = p0 or i 2 f0; ng, the answer is unique and trivial). Afterevery query Cut(p; i=n), the primitive proto
ol is returned one point of Xi: namely the �rstunused point if �(p) < i, the last unused point if �(p) > i, or the ith point if �(p) = i. Sin
ethe values in Xi are known in advan
e, the whole proto
ol 
an be represented by a tree witha binary node for ea
h possible evaluation query and a ternary node for ea
h possible 
ut.The depth of a leaf in the tree is the number of 
uts and evaluation queries performed for aninstan
e 
orresponding to a given permutation. Sin
e there are n! permutations, the maximaldepth of a leaf 
orresponding to some permutation must be at least log3(n!) = 
(n log n).This 
ompletes the proof of Theorem 5.5 Dis
ussionOne 
ontribution of this paper is a dis
ussion of various models and assumptions for 
ake
utting (that appeared in the literature in some 
on
ise and impli
it form) and a de�nitionof a restri
ted model that 
overs the best proto
ols known. This dis
ussion as well as bothour results show that evaluation queries play an important role, perhaps underestimated inprevious literature.The positive result seems to be the strongest possible result one 
an prove for approx-imately fair proto
ols as far as the number of 
uts is 
on
erned. However, the number ofevaluation queries is large, whi
h suggests the following problem.Problem 1 Design a deterministi
 (1� ")=n-fair 
ake division proto
ol that uses O(n) 
utsand as few evaluation queries as possible. In parti
ular, is it possible to use O(n log n) eval-uation queries?The lower bound of 
(n log n) on the number of 
uts and evaluation queries needed forsimple fair division with n players is proved in a restri
ted model. The model 
learly has itsweak points (see, again, the dis
ussion in Se
tion 2), and it would be interesting to providesimilar bounds in less restri
ted models. In parti
ular, we suggest the two open problems,related to the two restri
tions in our model.Problem 2 How many 
uts are needed if no evaluation queries are allowed (but any player
an be assigned several intervals)?Our lower bound argument seems to break down even for `slight' relaxations of the assumptionabout a single interval: On the instan
es from our lower bound, one 
an easily in O(n) 
utsassign to ea
h player two of the intervals of size " that support his measure and this is 
learlysuÆ
ient. And we do not even know how to make the lower bound work for the 
ase wherethe 
ake is a 
ir
le, that is, for the 
ake that results from identifying the points 0 and 1 inthe unit interval or equivalently when a single player 
an re
eive a share of two intervals, one
ontaining 0 and one 
ontaining 1. (Anyway, the 
ir
le is 
onsidered a non-standard 
ake andis not treated anywhere in the 
lassi
al 
ake 
utting literature [1, 8℄.) Thus the restri
tion to12



a single subinterval share for ea
h player seems very signi�
ant in our lower bound te
hnique.On the other hand, all the proto
ols known to us obey this restri
tion.Problem 3 How many 
uts are needed if any player is required to re
eive a single subinterval(but evaluation queries are allowed and free)?With evaluation queries, our lower bound breaks, sin
e the de
ision tree is no longer ternary.After performing a 
ut, we may learn that �(p) < i or �(p) > i, in whi
h 
ase we gain noadditional information. However, on
e we �nd i su
h that �(p) = i, the proto
ol �nds out allvalues of p0 satisfying �(p0) < i and we 
an re
urse on the two subinstan
es. We 
an use thisto give a proto
ol that uses only O(n log log n) 
uts (and free evaluation queries) and workson the instan
es from our lower bound.It would be very desirable to prove a lower bound for a model in
luding free evaluationqueries, or perhaps �nd some trade-o� between 
uts and evaluation queries. The perfe
tlyfair proto
ols typi
ally use only limited evaluations like \Is your measure of 
ake pie
e Z less,greater, or equal to the threshold �?" or \Is your measure of 
ake pie
e Z1 less, greater, orequal to your measure of 
ake pie
e Z2?". Perhaps handling these at �rst would be morea

essible. We hope that this problem 
ould be atta
ked by a similar lower bound te
hniqueusing the de
ision trees in 
onne
tion with a 
ombinatorially ri
her set of instan
es.Another interesting question 
on
erns the randomized proto
ols. The randomized proto
olof Even & Paz [3℄ uses an expe
ted number of O(n) 
uts and �(n log n) evaluation queries.Can the number of evaluation queries be de
reased? Or 
an our lower bound be extended torandomized proto
ols?Finally, let us remark that our model seems to be in
omparable with that of Magdon-Ismail, Bus
h & Krishnamoorthy [5℄. The set of instan
es for whi
h they prove a lowerbound of 
(n log n) on the number of 
omparisons 
an be easily solved with O(n) 
uts withno evaluation queries even in our restri
ted model. On the other hand, they prove a lowerbound for proto
ols that have no restri
tion similar to our requirement of assigning a singlesubinterval to ea
h player. The 
ommon feature of both models seems to be exa
tly thela
k of ability to in
orporate the free evaluation queries; note that using an evaluation querygenerates at least one 
omparison.A
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