JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 13, 118-122 (1991)

A Fast Algorithm for Gaussian Elimination over GF(2)
and Its Implementation on the GAPP*

CETIN K. KOoC AND SARATH N. ARACHCHIGE

Department of Electrical Engineering, University of Houston, Houston, Texas 77204

A fast algorithm for Gaussian elimination over GF(2) is pro-
posed. The proposed algorithm employs binary search technique
to locate 1s along the columns of the large binary matrix being
triangularized. The algorithm requires 2m?* + m log,n — 2m bit
operations to triangularize an # X m matrix on a bit-array with
n processors and m + 2 + [log,n] bits of vertical memory per
processor. Details of an implementation on the Geometric
Arithmetic Parallel Processor are also presented. @ 1991 Academic

Press, Inc.

1. INTRODUCTION

The implementation of the continued fraction method
for factorization of large integers requires triangularization
of a large Boolean matrix. The operations are performed in
the Galois field with two elements, i.e., GF(2). Let Q be the
set {Q,, Oy, ..., Q,} where each Q; is a positive integer.
The continued fraction method requires the determination
of a subset R C O such that the product of all Q; € R is a
perfect square. This is achieved by first factoring each Q;
over the set of predetermined prime numbers P = { p,, p,,
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forall i = 1,2, ..., n. Now consider the # X m matrix

A = [4;] = [a; (mod 2)]

with 0-1 entrics for | <i<nand 1 <j < m. We apply
elementary column operations to this matrix over the field
GF(2), and mark each row in which a pivot element is lo-
cated. An unmarked nonzero row at the end of the elimi-
nation process implies the existence of a subset R satisfying
the above property [10].

The continued fraction method for factorization of large
integers was proposed by Lehmer and Powers [9]. This al-
gorithm was first implemented on a computer by Morrison
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and Brillhart [10] to factor F; = 22" + 1. The availability of
massively parallel processors made this algorithm very at-
tractive. Parkinson and Wunderlich [13] implemented this
algorithm on the ICL Distributed Array Processor (DAP).
Wunderlich [17] has also implemented the continued frac-
tion method on the NASA-Goodyear Massively Parallel
Processor (MPP). The details of the parallel algorithm can
be found in [18].

Implementation of the Gaussian elimination algorithm
over GF(2) (more generally, over GF(p)) on systolic com-
puting systems and in VLSI has been considered by several
researchers. Takefuji ef al. have proposed a matrix solver
using iterative logic circuits suitable for VLSI implementation
[16]. Systolic algorithms for Gaussian elimination of dense
matrices without pivoting have been known [7, 1]. A systolic
array for triangularizing real matrices using partial pivoting
was given by Barada and El-Amawy [2]. This array has
O(n?) processors, however, it requires O(n?) time due to
the complications in pivot searching for matrices with real
number entries.

Partial pivoting cannot be avoided for matrices with entries
over GF(2) since every other element may be zero. Hochet
et al. [8] and Cosnard et al. [4] have proposed systolic arrays
for Gaussian and Gauss-Jordan elimination and triangular-
ization algorithms over GF(p). These arrays have o(n?)
processors and accomplish their task in O(n) time. These
algorithms triangularize the matrix as the elements of the
matrix enter the two-dimensional systolic array from the
north end. The pivot searching strategy is very simple. During
the jth stage of the algorithm the jth column of the matrix
enters the jth processor on the diagonal. As the elements of
the jth column enter, we check if 4; =0 forj<i<n. If
this element is zero, it continues to flow; it is not chosen to
be a pivot, and it does not need to be updated. We pick the
first nonzero element as the pivot. Once the pivot is selected,
we compute the coefficients necessary to update every row
which contains a nonzero element in its jth position.

In this paper, we assume that matrix 4 is already in the
array’s memory. In the implementation of the continued
fraction algorithm, matrix 4 may be produced in the pro-
cessor array. Also, most massively parallel array processors
have fast means of I/O from and to the host computer. For
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example, the Geometric Arithmetic Parallel Processor
(GAPP) has a Data Communication line (CM) which is a
separate I/0 bus that accepts data from the south end of the
array, and shifts it to the north without interfering with on-
going computations [12]. Thus, the matrix can be entered
into the array and saved in the memory very quickly.

We present a fast algorithm which uses binary search
technique to find the pivot. We first explain the Gaussian
elimination algorithm over GF(2) and give an example in
Section 2. The parallel algorithm and its mapping have been
described in Section 3. The details of the implementation
on the GAPP using the GAPP PC Development System are
given in Section 4. In the last section, we summarize the
results and discuss future work.

2. THE ALGORITHM

The Gaussian elimination over GF(2) on the matrix A
requires elementary column operations rather than elemen-
tary row operations. Here we give an example which will be
useful in understanding the steps of the algorithm. Let Q
=16,42,105,20,63},and P={2,3,5,7}. Since we have

6 =2'315070 42 =2'3'597! 105 = 293'5'7!,
20 = 22395170 63 = 20325071,
we obtain A4 as
1 1 0 0 1 1 0 0
1 1 0 1 1 1 0 1
A=10 1 1 1 (mod2)=(0 1 1 1
2 0 1 0 0 0 1 0
0 2 0 1 0 0 0 1

On this matrix we perform elementary column operations
and mark each row on which we find a pivot. We start with
the first column, and search for a pivot in this column. Since
Ay = 1, Ay, is selected as the pivot element and column 1
as the pivot column. We then perform a search for Isin the
row in which the pivot element is found. If element Ay, = 1
for k # | is nonzero, we add column 1 to column & (addition
isdone in GF(2)). Since A, = 1, we add column 1 to column
2 to obtain the updated column 2. This will produce
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where * denotes the marking. We then proceed to pick col-
umn 2 and search for a pivot in this column. Since Az, = 1,
we mark row 3, and search for Is in row 3. We find 433 =
Asq = 1, thus add column 2 to columns 3 and 4:
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The next pivot is A4;; however, there are no other Is in row
4. We only mark row 4 and obtain

1 0 0 0 %
1 0 0 1
01 0 0 %
0O 01 0 *
0 0 0 1
The last pivot found is A»4 and since 4>, = 1 we add column
4 to column 1, and obtain
1 0 0 0 «
0O 0 0 1 %
0O 1 0 0 %
0 01 0 %
1 0 0 1

Note that row 5 has not been used. Since A5, = Asy = 1, row
5 and all rows i for which 4;, = | or A4;s = 1 are dependent.
From the above matrix we see that rows 1, 2, and 5 are
dependent. If we sum row 1, row 2, and row 5 in GF(2),
we obtain a zero row:

1000 Row 1 (Q; = 6)
0001 Row 2 (Q> = 42)

& 1001 Row 5 (Qs = 63)
0000

This implies that R = {0, Q,, @5} and product 0,0-0s
forms a perfect square:

010,05 =6-42:63 = (2:3)-(2:3-7)-(3%7)
=(2-3%-7)* = 1262

We summarize the algorithm below.

FORj=1,2,..
BEGIN
Search for A; = 1 in column j
IF found THEN

., mDO

BEGIN
Mark row
FORk=1,2,...,j—1,j+1,..., m DO
Ay = 1 THEN add column j to column k
END
END
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In the following proposition, we count the number of bit
operations required by the Gaussian elimination algorithm
over GF(2). A bit operation is defined as a test operation
on a single-bit variable (e.g., 4;; = 1) or a binary operation
in GF(2).

PROPOSITION 1. The sequential Gaussian elimination
algorithm requires m*n + m? — m bit operations to trian-
gularize an n X m matrix.

Proof. The search for the first 1 on the jth column re-
quires # bit operations in the worst case. For all m columns,
we perform mn operations. Once a | is located in row /, we
checkif 4y =l1fork=1,2,...,j—Lj+1,...,m,and
add column j to column £k if this is true. This step requires
a single test operation A; = 1, and n bit operations for the
addition of column j to column k. Since these operations
have to be performed forj=1,2,....j— Lj+1,...,m
and i= 1.2, ....n,atotal of m(m — 1)(1 + n) steps is
needed. Thus, the total number of sequential bit operations
required by the Gaussian elimination algorithm is m#n
+mm—D)(n+1)=m’n+m*—m. B

3. THE PARALLEL ALGORITHM

The #n X m matrix can be mapped on a p X ¢ rectangular
array of pg processors in several ways. Our implementation
views the p X ¢ rectangular array of processors as a lincar
array with pg processors. Suppose that each one of the pg
processors has a vertical memory of L bits. A pivot column
in the Gaussian elimination algorithm over GF(2) is simply
a column that has a 1. If we add the pivot column to another
column having a | in the same position, then the resulting
element will be equal to 0, since 1 + 1 =0 (mod 2) or 1
® 1 = 0. The addition operation is performed for all elements
of these two columns. Thus, we map the # X m matrix in
such a way that each row is in one of the single-bit processors’
memory, requiring n = pg and m = L. For example, the
DAP has 64 X 64 processors where each processor has 4096
bits of vertical memory [15], i.e., p = ¢ = 64 and L = 4096.
The largest matrix that can be triangularized on the DAP
has dimensions 4096 X 4096. The GAPP chip consists of 6
% 12 single-bit processors with 128 bits of memory per pro-
cessor [5, 12],i.e., n =72 and m = 128.

This mapping, however, does not consider the amount of
memory needed for bookkeeping operations, for example,
the marking of the used rows. This is, however, not significant
since one bit per processor is sufficient. This single-bit vari-
able is named U throughout. Furthermore, in each processor,
we reserve another single-bit variable W and a d-bit mask
variable named M where d = [log,#]1. These variables are to
be used by the binary search algorithm to determine the
position of the first 1 in a column. Thus, an 7 X m matrix
can be triangularized on a p X g bit-array in which each
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processor has L bits of vertical memory, where n = pq and
m=L—2—d=L-—2—Tlogmnl.

Since the result of a search operation has to be broadcast
to all processors, the processor array needs to be equipped
with a global output line. The Global Output Line (GO)
provided on the GAPP chip has the following propety: it is
pulled low whenever any of the single-bit registers NS con-
tains 1. This is accomplished by tying together the outputs
of the open-drain gates for each one of the NS registers to
form wired-or logic. The Global Output line makes the GAPP
chip very powerful since it provides global information about
the local data.

Initially we save the matrix 4 in the array processor’s
memory, and assign U = W = 0. Let M, be the most sig-
nificant bit of variable M. We assign M as follows: dth bit
is 1 for the first half of the processors, and is 0 for the second
half of processors, (¢ — 1)st bit is 1 for the first and the third
quarters of the processors, is 0 for the second and fourth
quarters of the processors, and so on. Thus, processor / has
the n-bit binary number (M My -+ M;) = 29 — i. An
example of matrix 4 and the distribution of variables U, W,
and M is shown in Fig. 1. The following operations are ex-
ecuted forj=1,2,3, ..., m.

Searching for the First | in Column j. This is the first
step of the algorithm. Let M, be the kth bit of variable M
in a processor, and A;; be the jth bit in the ith row of A,
which is located in processor i. We perform binary search
(see, e.g., [6]) by executing the following code in all pro-
cessors fori=1,2,3,...,n:

NS := A4y
IF GO = 0 THEN
BEGIN
W := NS
FORk=d,d—1,d—2,...,
BEGIN
NS:= WA J\{{;\-
[F GO = 0 THEN W := NS
END
END

1 DO

The search is started if the jth column of A4 is nonzero. First,
this column is placed in register W. At step k we perform
the AND operation of W A M fork=d, d—1,..., L
The result, if nonzero, is put in W otherwise the content of
W remains unchanged. Thus, at the end of this procedure,
W = 1 in at least one of the processors. To prove that W
contains at most one nonzero bit, suppose that W; = W,
=1 for | < i, <i, < n.Mask variables in processor /, and

i, have values 24 — j, = (MyMy_,+ -+ M) and 249 — i,
= (NyN,_+ » + N), respectively. Since 27 — iy > 29 — iy,
we must have M, = N fork=d,d—1,...,1— 1 and
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[l Processor ” A U | W ;L[
1 0110001000 | O | O | 1111
2 poolttooll | 0 | 0 | 1110
3 0100110100 0 | 1101
4 priiooioon | 0 | 0 | 1100
5 1101011001 | 0 | © | 1011
6 0a1o0L1000 | 0| O | 1010
¥ 1000001011 | 0 | 0 | 1001
8 1101001001 | 0 | 0 | 1000
9 0011010100 | 0 0 |01l
10 0101000100 | 0 | O {0110
11 1oono1ooLL | 0 | 0 jotol
12 plLiLio1ont | o | 0 | 0100
L3 0010100000 | 0 | 0 | 0011
14 0100101100 [ O | O | 0010
L5 oloLowo1l | 0| 0 | 0001

| 16 00L101n10L | o 0 | dooon

FIG. 1. Matrix 4 and variables U, W. and M for n = pg = 16, m = 10,
d=4,and L = 16.

M, > N, for some d < [ < 1. For example, fori, = 6 and i,
=7 we have 2¢ — 6 = (1010) and 2* — 7 = (1001), i.e., /
= 2 since J’lﬁ’q =N; = 1, My = N; = 0, and M, > N,. The
configuration of the masks forces W, to be zeroed before
W, if iy < . Therefore, when the search procedure ends,
W, = 1 in processor i which has the first 1 on the jth column
of matrix 4. In Fig. 2, values of W are shown at each step
of the search algorithm.
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Marking of Rowi. Once the search procedure is finished
we mark the row in which this 1 is located. This is simply
accomplished by performing an OR operation.

U=UV W

Addition of Column j to Column k. The ith processor
has immediate access to the ith row of matrix 4. After the
row is marked, we add column j to column k for all k # j
and 4, = 1:

FOR K =1, 200050 — Bl Lo DO
BEGIN
NS .= W/\Ajk
IF GO = 0 THEN Ay = 45 ® 4;
END

PROPOSITION 2. The parallel Gaussian elimination al-
gorithm requires 2m> + m logan — 2 bit operations to trian-
gularize an n X m matrix on a bit-array with n processors
and m + 2 + [ogsn bits of vertical memory per processor.

Proof. Matrix A, single-bit variables 7" and U, and d-
bit variables can be fed to the p X g bit-array from one end
using L = m + 2 + [logn] steps. We then start executing
the parallel algorithm. In the following, we assume that the
matrix and the bookkeeping variables are already in the ar-
ray’s memory, and count only the total number of bit op-
erations required for the execution of the algorithm.

Once a particular column is selected, the algorithm pro-
ceeds to search for the first 1 in this column. This requires

k=4 fe=3 k=2 Fpiee ]

Processor | W M, NS|[W My NS|W M NS [ W M, NS | W
1 0 l 0 1 0 1 0 0 1 0 0
2 0 1 0 1 0 1 0 0 0
3 [t 1 ] 0 1 0 0 0 0 1 0 0
! 0 1 0 0 1 0 0 0 0 0 0 0 0
5 1 1 ] 1 0 0 1 1 1 1 1 1 1

fi 0 1 0 0 0 0 0 1 0 0 0 0

T 1 1 1 1 0 0 1 0 0 0 1 0
8§ 1 1 1 1 0 0 1 0 ] 0 0 0
9 0 0 0 i} 1 0 0 1l 1 0 0
10 0 0 0 1 0 0 | ] 0 1] 0
11 1 0 0 1 0 0 0 0 1 0 0
12 0 0 (1 0 1 0 t 0 0 0 0 (¥ ]
13 0 i] 0 0 0 0 0 1 0 0 1 0 0
14 1 0 0 0 0 0 0 1 1 1] it} 0
15 0 0 0 0 0 0 0 0 0 ] 1 0 0
16 i} 0 0 0 0 0 0 0 0 0 (0 0 0

GO 0 i 0 0

FIG. 2.

Values of W at each step of the binary search algorithm.
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d operations for each column, and thus md operations for
all columns. We then add column j to column k for all k # §
and j =1, 2, ..., m, where at each step a single test and a
single addition is performed by each processor. This requires
m(m — 1)2 bit operations in the worst case. Thus, a total
of md + 2m(m — 1) = 2m* + md — 2m bit operations is
required. H

4. IMPLEMENTATION ON THE GAPP

The parallel Gaussian elimination algorithm described
above has been implemented on the GAPP. This is achieved
by using the GAPP PC Development System [11]. It is com-
posed of two parts: the hardware board which is compatible
with the IBM-PC 1/0 bus and contains a 12 X 12 array of
processor elements implemented with 2 GAPP chips, and
the software package which allows the user to program the
GAPP array using the high level programming language GAL
(GAPP Algorithm Language) which is a subset of C. The
GAPP PC Development System also has a facility for inter-
active debugging of the programs.

The 12 X 12 array allows the user to work with matrices
as large as 144 X 128. Considering the memory space re-
quired for variables U, W, and the ¢-bit mask variable where
d =Tlog, 1441 = 8, we see that the largest matrix size is limited
10 144 X 118. We have implemented the continued fraction
algorithm where the Gaussian elimination algorithm runs
on the GAPP board while the other parts of the algorithm
run on the PC. However, the interface between the PC and
the GAPP array is menu-driven and does not perform real-
time data transfer. The GAPP PC Development System has
been designed for developing and debugging parallel pro-
grams rather than for number-crunching purposes.

The actual code is approximately 50 lines written in GAL.
Triangularization of a matrix of size 56 X 39 requires 3211
GAPP instructions, where 1 GAPP instruction takes 100 ns
(the clock rate is 10 MHz). Since the data communication
between the PC and the GAPP array is menu-driven, the
total user-time for factoring an integer with 10 digits ap-
proaches 7 s.

5. CONCLUSIONS

We have presented a fast algorithm for the implementation
of the Gaussian elimination over GF(2) on massively parallel
bit-arrays, and described a particular implementation on the
GAPP. Since the current GAPP chip has 72 processors per
chip and only 128 bits of memory per processor, the size of
the problems to be solved on the GAPP is limited. Several
GAPP chips can be put together to form a larger array in
order to work with larger matrices. Construction of a special-
purpose computing device for factorization of large integers
was suggested by Poet [14]. A special-purpose massively
parallel bit-array designed using GAPP-like chips, e.g.,
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BLITZEN [3], coupled with a high-speed scientific work-
station and high-throughput 1/0 channels could provide a
cost-effective alternative to using the vector processors or the
general-purpose massively parallel processors for the imple-
mentation of the continued fraction method to factor large
integers.
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