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1 Introduction

We need the following terinology.

Notation 1.1 Let W ∈ N ∪ ω. Let k, c ∈ N.

1. A monochromatic k-AP is an arithmetic sequence of length k where all of the elements

of it are the same color. Henceforth we use the abbreviation mono k-AP.

2. A rainbow k-AP is an arithmetic sequence of length k where all of the elements have

different colors. Henceforth we use the abbreviation RB k-AP.

Recall VDW’s Theorem:

Theorem 1.2 For all k, c there exists W = W (k, c) such that for all COL: [W ]→ [c] there

is a mono k-AP.

What if there is no bound on the number of colors? Clearly there is a coloring of ω

without a mono k-AP: COL(x) = x. However, in that coloring, you have a k-RB. This

counterexample motivates the Can VDW Theorem:
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Theorem 1.3 For all k there exists C = W (k such that for all COL: [C] → N there is

either a mono k-AP or a RB k-AP.

We present several proofs of the Can VDW theorem and discuss their pros and cons.

2 Proof that Does Not Use Gallai-Witt

2.1 The Set Up

We will prove a generalization of the Can VDW theorem which effectively loads the induction

hypothesis. There are several changes we make:

1) We replace the range N with the range Nm. This may seem trivial; however, the next

item will use the new range in an interesting way.

Notation 2.1 Let C,m ∈ N. Let COL: [C]→ Nm. Then COLi : [C]→ Nm is the function

that, on input x, outputs the ith element of COL(x).

2) We will redefine mono k-AP and RB k-AP.

Def 2.2 Let k,m,C ∈ N. Let COL: [C]→ Nm.

1. A mono k-AP is a sequence a, a + d, . . . , a + (k − 1)d such that

(∃1 ≤ i ≤ m)[COLi(a) = COLi(a + d) = · · · = COLi(a + (k − 1)d)].

Note that this new definition of mono k-AP is weaker then the usual definition of mono

k-AP which would insist that

(∀1 ≤ i ≤ m)[COLi(a) = COLi(a + d) = · · · = COLi(a + (k − 1)d)].
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Also note that if m = 1 then the old and new definition of mono k-AP are the same.

2. A RB k-AP is a sequence a, a + d, . . . , a + (k − 1)d such that

(∀0 ≤ x < y ≤ k − 1)(∀1 ≤ i < j ≤ m)[COLi(a + xd) 6= COLj(a + yd)].

For example, we have.

{COL1(a + 2d),COL2(a + 2d), . . . ,COL2(a + (k − 1)d)}
⋂

{COL1(a + 7d),COL2(a + 7d), . . . ,COL7(a + (k − 1)d)} = ∅

Note that this new definition of RB k-AP is stronger then the usual definition of RB

k-AP which would only requires

(∀0 ≤ x < y ≤ k − 1)(∃1 ≤ i ≤ m)[COLi(a + xd) 6= COLi(a + yd)].

Also note that if m = 1 then the old and new definition of RB k-AP are the same.

3) We will prove the following asymmetric version of the Can VDW: For all k, t,m ∈ N there

exists C such that, for all COL: [C]→ [N]m, one of the following occurs:

• There is a mono k-AP.

• There is a RB t-AP.

This theorem implies the Can VDW theorem by setting t = k and m = 1.
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2.2 The Proof

Theorem 2.3 For all k, t,m ∈ N there exists C such that, for all COL: [C]→ [N]m, one of

the following occurs:

• There is a mono k-AP.

• There is a RB t-AP.

Proof:

We prove this by induction on t.

Base Case: t = 1. For any k,m can take C(k, 1,m) = 1.

The t = 1 case is so trivial that we do the t = 2 case.

Base Case: t = 2. Let COL: [C]→ Nm where we determine C later.

If there is a RB 2-AP then we are done. So assume there is no RB 2-AP. Let

COL(1) = (c1, . . . , cm).

For all x ≥ 2, there has to be an i, j such that COLi(x) = cj. We define a coloring using

this fact.

COL′ : [C]− {1} → [m]× [m] is defined by

COL′(x) = (i, j) where COLi(x) = cj.

We want to use VDW’s theorem on COL′. Let C = W (k,m) + 1. Then there exists

a, d, i, j such that

COL′(a) = COL′(a + d) = · · · = COL′(a + (k − 1)d) = (i, j).

Note that

COLi(a) = COLi(a + d) = · = COLi(a + (k − 1)d) = cj.
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Hence we get a mono k-AP.

Case that contains most of the ideas: t = 3, m = 1 We can assume that, for all k,m,

C(k, 2,m) exists.

Let COL: [C]→ N where we determine C later.

Break [C] into (suggestively named, TBD) C ′ blocks of size (suggestively named, TBD)

m. Call the blocks B1, B2, . . . , BC′ .

We define a coloring

COL′ : [C ′]→ Nm by

COL′(x) = (COL1(Bx), COL2(Bx), . . . , COLm(Bx))

We take C ′ ≥ C(k, 2,m).

Inductively we have two cases.

Case 1: There is a mono k-AP, in which case we are done (overdone really since we would

have a mono k-AP under the old definition)

Case 2: There is a RB 2-AP x, y. Let z be such that x, y, z is a 3-AP. In order for z to be

in the domain of COL′. we need C ′ ≥ 2C(k, 2,m).

Let A,D,M be such that

• Bx = (A,A + 1, . . . ,M − 2,M − 1,M)

• By = (A + D,A + D + 1 . . . ,M + D − 2,M + D − 1,M + D)

• Bz = (A + 2D, a + 2D + 1 . . . ,M + 2D − 2,M + 2D − 1,M + 2D)

Since x, y is a RB 2-AP we have

(1) {COL(A),COL(A+1),COL(A+2), . . . ,COL(M)}∩{COL(A+D),COL(A+D+1),COL(A+2), . . . ,COL(M+D)} = ∅

We consider COL(M + 2d). Look at each 3-AP (written backwards)
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M + 2D,M + D,M

M + 2D,M + D − 1,M − 2

M + 2D,M + D − 2,M − 4

M + 2D,M + D − 3,M − 6
...

M + 2D,M + D − x,M − 2x
...

M + 2D,M + D − M−A
2

, A

Lets look at M+2D,M+D−x,M−2x. We know that COL(M+D−x) 6= COL(M−2x)

by (1). If COL(M + 2D) /∈ COL(M + d − x) 6= COL(M − 2x) then we would have a RB

3-AP. This observation motivates the following coloring.

COL′′ : By → [2]

COL′′(w) =


1 ifCOL′′(w) = COL(M + 2D)

2 ifCOL′′(w) 6= COL(M + 2D)

(1)

We will take M (the size of the blocks) to be at least W (2, k). Hence we apply VDWs

Theorem to COL′ and get two cases.

Case 2.1: There is a mono k-AP with color 1. The mono k-AP actually a mono k-AP with

color COL.

Case 2.2: There is a mono k-AP with color 2. So we have

COL(M + 2D) 6= COL(M + D) and COL(M + D) 6= COL(M). If COL(M + 2D) 6=

COL(M) then we have a RB 3-AP hence we can assume COL(M + 2D) = COL(M).

Similarly COL(M + 2D) = COL(M − 2).
...

Similarly, for 1 ≤ x ≤ 0, COL(M + 2D) = COL(M + D − x).
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Hence we have the following mono k-AP.

A,A + 1, . . . ,M
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