INFORMATION AND CONTROL 11, 323-340 (1967)

A Regularity Test for Pushdown Machines

R. E. STEARNS

General Electric Research and Development Center, P.O. Bozx 8,
Schenectady, New York 12301

It is possible to test a deterministic pushdown machine to deter-
mine if the language it recognizes is regular.

The object of this paper is to show that, given a deterministic push-
down recognition machine, it is possible to determine if the set of input
strings it recognizes is regular. In particular, we will show that if the set
is regular, then the number of states in the reduced state machine which
recognizes the set may be bounded by an expression of the order

{2

(when ¢, ¢ > 1) where ¢ is the number of control states of the push-
down machine and ¢ is the size of the pushdown tape alphabet. There-
fore, one solution to our problem is to test all finite state machines of that
size or less to see if one of them recognizes the same set as the pushdown
machine,

The method of proof is to take the pushdown machine and extract a
finite state machine which is equivalent to the pushdown machine when-
ever it recognizes a regular set. An alternate solution to the problem is to
construct this candidate machine and test it. This improved method is
also unsatisfactory as a practical algorithm, so we omit proof that this
machine can be obtained constructively; the first solution being sufficient
to establish our objective.

We spare the reader and the writer considerable hardship by defining
the pushdown machine and proving the basic self-evident lemmas on a
slightly informal basis. The symbol A will be used to represent a null
sequence.

DEriNiTiON 1. A general (deterministic on-line) pushdoun machine
is a finite state control with the capability of reading inputs and storing
an arbitrary string of symbols from finite tape alphabet X. When this
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string is non-null, the leftmost symbol is referred to as the top symbol;
otherwise we call A the top symbol. The string is called a fape word as it
may be pictured as being stored on a vertical Turing machine tape, the
top symbol being under the reading head, and the remaining symbols
stored below. A machine configuration ¢ is represented as an ordered
pair (s, w) where s is from the set S of control states and w = =z, -+ - 21
is the tape word from X¥, the set of strings over X. The machine changes
from configuration to configuration under machine operations deter-
mined by the control state, top tape symbol, and sometimes an input
symbol.

There are three kinds of pushdown machine operations; the pushdown
operation, the write operation, and the pop-up operation. A pushdown
operation consists of adding a new tape symbol to the left (top) of the
stored tape word and changing the control state. A write operation con-
sists either of replacing the non-null top symbol with a new tape symbol
and changing control state or else changing control state without altering
the (possibly null) tape word. A pop-up operation eonsists of deleting the
leftmost syrmbol of a non-null tape word and changing control state.

With certain (stable) combinations of control state and top tape sym-
bol, an input symbol is read and the next machine operation determined
by the combination of input symbol, control state, and tape symbol.
The remaining (unstable) combinations of state and tape symbol deter-
mine the next operation without reading an input. These latter opera-
tions are commonly called e-moves. If input ¢ in A is read and configura-
tion ¢; changes to configuration ¢; under the resulting operation, we write

a0,
If ¢; changes to ¢; under an e-move orif ¢; = ¢, , we write
A
C1~—> C2 .

This notation extends inductively to sequences of inputs under the fol-
lowing rule:

ab e and 6235 ¢ implies ¢ -227% ¢,

where ¢, ¢, and ¢; are configurations, «; and . are input strings, and
a0 is the concatenation of «; and s .

DErFINITION 2. A pushdown recognition machine is a general pushdown
machine with a designated starting configuration ¢, with null tape word
and a designated subset of the stable combinations in SX(X U {A})
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called accepting combinations. Those configurations which have an ae-
cepting combination of control state and top tape symbol are called
accepting configurations. A sequence of inputs e is said to be accepted or
recognized by the machine if and only if

Cu-—o—‘> C1,

for some accepting configuration ¢; . The set of all « accepted by the ma-
chine is called the set recognized by the machine.

Pushdown machines are sometimes defined to allow slightly more
general operations such as pushing down a string of tape symbols or
writing and pushing in a single operation. These variations are easily
simulated on our type pushdown machine, so no generality is lost. Simi-
larly, the case of a starting configuration with a non-null tape word is no
problem either.

The essential notation introduced above may be summarized as fol-
lows:

Set Element  String Set Size

Input A a @ —
State 8 s — q
Tape X T ) ¢

Configuration: ¢ = (s, ) or ¢ = (8 , %4 -+ + Z1)
Starting configuration: ¢
Null string: A

A NON-REGULARITY CONDITION

In this section, we give a condition for non-regularity that we plan to
exploit in the main proof. First, we must define an equivalence relation
on A¥, the set of all input strings.

DerintTioN 3. For a given language L over alphabet 4, we write
o = ay for oq and as in A¥ if and only if a; and a. are either both in L
or both not in L. We write «; % o otherwise.

TuaroreM 1. A language L over alphabet A is non-regular if, for some
o1, o0, 03, ar, and oy in A%, the following two conditions hold:

(i) foralld, j, &k = 0,
a;ozgiagafa;, = ala§+ka3ai+ka5 3

(ii) there exists an £ such that for all 7 = ¢,
0y 305 ¥ oo

Proof. Suppose that there is a finite state machine M that recognizes
L. For each integer #, let s, be the state of 3 that results from input
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'4 . .. ..
sequence ajas where a; , @, and £ are as in condition (ii). If n; < na,
then states s,, and s,, can be distinguished by the sequence azaf’ as
because

(011&31‘)(01301216 015) = Qs

and

aénz—nl)l

(a5 ? ) (et as) = o 30ty

by condition (i) and

{n —nl)l
3 2

oo #E e Q05

by condition (ii). But this means that 3/ has an infinite number of states,
contrary to our hypothesis. - Q.E.D.
The effect of our proof will be to show that Theorem 1 becomes an
“if and only if” result when L is a set recognized by a pushdown machine.
Thus a non-regular pushdown language has a non-regular context-free
subset which is bounded in the sense of Ginsburg and Spanier (1964).

BASIC RELATIONS

The primary purpose of this section is to define two relations |(a)
and 7(a) and derive some of their basic properties. These relations are
both special cases of the relation 5, the first being a generalized push-
down and the other a generalized pop-up. '

DeriNtTION 4. If o is an input sequence and ¢ and ¢ are configura-
tions, we write ‘
ela) ¢,
if and only if there is a sequence of configurations ¢ - -+ ¢, and corre-
sponding a;in A U {A} for 1 <4 < rsuchthat ¢, = ¢, ¢ = ¢, each ¢;
for r = 7 > 1 has a longer tape word than ¢ and results from ¢;_; by a
single operation with input a;;, and « is the concatenation of the ay
(le.a=a - @gifr>1landae = Aifr = 1).

DeriniTioN 5. If @ is an input sequence and ¢ and ¢ are configura-
tions, we write

¢1(a) d,

if and only if there is a sequence of configurations ¢; - - - ¢, and corre-
sponding a; in A U{A} for1l = 7 < rsuch that ¢, = ¢, ¢, = ¢, each c¢;
forr > j = 1has a longer tape word than ¢, eachc;forr = j > 1 results
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from c¢;— by a single operation with input @;—1, and « is the concatena-
tion of the a: .

Note that ¢ T(A) ¢ and ¢ [(A) ¢ always hold since we can take
¢c=ocandr = 1.

The first lemma relates the new relations to the previously defined
relation 5,

Lemuva 1. Ifc = (s,2, -+ - 21) Ond ¢ = (s, xn -+ x) are configura-
tions and o is an input sequence such that ¢ % ¢, then

(i) n = m implies there exists on s, in Q and oy and oy in A™ such
that ¢ % (sn, & -+ 2 ) L) ¢ and @ = ayas ;

(il) n = m implies there exist a unique s, in @ and unique oy and
asin A¥ such that ¢ T(cn) (Sm, Tm -+ 1) % c.

Progf. The relation ¢ = ¢ implies that there is some sequence of con-
figurations ¢ - - - ¢ and corresponding a; in A U {A} for 1 £ ¢ < r
such that ¢; = ¢, ¢, = c anda; «+- @, = a.

In case (i), we choose ¢; to be the last configuration of this series with
tape word of length n. We let s, be the state of ¢x, v = @ -+ - %1,
and oz = @ - a,; . In going from ¢ to ¢, , there was no opportunity
for the tape symbols of ¢ to be altered and so the tape word of ¢, must
be precisely z, -+ x'. The sequence ¢ - - - ¢, satisfies Definition 4 and
8o (1) is proved.

In case (ii), we choose ¢ to be the first configuration of the series with
tape word of length m, let s,, be the state of ¢, and let oy = 61 - - - @44
and as = @ --- @,—1. There is no opportunity for changing symbols
of ¢ between ¢; and ¢; and so the tape word of ¢ is precisely =, - - 21 .
Because the machine is deterministic and because ¢; occurs prior to the
first occurrence of ¢ in the sequence ¢; - - - ¢, @ and ¢ determine s,
and o uniquely. Q.E.D.

Except for certain subeases of the case where ¢’ goes into itself under
a non-trivial sequence of emoves, the s,, o1, and a of part (i) are
also unique, although we have no application of this fact here. There
are never more than two possible values for s, and o; .

The next lemma shows that the defining property of the relation 2
also holds for the stronger relations | (a) and T(a).

Lremma 2. (Concatenation property) For all configurations ¢ , ¢ , and
¢s and all oy and oy in A%,

(1) & () e and e [(an) ez implies ¢; | (anay) o5 ;
(i1) ¢ T(en) ¢ and e T(ez) ¢z vmplies ¢; T(eqo) c3.
Proof. The required sequence for ¢; [(aes) ¢; is obtained by taking
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the sequence for ¢ [(ay) ¢ and extending it with the sequence for
¢z (@) ¢;. The proof of (ii) is similar. QE.D.

Lemva 3. (Independence property) For all control states s and s, all
tape words wy , ws , wy , and all tnput words «,

(1) (s, @) L) (s, wes) implies (s, ws) [(a) (s, wws) whenever
we and ws have the same first symbol;

(i) (s, @a) T(a) (5, @) implies (s, wies) T(a) (5, ws).

Proof. The sequence of operations required by Definition 4 are com-
pletely determined by the top symbol of w: as w, is simply pushed down
and not looked at again. Thus the machine will do the same with any
ws that has the same top symbol as w.. In part (i), we does not affect
the intermediate operations at all and thus any substitute for ws would
cause the identical sequence of operations and result in the corresponding
configuration. Q.E.D.

LemMa 4. (Factor property) Let ¢ and ¢ be configurations with tape
words of length n and m respectively, let x, -+ - 21 be the tape word of ¢,
and let @ be an input sequence.

(1) If ¢ [(a) ¢, then n = m ond there exist control stales s; for
m = 1 = nond mput sequences a;; for m = 1 = 7 = n such
thatform £ 12572k En

(a’) c= (Sn’xn xl),

(b) C’ = (Smy T+ * £L'1),

() @ = am,

(d) (siy @i+ m) [(oi) (si,25 - @),
(e) asjap = au.

(i) If ¢ (@) ¢, then n = m and there exist unique conirol stales s;
form = ¢ £ nand unique input sequences a;forn Z1Zj = m
suchthotforn =z 1252k = m

(a) ¢ = (Sn,@n - 1),

(b) C’ = (sm y L * 0 * 1’1)7

(e) a = aun,

(d) (sz y &g ® xl) T(aii) (SJ' y Lj xl),
(e) ajjoz = azk

Proof The relation ¢ [(a) ¢ 1mphes at once that n = m. Letting
¢; - -+ ¢ be a sequence of configurations and ¢ -+ - a,—1 & sequence of
inputs which satisfy Definition 4 in justification of the relation ¢ |(a) ¢,
let ¢(7) be the index of the last configuration in the series with tape
length . Let s; for m < ¢ < n be the control state of configuration ¢, .
The fact that ¢; = ¢ has tape length n insures that ¢(n) = r. Therefore,
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s, 1s the control state of ¢ = ¢,y and equation (a) is established. None
of the inputs @, to a,_; can change the 7 tape symbols of ¢, since
these inputs result in configurations with more than ¢ tape symbols.
This means that the 7 tape symbols at ¢,y are just the last < tape symbols
of ¢, i.e.,

Coty = (8i,Ti+ -+ Ti),

for m £ ¢ £ n. Since ¢ is the last configuration in the series with tape
length m, o(m) = 1 and ¢,y = ¢. Equation b is a statement of this
fact. Now form £ 7 £ m, we define a;; = Aandform 21 < j = n
we define

Qif = Qo) *** Go()—1 -

This definition is valid since ¢ < j implies o(¢) < ¢(j). Equation (e)
is immediate from this definition and (¢) follows from the fact that
o(m) = 1and o(n) = . Relation (d) says that ¢, [{as;) ¢ and this
is true because ¢,y -+ C.¢;y and corresponding ¢, satisfy Definition 4.
For part (ii) take the configuration series ¢; --- ¢, of Definition 5
and let o(7) be the index of the first configuration in the series with
tape length 7. Now define s; and «;; as above using this new series and
the equations follow as before. As in the proof of Lemma 1, the deter-
ministic nature of the machine insures that the s; and «;; are unique.
Q.E.D.
The uniqueness of the configuration sequence associated with ¢ T(a) ¢
implies some further special properties. Analogous results hold for the
non-pathological pushdown cases, but they are not needed.
Lumya 5. For configurations ¢, ¢, ¢z, tnput words o, oq, on, and
integer n;
(1) & T(ay) ez and ¢; T(onen) ¢ implies az = A;
(i1) o T(a) ¢ and ¢; T(a) c; smplies that ¢ T(A) ¢z or c3 T(A) ¢z ;
(iil) there is at most one configuration ¢ with tape word of length n
such that ¢ T(a) ¢
Proof. No continuation of the configuration sequence for ¢; T(a:) ¢
can be used to justify ¢ T(eucz) ¢ as ¢; has the same tape length as
itself. Therefore, a» must be A. The configuration sequence associated
with ¢; T(a) ¢ must be a prefix of that sequence associated with ¢; 7
(a)es in which case ¢, T(A) ¢, or the reverse must hold in which case
¢s T(A) ¢ . Configuration ¢ must be the first configuration of length
n (if any) resulting from ¢; under input word c. Q.E.D.
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Finally, we relate the pop-up relation to distinguishing sequences.
Input sequence « is said to distinguish configurations ¢ and ¢ if «
carries exactly one of the configurations into an aceepting configuration.

Lemma 6. If o distinguishes between configurations ¢ = (s, ww) and
¢, = (8, wws), then there are input sequences oy and oy and state s such
that

(8) & T(e) (5, n);

(b) e T(en) (5, w2);

(¢) oy = a.

Proof. Because o must distinguish between ¢; and ¢, it must cause
both configurations to pop up enough tape symbols to reach w; and w.
respectively. Letting oy be the substring which causes ¢; to do this and
letting (s, 1) be the first configuration with tape length equal to the
length of w;, we have relation (a) immediately. Relation (b) follows
from the independence property and (¢) follows when we let a» be the
remainder of a. Q.E.D.

NULL TRANSPARENT WORDS

We now consider a special type of tape word which goes into the
central proof.

DeriNiTION 6. A word o in X* is called null transparent if and only
if for all s and s in S,

(s, @) T(A) (s, 4) implies (s, @) T(4) (5, A).

The key property of null transparent words is that if such a word is
popped up by a series of emoves, any additional copies of the word will
be eliminated by additional emoves and the control state entered will
be independent of the number of copies eliminated. Thus all the informa-
tion as to the number of additional copies is wiped out. In short, if one
copy is popped with e-moves, all are popped. This property may be
stated more usaefully as follows.

TrROREM 2. Suppose ¢ = (s, wwi) s o configuration and « is null
transparent. For each o in A*, there is an integer £ such that a cannot
distinguish between

(s, w'w) and (s, o’'w),

foralld,j = £
Proof. Choose ¢ to be one greater than the length of a. Assume that
i = 7 = £ and that « does distinguish between ¢; = (s, o'w1) and ¢; =
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(s, w'w;). Because
e = (s, o' (0 ),
it follows from Lemma 6 that there must be a1, as, and s, such that
(s, w'er) T(en) (50, @)
and ayey = «. It follows from the factor property (Lemma 4) that there
exist &y and s, for j = k& = 1 such that a; may be written uniquely as
o = Q/.’j"' a’;,
where
(s, wr) T(es) (8, 0 an),
forj = k = 1. Since the number of symbols in « is less than 7, one of the

o' ; must be null, say o' ,, . Applying the concatenation property (Lemma
2) to Definition 6,

(8m s “’i_j) T(A) (8me1y A).
Applying the independence property (Lemma 3) gives

(Smy 07 7en) T(A) (Spez, @™ o).

Also
(8, w'en) 1o+ ') (8w, 0 "ar),
which together with
(Smeg s @™ 00) T(ame -+ &1) (80, w1), (fm>1),
yields

¢i T(en) (0, w1,

by concatenation. No proper prefix of a; can distinguish ¢; and ¢; be-
cause then a proper prefix oy of a; would satisfy

C; T(a/l) (80 3 601),

in violation of Lemma 5(i). Since & carries both ¢; and ¢; into (s, w1),
no continuation of oy can distinguish ¢; from ¢; . Thus o = oy cannot
distinguish ¢; from c¢; , contrary to our assumption. Q.E.D.

A second important property of null transparent words is that they
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may be found embedded in any tape word of sufficient length. This
may be stated more generally as follows:

THEOREM 3. If 2, - - - 1 4 a tape word and N 1is a set of at least ¢! + 1
distinct integers less than n, then there exist ¢ and f in N, e > f, such that
Ze *** Xyar 18 nUll tronsparent.

Proof. We will say that state s has property P with respect to N if
and only if

(a) (8% m) T(A) (s, 2+ ),
for all < and j in N such that 7z > j.

For purposes of induction, we consider case m, 7 < m = ¢, where
the set of integers N, has at least m! 4 1 elements and at most m states
of @ do not have property P. The case m = q is just a statement of the
theorem. We will show that in those cases where the max and min of
N, are not suitable e and f, the problem may be reduced to solving the
case m — 1 for a subset of N,, . The max and min of N; will be shown to
be always suitable and the theorem will therefore be true by induection.

Let ¢ and f be the maximum and minimum of N,, . Because N,, has
at least two members, e > f. If 2, - -+ 241 is not null transparent, let
s, and s; be the states such that

(b) (8, @e -+ mr41) T(A) (87, A),
but not

(€) (8, @ --* xp41) T(A) (87, A).
State s; cannot have property P because relation (a) with¢ = ¢, = f,
and s = s; implies relation (¢) by the independence property.

Relation (b) implies, by independence, that

(Se,xe xl) T(A) ('S'fvxf xl)-

Factoring this relation aecording to Lemma 4, we consider some s; for
7 in N, . Because a;y = A, state s; cannot have property P, as this
would imply s; = s; by relation (a) and Lemma 5iii and we have already
shown that s; does not have property P. In case m = 1, all these s;
must be the same state, namely the state without property P, and s,
must equal s; making relations (b) and (c¢) identical. This is contrary
to the assumption that (b) is true and (e¢) is false and we conclude that
e and f do satisfy the theorem for case m = 1. In case m > 1, divide
N.., into m-equivalence classes according to the relationship

1=7 ifandonlyif s; = s;.

One of these classes must have at least (m — 1)! 4 1 elements (since
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N, has more than m(m — 1)! elements) and we call this set N, .
The m states which had property P with respect to N ,, also have prop-
erty P with respect to subset N,—; and the state s which determined
the equivalence class N, also has property P since

(8 i -+ zpen) T(A) (s, 25 -+ 2741),

implies (a) by the independence property. Therefore case m has been
reduced to case m — 1 and the theorem is proven. Q.E.D.
CoroiLARY 3.1. For pushdoun machines without e-moves, Theorem 3
holds whenever N has 2 elements.
Proof. In this case, all words satisfy Definition 6.

¢ INVISIBILITY

We now seek a way of finding certain segments in the tape word of a
large configuration such that the presence of such a segment cannot be
detected by the machine without using non-null input words at least ¢
times to pop up the tape symbols above the segment. Stated formally,
we are interested in the following property:

DeriNtTION 7. A segment x, - -- 24y 15 said to be {-tnvisible in the
configuration

c = (sn’xn...xe...xf...xl)’
if and only if, for each a and s" such that

¢ T(e) (5, 2o+ 21),

either

¢ T(Ol) (S’, Ty .'171),

or there are at least £ integers 4, » = 7 > £ such that the «;,_; of Lemma
4 (factor property) applied to the relation

4 T(O‘) (8’, Le =" xl)s

satisfy a;,iq % Al

The existence of £-invisible segments in large configurations is assured
by the following:

TaroreMm 4. For given integer £, there exists a@ bound B(£) of order
(¢%)* (for g > 1) such that, if ¢ = (s, 2, - - - 1) 8 @ configuration and N
is a set of af least B({) distinct integers 1, 1 £ ¢ = n, then there exisl e
and f in N such that e > f and x, - - - 741 18 L-invisible in c. This B(£)
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may be defined by the expression
(¢ = D/(g~ 1 +1¢" +1,

forg>1landby €+ 3ifq = 1.
Proof. For given state s and integer 7 £ n, we define f(s, ) to be
the smallest 7 such that

(s, e -+~ 1) T(A) (85,
for some state s; . Since this relation holds forj = ¢ and s; = s, f(s, ¢)
is well defined and f(s, 7) = 4.

Now define I for k¥ = 0 inductively by the following:
Io = {f(sn, n)}

Inyr = {m|m = f(s,7 — 1) for some s in @ and 7 in I,}.

8

joe ),

Since each element of set I; determines at most ¢ additions to 7,4 (i.e.
one for each s in @) and since 7, has one element, I; certainly has no
more than ¢* elements. Let

g = UI};.

0<k<t

Because g has at most z = (¢'™ — 1)/(q¢ — 1) elements (orz = £+ 1
if ¢ = 1) it follows that if N has at least (z + 1)g? 4+ 1 elements, and
there must be some 7 and j, such that the set

N ={k|kinNandjo <k < i},

has at least ¢ + 1 elements and k is not in ¢ for 7, < k < 72,. For each
7in N, let Q; be the set of states s; such that either

e T(A) (si,2i -+ @)
or
(st @ty -+ @) T(A) (8i, @i+ @),

for some s; in Q and ¢’ + 1 in ¢. By choice of IV, there must be a j' =< j;
and s, such that

e T(A) (85, 25 -+ 21)
or

(8iry Tar + o+ 21) T(A) (85, 2jr =+ + 7).
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Because the elements of IV are between ¢ and 5/ and because s; is an
arbitrary element of Q;, the factor property and Lemma 5iii imply
that for all 7 in N, s, in Q;, and § in NV such that j < 7, there exists an
s; in Q; such that

(si, % - 21) T(A) (85,25 - 21).

Let m be the max of N and, for each7in N and s, in @ , let g(sn , )
be the s; in @; such that

(8my Tm = x1) T(A) (8¢, @i+ @)

Function ¢ is unique by Lemma 5iii. Because N has ¢* + 1 elements,
there must be ¢ and f in N such that ¢ > f and

9(8m,e) = g(sm, f),

for all s,, in Q... We now wish to show that z, --- x4 is the desired
segment.
The important property of e and f is that for all s, in @, ,

(8) (5020w @) PA) Goyp o).
To see this, recall that for s, in @, , there are ¢ and j defined above
such that ' isind, s =2m=ze>f =7,

¢ T(A) (84,29 -+ 1)
or

(873' g Xy e xl) T(A) (SJ" y Lgrov et xl)

and the s, in the factorization of this relation is the given s. . It follows
from an, = A and a,; = A that s, = g(sn,e) = g(sn,f) = s and
since a,; = A, the desired relation is established.
Consider some o such that
(b) ¢ T(a) (s, e~~~ 1)

for some s, in S and let the o;; be defined as in Lemma 4 (factor prop-
erty) and let r be the number of non-null @, ; 4y forn = 7> e. If r > ¢,
then « automatically satisfies Definition 7. If » = 0, then

¢ T(A> (86 y Le * xl)’

for some s, , s, 18 in @, by definition, and so

cT(A) (e, s -0 @),

by concatenating (a) and (b), and Definition 7 is again satisfied. Now
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suppose that 0 < r £ fand foreach k,0 < k = r, let 4 be the integer
such that @i, 41 is the (B + 1)th non-null input word in the series
Ot *** it ** " Qetde -
The key property of the % is that 4 is in I, . This follows inductively
from the relations
fsu,m) =14 and f(si—1,% — 1) = Gepa
which are derived from the relations
Qniy = ip1,ipy; = A
and from Lemma, 5i. Now observe that
Uip—1,e = A
and so s, is in @, . Again,

¢ T(a) (86 sy Ly v xl):

by concatenating relations (a) and (b). Thus Definition 7 is established
for all r and the theorem is proved. Q.E.D.
CoroLrARY 4.1. If the pushdown machine has no e-moves, then Theorem
4 4s true for B(£) = £+ 2.
Proof. All the «;,,_; are non-null.

MAIN RESULTS

The key to all our solvability results is contained in the following
theorem. Two configurations are called equivalent if there are no input
sequences which distinguish them.

TrroREM 5. If a pushdown machine recognizes a regular sel, one can
calculate a bound M of order ¢** such that if co > c, there is a configuration
¢ equivalent to ¢ such that ¢ has less than M tape word symbols. Bound
M may be given by

M = tgB(g\(q't) + 1) + 1,

where B s given in Theorem 4.
Proof. Assume that ¢o = ¢ where

= (Sn’xn...x]_)

is a configuration with n = M. It is sufficient to show that there is a

cpnﬁguration J equivalent to ¢ which has a shorter tape word than ¢.
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By Lemma 1, there exist input sequences o and 8 and state s, such
that & = &8 and

co 5> (50, 4) L(B) .
We factor this relation according to Lemma 4 using 8;; to represent
the input strings and s; the states. For each z in X and sin S, let
N(,s) ={¢|1 £iZn, 2, =2 and s = g.

Because of the size of M, there is some & and 3 such that N(%, §) has
B(ql(¢g’t) + 1) + 1 elements. Therefore, according to Theorem 4,
there are e and f in N(&, 5) such that z, - - - @41 I8 (gl(qzt) ~+ 1)-invisi-
ble in ¢. We claim that

/
cC = (Sn’x”...xe_}_le...xl)

is the desired equivalent configuration.
Defining 8’ = B1/8.n , Observe that

(sg, &) L(8) ¢ and o ~25s ¢,
because

(s, @) L(Ben) €,
by the independence property and because of the concatenation prop
erty. .
Assume, to the contrary, that ¢ and ¢’ are not equivalent. Let v be
the shortest input sequence that distinguishes ¢ and ¢. Note that v
is therefore the shortest sequence such that '8y % o'8'y. By Lemma 6,
v may be written y = Ay’ where
e N(A) (e, 2+ @)

and
¢ 1A (8, 2 @),

We factor this first relation using Lemma 4 where A;; is used to repre-
sent one of the input sequences and s'; to represent one of the states.
Since segment «, - - - 741 18 (¢t(q!) + 1)-invisible, the set

N={’i‘A¢,i__1#A and 'ﬂg'l>€}
has at least ¢*(¢!) -+ 1 elements, for otherwise
4 T(A) (s’f y Ly vt xl);
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by Definition 7 and Lemma 5iii, which would imply that: A carries ¢
and ¢ into the same configuration contrary to the fact that Ay’ dis-
tinguishes ¢ and ¢’.

Because of the size of N, there must be s and " in S and z in X such
that

N(s,s,z2) ={iinN|s;=s8:=¢, and z; = 2}

has at least ¢! + 1 elements. By Theorem 3, there is an ¢ and f in
N(s, §', z) such that z, - - - 2,4 is null transparent.
In order to.consolidate notation, we define

01 = a’B]_fr
0y = o BusBerr
0: = Byrer

03 = BernBper
0y = Agyr

05 = Afle’Y’.

By straightforward application of the independence and concatena-
tion properties

(a) 0:0:°0;0,°6, = 6,65+*0:05 7505

for all 7, 7 and k since both input sequences lead to the same configura-
tion as each 4, effectively cancels a 6. . Similarly one can verify

(b) 6'10:°0,0:°05 = 6,650,671 "65

for all 7, 7 and k.
" Because v distinguishes ¢ and ¢/,

(e) 6,0:0:0:05 % 016:050.05 ,

(this is a restatement of the relation « '8y # o/B'v) and since AM'A,H.;y
is shorter than v (recall Ay »— ¥ A) and cannot distinguish ¢ and ¢,
it follows that

(d) 6:6:0:05 = 6'16,0505 .
By independence and concatenation,

9162‘93 (S ’ (CE e wf,+1)ixf, .. -x].)

14

and

o 0'102'.03; (s;,’ (xe' “ee xj"-l‘l)ixf’ Cee Lol Xy oo xl)
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and because 6 is null transparent, Theorem 2 implies
(e) 6,6,°0:65 = 016,°6365

and
(f) 016:'6:65 = 616,6,65 ,

for all 7 and j greater than some ¢,
Relations (¢), (d), (e), and (f) imply that one of the following must
be true for all 7 = £:

(g) 01921.9395 % 010:0:05 ,
(h> 010216305 # 0102039485,
(1) 0,1021.0305 # 0,1020305 B
(i) 9’192i9395 % 91102030495.

If relation (g) holds, relations (a) and (g) satisfy Theorem 1 with
oy = 010,00 = 0,3 = 03,0 = 05, and s = 65 . If relation (h) holds,
relation (a) implies

0,057 050405 0,0:0;6405

and Theorem 1 holds with oy = 0102 , Qg = 02, Qg = 93, oy = B , Gy =
0405 , and £ = £ + 1. Similarly, (b) and (i) or (b) and (j) also satisfy
Theorem 1. In any case, Theorem 1 says that the set recognized is not
regular, contrary to our assumption, and the theorem is proved. Q.E.D.

CoroLLARY 5.1. If the pushdown machine has only one siate, M may
be taken to be £ + 4t + 1.

Proof. This is true by direct substitution into the expression for B.

CororrArY 5.2, If the pushdown machine has no emoves, then M
may be given by ¢’ £4qi-+1.

Proof. This is obtained by using the bounds of eorollaries 3.1 and 4.1.

CoroLvArY 5.3. The set L recognized by a pushdown machine is
regular if and only if the intersection of L with every regular set of the
form {cuan’esas’es) is regular.

Proof. In the proof of Theorem 5, we found such a set when L was
non-regular.

CoroLLARY 5.4. A reduced finile state machine which recognizes the
same set as & pushdown machine cannot have more than qt” states if t > 1
or qM states if ¢ = 1.

Proof. The number of states cannot be larger than the number of
configurations with tape word of length less than or equal to /.
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This last corollary implies that the order of magnitude of the number
of states is #2%° as stated in the introductory paragraph. Because the
suitable f-invisible segments can in fact be obtained constructively, it
is possible to construct this machine without enumeration, but this is
of little comfort in view of the orders of magnitude involved. If this
bound cannot be improved significantly, then it would appear profitable
in some cases to maintain a pushdown design for a recognizer even if a
finite state design 1s possible. We can now state the main result:

TaroreMm 6. It is recursively decidable whether or not the set recognized
by a given (deterministic) pushdown machine is regular.

Proof. Enumerate all the finite state machines which do not have
more states than the bound given in Corollary 5.4 and test each of these
to see if it is equivalent to the pushdown machine. If one of these ma-
chines is equivalent to the pushdown machine, then the set is regular
and otherwise it is not. A proof that the equivalence of a finite state
machine and a pushdown machine is solvable may be found in Ginsburg
and Greibach (1966). This problem reduces to the better-known empti-
ness problem by constructing the pushdown machine which recognizes
the proper difference of the two sets in question and festing the resulting
set to see if it is empty.

Recervep: March 6, 1967; revised: August 14, 1967
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