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1 Introduction
We need the following terinology.

Notation 1.1 Let W € NUw. Let k,c € N.

1. A monochromatic k-AP is an arithmetic sequence of length k where all of the elements

of it are the same color. Henceforth we use the abbreviation mono k-AP.

2. A rainbow k-AP is an arithmetic sequence of length k£ where all of the elements have

different colors. Henceforth we use the abbreviation RB k-AP.
Recall VDW’s Theorem:

Theorem 1.2 For all k, c there exists W = W (k, c) such that for all COL: [W] — [c] there

18 a mono k-AP.

What if there is no bound on the number of colors? Clearly there is a coloring of w
without a mono k-AP: COL(x) = z. However, in that coloring, you have a k-RB. This

counterexample motivates the Can VDW Theorem:
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Theorem 1.3 For all k there exists C = W (k such that for all COL: [C] — N there is
either a mono k-AP or a RB k-AP.

We present several proofs of the Can VDW theorem and discuss their pros and cons.

2 Proof that Does Not Use Gallai-Witt

2.1 The Set Up

We will prove a generalization of the Can VDW theorem which effectively loads the induction
hypothesis. There are several changes we make:
1) We replace the range N with the range N™. This may seem trivial; however, the next

item will use the new range in an interesting way.

Notation 2.1 Let C,m € N. Let COL: [C] — N™. Then COL;: [C] — N™ is the function

that, on input z, outputs the ith element of COL(x).
2) We will redefine mono k-AP and RB k-AP.

Def 2.2 Let k,m,C € N. Let COL: [C] — N™.

1. A mono k-AP is a sequence a,a +d, ...,a+ (k — 1)d such that

(31 < i < m)[COLs(a) = COL;(a+d) = - -- = COL;(a + (k — 1)d)].

Note that this new definition of mono k-AP is weaker then the usual definition of mono

k-AP which would insist that

(V1 < i < m)[COL;(a) = COLy(a +d) = - -- = COL(a + (k — 1)d)].



Also note that if m = 1 then the old and new definition of mono k-AP are the same.

2. A RB k-APis a sequence a,a+d,...,a+ (k — 1)d such that

V0<z<y<k-—1)(Vl<i<j<m)[COL;(a+ zd) # COL;(a+ yd)].

For example, we have.

{COLy(a+ 2d), COLy(a + 2d), ..., COLy(a + (k — 1)d)}[ )

{COL;(a + 7d), COLy(a + 7d), ..., COLy(a + (k — 1)d)} = 0

Note that this new definition of RB k-AP is stronger then the usual definition of RB

k-AP which would only requires

V0<z<y<k-—1)31 <i<m)[COL;(a+ zd) # COL;(a + yd)].
Also note that if m = 1 then the old and new definition of RB k-AP are the same.

3) We will prove the following asymmetric version of the Can VDW: For all k,¢,m € N there

exists C' such that, for all COL: [C] — [N]™, one of the following occurs:
e There is a mono k-AP.
e There is a RB t-AP.

This theorem implies the Can VDW theorem by setting ¢t = £ and m = 1.



2.2 The Proof

Theorem 2.3 For all k,t,m € N there exists C' such that, for all COL: [C] — [N]™, one of

the following occurs:
e There is a mono k-AP.

o Thereis a RBt-AP.

Proof:
We prove this by induction on t.
Base Case: t = 1. For any k, m can take C'(k,1,m) = 1.
The t = 1 case is so trivial that we do the ¢t = 2 case.
Base Case: t = 2. Let COL: [C] — N™ where we determine C' later.
If there is a RB 2-AP then we are done. So assume there is no RB 2-AP. Let
COL(1) = (c1, .-+, Cm)-
For all > 2, there has to be an i, j such that COL;(x) = ¢;. We define a coloring using
this fact.
COL': [C] — {1} — [m] x [m] is defined by
COL/(z) = (i,5) where COL;(z) = ¢;.
We want to use VDW’s theorem on COL’. Let C' = W (k,m) + 1. Then there exists

a,d, i, such that

COL/(a) =COL/(a+d) =--- = COL'(a + (k — 1)d) = (i, 7).

Note that

COL;(a) = COL;(a +d) = - = COL;(a + (k — 1)d) = ¢;.



Hence we get a mono k-AP.
Case that contains most of the ideas: t = 3, m = 1 We can assume that, for all k£, m,
C(k,2,m) exists.

Let COL: [C] — N where we determine C' later.

Break [C] into (suggestively named, TBD) C” blocks of size (suggestively named, TBD)
m. Call the blocks By, B, ..., Bor.

We define a coloring

COL': [C"] — N™ by

COL/(z) = (COLy(B,),COLy(By,),...,COLy(B,))

We take C' > C(k,2,m).

Inductively we have two cases.
Case 1: There is a mono k-AP, in which case we are done (overdone really since we would
have a mono k-AP under the old definition)
Case 2: There is a RB 2-AP z,y. Let z be such that z,y, z is a 3-AP. In order for z to be
in the domain of COL'. we need C" > 2C(k,2,m).

Let A, D, M be such that

o B,=(AA+1,...,M—2,M—1,M)
e B,=(A+D,A+D+1....M+D~2,M+D—1,M + D)
e B.=(A+2D,a+2D+1...,M+2D—2 M+2D —1,M +2D)

Since z,y is a RB 2-AP we have

(1) {COL(A), COL(A+1), COL(A+2),...,COL(M)}N{COL(A+D), COL(A+D+1), COL(A+2), ...

We consider COL(M + 2d). Look at each 3-AP (written backwards)
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M +2D,M + D, M

M+2D,M+D —1,M —2
M+2D,M+D—2 M —4
M+2D,M+D—3,M—6

M+2DM+D —x, M — 2z

M+2D,M+D— =44
Lets look at M +2D, M+ D —x, M —2z. We know that COL(M+ D —xz) # COL(M —2z)
by (1). If COL(M +2D) ¢ COL(M + d — x) # COL(M — 2z) then we would have a RB

3-AP. This observation motivates the following coloring.

COL": B, — [2]

COL () 1 ifCOL"(w) = COL(M + 2D) "

2 ifCOL"(w) # COL(M + 2D)

We will take M (the size of the blocks) to be at least W (2, k). Hence we apply VDWs
Theorem to COL’ and get two cases.
Case 2.1: There is a mono k-AP with color 1. The mono k-AP actually a mono k-AP with
color COL.
Case 2.2: There is a mono k-AP with color 2. So we have

COL(M + 2D) # COL(M + D) and COL(M + D) # COL(M). If COL(M + 2D) #
COL(M) then we have a RB 3-AP hence we can assume COL(M + 2D) = COL(M).

Similarly COL(M + 2D) = COL(M — 2).

Similarly, for 1 <z <0, COL(M +2D) = COL(M + D — x).



Hence we have the following mono k-AP.

AALL .. M
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