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ABSTRACT
We show that the number of distinct distances in a well-
distributed set of n points in �

d is Ω(n2/d−1/d2
) which is

not far from the best known upper bound O(n2/d).
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1. INTRODUCTION
One of the most famous questions of Erdős in discrete ge-

ometry is the following [3]: what is the minimum number
of distinct distances determined by n points in �

d ? The
question was posed in 1946. Today, 57 years later, even the
planar case (d = 2) is still open. (see in [6] and [5]) Improv-
ing an result of Clarkson, Edelsbrunner, Gubias, Sharir and
Welzl [2], very recently Aronov, Pach, Sharir, and Tardos [1]
showed that the number of distinct distances determined by
a set of n points in three-dimensional space is Ω(n77/141−ε),
for any ε > 0. They conjectured that the lower bound should
be close to Ω(n2/3) which is the best known upper bound

given by the vertices of an n1/3 ×n1/3 ×n1/3 integer lattice.
As the first challenge they posed the problem of proving a
better lower bound Ω(n5/9). In this paper we prove a gen-

eral bound Ω(n2/d−1/d2
) for homogeneous sets in �

d , for

any d ≥ 2. For the special case d = 3, our bound is Ω(n5/9).
Homogeneous sets are interesting for at least two reasons.
First, the only known point sets providing small distance
sets are homogeneous. Second, homogeneous sets play an
important role in analysis (see [4], for instance). Prior to
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our result, the best bound for homogeneous sets was due to
Iosevich, who [4] showed that the number of distinct dis-
tances determined by a homogeneous set of n points in �

d

is Ω(n3/2d).

2. THE RESULT
Let n be a large positive integer and C be the cube of

volume n centered at the origin in �d , whose edges are par-
allel to the axis. Let A be a set of n points contained in
the interior of C. We say that A is homogeneous if any unit
cube in �d contains only O(1) points from A. We denote by
Dist (A) the set of different distances between two points in
A.

Theorem 1. For a set A as above, Dist (A) has cardi-

nality Ω(n2/d−1/d2
).

The exponent 2/d− 1/d2 is near best possible, as one can

construct a homogenous set where Dist (A) = O(n2/d) (the
lattice, for example). The asymptotic notation is used under
the assumption that n → ∞; d, the dimension, is a constant.

Before presenting the proof, let us mention that our method
also works without the homogeneity assumption. Using this
method and some additional arguments, we obtained new
bounds for the number of distinct distances of an arbitrary
set. Details will appear in a subsequent paper.

3. PROOF OF THEOREM 1
In the following, r is a parameter to be determined. We

call a triangle r-small if its longest edge has length at most
r. Let Nr be the number of r-small triangles with vertices
in A. This quantity will play a crucial role in our proof.
We shall estimate Nr from both above and below and the
bound in Theorem 1 will follow as a consequence of these
estimates, given an appropriate choice of r.

Lemma 2. We have Nr = O(nr2d), for any r ≥ 1.

Proof of Lemma 2. Let P(x) be the canonical partition of
�

d into the union of cubes of length x. We use the following
simple observation. There is a constant l = l(d) such that
there are l translations of P(x), P1(x), . . . ,Pl(x) such that
for any ball B of radius x/8 there is a cube in Pi containing
B, for some 1 ≤ i ≤ l.
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For our purpose, choose x = 8r. Since any r-small triangle
is contained in a ball of radius r, the above observation then
implies that

Nr ≤ N1,r + · · · + Nl,r (1)

where Ni,r denotes the number of r-small triangles whose
vertices are in some cube of Pi(8r). Fix an i between 1
and l, the volume of the cubes in Pi is rd; moreover, these
cubes are disjoint, so there are only O(n/rd) cubes of Pi

with a non-empty intersection with A. Furthermore, as A
is homogeneous, each cube contains O(rd) points from A.
So, the number of triangles in each cube is O(r3d). Thus for
each i, Ni,r = O( n

rd r3d) = O(nr2d). As the number of i’s is
a constant, our proof is complete. �

Lemma 3. For any fixed d there are positive constants c
and b such that the following holds. Let X be a set of m
points on a sphere with surface area S in �d . Assume that r
satisfies crd−1m ≥ S. Then X contains at least bm r-small
triangles.

Proof of Lemma 3. Define a graph G on X as follows:
Two vertices of X are adjacent if their distance is at most
r/2. By the triangle inequality, the vertices of any path
of length 2 of G form an r-small triangle. Moreover, any
connected graph H contains at least |V (H)| − 2 different
paths of length 2, so any connected component H of G gives
rise to at least |V (H)| − 2 r-small triangles. It now suffices
to show that the connected components of size at least 3 in
G contains at least half of X. Here and later V (H) denotes
the vertex set of H .

Observe that if H and H ′ are two different connected com-
ponents, then the r/(2d)-neighborhoods of V (H) and V (H ′)
are disjoint. It is clear that each neighborhood intersects the
sphere in a region with area at least a(d)rd−1, where a(d) is
a constant depending on d. We can conclude that there are
at most S/a(d)rd−1 mutually disjoint neighborhoods. Thus
the number of vertices contained in connected components
of size at most 2 is upper bounded by

2
S

a(d)rd−1
≤ |X|

2
, (2)

provided that we set c ≤ a(d)/4. �

Now we are in position to finish the proof. Assume that
Dist (A) = t. Fix a point v ∈ A, there are t spheres cen-
tered at v such that every other vertex of A is on one of these
spheres. We are going to count the number of r-small trian-
gles with vertices on the same sphere. A sphere is good if it
has at least n/2t points from A. At least half of the points
in A are contained on the good spheres and from now on we
consider these spheres only.

Let S be the surface area of the sphere with radius equals
the diameter of C. Choose r (as in the pervious lemma)
such that crd−1 n

2t
= S. As the surface of any good sphere

is at most S, Lemma 3 implies that on any good sphere B,
there are Ω(|A ∩ B|) r-small triangles. Therefore, the good
spheres centered at v contain at least Ω(|A|) r-small trian-
gles. Repeating this estimate with respect to the spheres
centered at the other vertices of A, we obtain altogether
Ω(|A|2) = Ω(n2) r-small triangles. This is not yet a lower
bound on Nr as some of these triangles are the same. On

the other hand, the multiplicities are not too large, thanks
to the homogeneity of the set A. Indeed, the multiplicity
of a triangle T is the number of points of A which have the
same distance to the three vertices of T . If the three vertices
of T are co-linear, there is no point with equal distance to
these vertices. Otherwise, the points with equal distance to
the vertices of T lie in the intersection of a hyperplane of
codimension 2 and C. As C has volume n, this intersection
can be covered by O(n(d−2)/d) unit hypercubes. By the ho-
mogeneous assumption, it follows that the multiplicity of T
is O(n(d−2)/d). So we can conclude that the number of small

triangles is at least Ω( n2

n(d−2)/d ) = Ω(n(d+2)/d).

Together with Lemma 2, we have the following double
inequality

O(nr2d) = Nr = Ω(n(d+2)/d), (3)

which implies

r = Ω(n1/d2
). (4)

On the other hand, we choose r such that rd−1 n
2t

= Θ(S),

where S = Ω(n(d−1)/d) is the surface area of the sphere with

radius equals the diameter of C (which is d1/2n1/d). This

implies t = Θ(rd−1n1/d). Together with (4), we have

t = Θ(rd−1n1/d) = Ω(n(d−1)/d2
n1/d) = n2/d−1/d2

, (5)

concluding the proof. �
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