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Abstract. We consider the complexity of the Shortest Common Supersequence (SCS) problem,
i.e. the problem of finding for finite strings Sy, $2, . . ., S, a shortest string S such that every S; can
be obtainea by deleting zero or more elements from §. The SCS problem is shown to be
NP-complete for strings over an alphabet of size =2,

1. Introduction

Given a string S over an alphabet X, we define a supersequence S' of S to be any
string S’ = wox1wixaw2 * + * X Wi over X such that § = x,x, * + - x; and each w; € 2*.
A common supersequence of a set of strings R ={S,, 5>, ..., S,}is a string S over &
such that S is a supersequence of each S;. The Shortest Common Supersequence (SCS)
problem can now be stated as follows: Given an alphabet 3, a finite set R of strings
from 3*, and a positive integer k, is there a common supersequence of R of length
<7 If §' isa supersequence of S, then S is a subsequence of S'. The Longest Common
Subsequence (LCS) problem can be defined in an obvious way.

The complexity of the SCS and LCS problems for an arbitrary set R has been
studied by Maier [5]. He is mainly interested in the L.CS problem which he shows
to be NP-complete when the size of the alphabet ¥ is =2. The LCS problem is, of
course, trivially solvable in polynomial time when X is of size one. For a fixed & cr
for a fixed size of R, the problem is also known to be solvable in polynomial time,
see e.g.[1, 7). Furthermore, it was shown in [ 5] that the SCS problem is NP-complete
when the size of ¥ is =5,

In this paper we improve the result of [5] on the SCS problem by showing that
the problem is NP-complete already for alphabet size =2, i.e. for the binary
alphabet. The SCS problem is therefore in this respect similar to the LCS problem.
Again, the SCS problem is trivially solvable in polynomial time when the size of the
set R is 2 (by first computing the longest common subsequence), orif all S;e R are
of length <2 [3] or if thc size of 2 is 1.
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Gur proof technique and notations are develop.'d from those of [5]. We use the
convenient concept of threading schemes, introduced in Section 2. The result is
proved in Section 3.

Our result has found applications in the field of evaluation of attrit ute grammars.
In fact, the NP-completeness of the SCS problem over binary alphabet leads to the
result that the problem of finding an optir:al multi-pass evaluator for an attribute
grammar is NP-complete, too [6]. The SCS problem may also have applications to
data compression techniques.

2. Threading schemes

Following [5] we analyze the SCS problem in terms of so-calied threading
schemes. We think of a s*ring in R as a row of heads with labels from I. The process
of constructing a common superseguence is then equivalent to threading the beads
in a certain manner. As an example we consider a set R having three strings over
3 ={0,1}: §;=10100,5,=001101, S5 =10110. The strings are represented as rows

of beads:
®© ® 0 ® O
©@ ®© 0 ¢ 0 O
® © 0O O ©

To construct a common supersequence all the beads are threaded so that
(i) each thread contains at most one bead from each row,

(ii) ail beads on a thread must have the same label from X, called the type of the
thread, and

(iii) threads may not cross.
For the £CS problem, we want to find if k threads are sufficient to thread all the

beads. In ‘the example we ha.e, among otiers, the following threading with 8
threads; in fact, in this case k must always be =8:

¢Q¢Q§£§7

It is convenient to refer to a thread by its type or by the terms of the strings it
threads. Thus in the example 6, is a 1-thread threading strings S, and §.

©r
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A thieading scheme for the SCS problem is a list (from left to right) of threads
01, 0>, . . ., 6, which fulfill the rules and thread ai: the beads. Given a threading
scheme © = (64, 6,,. .., 6,) for z set of strings R, we can cttain « common super-
sequence of R by concatenatang the types of 64, 0,..., 60, In our example,
01011001 is a common supersequence. Clearly, for a given threading scheme the
implied supersequence is urique, but the same supersequence may have several
threading schemes.

3. The resuit
The purpose of this section is to prove the following result.
Theorem. The SCS problem is NP-complete for an alphabet X of size =2.

Proof. The SCS problem is clearly in class NP. To prove the completeness we must
therefore give a polynomial time transformation from some known NP-complete
problem to the SCS probleni over binary alphabet. The transformation we give will
be, as in [5], from the node cover problem [2, 4. Given a graph G = (N, E) and an
integer k, the node cover problem is to determine if there is a subset N'< N such
that N' has at most k elements and, for each edge (x, y) € E, at least one of x and y
belongs to N'.

Let G =(N, E) and k constitute an instance of the node cover problem wherc
o ={vy, V2, ..., 0}, E={(x1, 1), (x2, y2), . . ., (x1, y.}}. We constructaset R of r+1
strings over the binary alphabet 3 = {0, 1}. "asically, our construction is a simplified
version of the transformation used in [S] to prove the result of the theorem for
alphabet size =5.

The first string in R is the template T. In addition, R contains a string S; for each
edge e; = (x;, y:) in E. In these strings, the nodes and edges of G are encoded using
the alphabet {0, 1}. We fiist describe the encoding, shown in Fig. 1. The node
codeplate N is defined as ¢ + 1 blocks of 7¢ ones, where ¢ =max(r, t). Any v; in N we
encode with node code Ni] which is obtained by inserting a zero between the ith and
(i +1)st blocks of N. The multiple node code N[iy, is, . .., i] has a zero in the iyst,
iond, . .., and i;th spots. The special case of N[1, 2, ..., t]will be denoted by N, and
referred io as the node sink, since it is a supersequence of all the node codes. The
edge codeplate E. the edge code E[j], and the multiple edge code Elji, j2, . . -, Js]
are defincd similarly with biocks of 7¢ zeros and pairs of ones. (Only the code E[f]
is shown in Fxg; 1.) The code E[1,2,...,r] is called the edge sink and dencted
by E..

Now we can defiie the r + 1 strings of R, shown in Fig 2. Tbe templatta T consists
of the following codes in the given order: E; Ni; Eg; N; E; Ni; E. We denote the
length of T by q =7c(4r+3¢t+7)+4r+2t. For each e; =(x;, y;) we define §; as:
El[i}; N[j1; N[m]); E[i], where j and m are such that x; = v}, v: = 0. To distinguish
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Node codeplate N: length = 7c(t+1)
t+1 blocks
( - B}
L S RPN SEUE DO O S R |
! \—-: e
7c 7c 7:
Node code N[il: length =|7cit+.) 1
TS SN VAN YOO SN0 SO OO AU 0 S OO0 I O SO W S |
i et Mt e NER O Gy
7c 7c 7c 1 7c 7 7c
|
.th spot
Mulj:iple node code ﬁ[il,iz,...,is]: length = 7c(*.+1) S
P 1 1ol 1000 1 1 oo 11 1OF 1 ) ooe 1 1 101 1} oeel 1]
~ P N U (ST s
7c Tc } 7c 7c 17c 7c 17 7c
| i
. st . nd . th
1 spot 1, spot 1, spor
lidge code E[j]: length = 7c(r+l1)-2
I_OI__01-»-_I0|1|0I~--I0l(_)__l
nd e [SSGS | Wy | S e e o
7c Tc c IIZ 7c 7c 7¢
.th spot
Fig. 1.

between the left and right occurrences of the same code in a string we use
superscripts L and R.

Template T: ' length q = Tc(4r+3t+7)+4r+2t
L E N B N B R R
String Si: length = 7c(2r+2t+4)+6
LELR L NG R ) ER

By proving the following two claims we show that the above transformation from
the node cover problem to the SCS problem has the desired ;pfropctties.

Clai=» 1. If G has a node cover of size k, then R has a common supersequence of
length g+ (2r +k). |
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Proof. Let N'={n,, ns, ..., n:} be a node cover of size k. Let W ={e;|e; = (x;, y:)
and x;eN'}and U = E~W. Now, if ¢;€ U, then y;e N'. Let T e the string T" =
E[UY;N,; E;; N[N'}; Ei; Ny; ELTW]. Since U u W = E, thelengthof T' = q + 2r + k).
The siring T is a supersequence of T, since each block of 7" is the same as the
corresponding block in T with possibly some zeros and ones added. Moreover, 7"
is a supersequence of each S;. The matching goes as follows:

Case a: S; corresponds to an edge in W (see Fig. 3).

[ T gL gL NIN?'
T B0l K B ININ'D
S, : | Eralt [ Nei)

O -

Fig. 3.

Case b: S; corresponds to an edge in U (see Fig. 4).

Thus T’ is a common supersequence of R.

Claim 2. If R has a common supersequence of length g +(2r + k), then G has a
node cover of size <k.

Proof. The set N is trivially a node cover for G. Therefore, if k =, the claim is
clearly true.

In the rest of the proof we assume that k <t. Let T, be a common supersequence
of R of length g +(2r + k), and et @, be a threading scheme for T,. The proof is
now continued with a sequence of lemmas in which we construct, starting from T,
and O, a sequence Ty, T, T3, T4 of supersequences of R and corresponding
threading schemes @, @,, ©,, @, such that the length of the 7’s is decreasing. From
the final result, T4 and @,, we may decide that a node cover of size <k for G exists.
Each new T; and @; constructed in this process is more and more similar to the
supersequence and the threading scheme used in the proof of Claim 1.

. In ‘the sequel «,wé use- the following convenient terminclogy. A thread which
threads some term in the template T is called a T-thread and the other threads are
called extra threads. Scheme @ has ¢ + (2r + k) threads inciuding q T-threads and
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2r+ k <3¢ extra threads. The main argument used in the pr@oiéj‘s of the lemmas will
be the number of extra thicads which is not allowed to be >3<' An extra thread is
cailed private if it threads a term {n only one string of R. 0thww1se an extra thread
is cailed shared. |

We also need terminology to refer to the relative ordering of terms of the strings
in R imnlied by a threading scheme @ = (64, 0». . .., 6,). Let a term ¢ of a string be
threaded by 6; ana a term b of (possibly another) string be threadeu by 6;. If i <j,
then we say that a is to the left of b (and b is to the right of a) in scheme @. More
generally, if A is a block of terms of one string and 3 a block 'of terms of another
siring in K, then A is said to be to the left of B (and B to the right ot A) if for each
term a in A and 5 in B, a is to the left of b.

The length of 2 string § is derioted by |S).

Lemma i. For each string S, block E[i1" is to tke left of E~ or block E[i1® is to the
right of E¢ in @

Proof. If the lemma is not true, thea the block N j]; N[m]of S; must be to the right
of NI andto the leftof NY in @,. So we have the situaticn given in Fig. 5. Since N{ 1
N[m]contains ! 4c(t + 1) ones and there are only 7¢ (¢ + 1) + 4r ones between N and
NZ¥ in T, this means that 7¢(¢ + 1)—4r > 3¢ ones in N[j]; N[m] mus‘ be on extra
threads, a contradiction.

- . - —— e e -

Fig. 5.

Lemma 2. There is a common supersequence T of R and a threading scheme @, for
T: such that \Ty| < |Ty| and for each S,, block E[i1" is to the left of Nt and the pair of
ones in E[i1" is threaded by extra threads in ., or biock E[iT® is to the right of N®
and the pair of ones in E[i]® is threaded by extra threads in ©,. Moreover, if E[il-
is not to the left of N, then it is not to the left of EX, and if E'i1% is not to the right
of NR, then it is not to th right of EX in 0,. ‘7

Proof. Suppose that E[i]" is to the left of E- in . To prove the lomma we show
that it is possible to transform To and @, so that in the new threading Elil"is to
the left of NT. This transformation (and a symmetric transformation for those E[i]?
that are to the right of E{ in ¢)o) can be done successively for each E[i1" to the left
of EL and each E[i]" to the right of EX in @,. The resulting supersequence T; and
threading scheme @, are as required in the lemraa because by Lemma 1, either
E[i1" or E[iT" satisfies the condition of tiie transformation for every S Note that
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if E[i]" or E[i]} does not satisfy this condition, then it nccessarily satisfies the last
assertion of the lemma. ;

Befers modifying T and @, for E[i]' we show that th: two ones in E[i]" are to
the ieft of NL. In fact, if this is not true, then all zeros of E[i]" to the right of the
pair of ones must be threaded in @, to the right of E" but to the left of Es. This
means that @, has at least 7¢ —t> 3c extra threads because E[i]" has at least 7¢
zeros to the right of the two ones but Nt contains only ¢ zeros, a contradiction. Hence
the two ones of E[i]" must be to the left of Nt in @,. This clearly implies that these
ones are threaded by extra threads in &,.

Therefore, if E[i]" is to the ieft of Ny already in @, no modification of @, is
nezded for E[i]'. Otherwise E[i]' has zeros that are not to the left of N& in @,.
We will move them on suitable threads which already thread £. In more detail,
the 7¢ - i zeros to the left of the pair of ones in E[i]" are first threaded with the 7¢ - i
leitmost zeros of E". This introduces no extra threads. Then two extra threads are
added to thread the two ones of E[i]" and the original threads of the two ones are
removed. If either of the original threads for the ones was not private, some 1 in a
string S, /1 # i, may now become unthreaded. Let a, be a prefix of Sj, such that the
last term of a;, is the rightmost unthreaded 1 of ;. Then it is straightforward to se=
from the structure of the strings in R and from the fact that E[i T is to the left of
E" in @, that string ), must always be of the form 0'*11 or 0" 1, where h <i.
Otherwise the situaticn would be as in Fig. 6, where k > i and too many extra threads
are required for the zeros to the left of 9 in S, and between 6 and 6’ in S;.

Thus «, is a subsequence of the prefix 8 =0"°"11 of S; which we have threaded
so far. Hence a;, can be threaded by the threads of B. After performing this process
for each S, there are no unthreaded terms in R. The 7¢((r + 1) —i) zevos following
the pair of ones in E[i]" are finally threaded with the 7¢((r + 1) — i) rightmost zeros
of E. In the resulting threading E[i]" is to the left of NT and the pair of ones is
threaded by extra threads. Moreover, the corresponding common supersequence is
of length <|T,|. Repeating tins process for each S; we arrive at T and @, which are
as required.
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Lemma 3. There is a common supzrsequence T, of K and a threading scheme 0, for
T, such that |To|<|T;| and O, is as @, except if for some siring S; block E[i1" is to
the left of N~ and E[iT® to the right of NY in @, then no term of Nljlo Nlm)ofS;is
threaded by extru threads in ©,. '

Proof. For every such string S, we may change 6, so that N[ j] il thr - aded with N*
and N[m] with N¥. Since N[j] and N[m]are subsequences of iV, this can be done
without introducing new threads but some tirreads of €' may become empty. These
should be removed. When these changes are successive'y made for every possible
S, the resuiting threading scheme @, and the correspt: acing superseguence T, are
as required.

Lemma 4. There is a common supersequence Ts of R and a threading scheme @5 for
Ts such that |Tsl<|T| and @5 is as @, except if for some S; block E[i|' is not to th~
lef: of N in O, then E[i1" is to the right of NT in @3, and symmetricaliy, if blo.:k
E[iT® is not to the right of N3 in ©,, thei: E[iT® is to the ieft of N in 9.

Proof. We first define T and @;. Suppose that E[i]" is not to thé left of Ny in @..
Then by Lemma 2, E[i]® rmust be to the right of N} in @;. fcheme @, is now
modified such that E[i]" is threaded with Er, N[j] with N and M[m] v.ita N¥ ; the
_ threading of E[i]® remains unchanged. In this process the oniy extra thread is
noeded to thread the zero appearing in N[j]. This thread @ crosses N between the
+ Tc-jthand (7c - j + 1)st one. However, if there is already an extr# 0-thread 6’ at this
place wc use @' for threading the zero of N[ ], and 6 is not introduiced. The symmetric
case in which E[i]® is not to the right of NY but E[i]" is to the left of N* in @, is
handled analogously: £[i]" is threaded with £, NImJwith N and N7} witn N T} -
only term which uses an extra thread is now the zero in N[m].

Applied to every possible 5; the above process yields a scheme @3 which obviously
threads every £[i]" and E[;]* as required by the lemma. To complete the proof
we must still show that |T5|<|T5|.

The only extra threads appearing in @3 but possibly not in @, are the O-threads
threading the zeros of those N[g] that are threaded with N in @s. In addition, if S,
and S; share such an extra thread, then both S; and S must contain the block N{g]
and the extra thread threads the zeros of these blocks. Hence to prove | 75| <|T5| it
suffices to show that

(i) if N[g]in S; has an extra O-thread in @3, then the same N[g] has an extra
0-tkread in @,, too, and

(i) If the extra O-thread of such a block N[g] is shared in @, with the zero of
another block Nig'], then it is shared with the same zero in @5, too.

To prove (i) suppose that N[ j]of S; has an extra thread in @5; the case where N [m}
Jas an extra taread can be considered symmetrically. Then, by the construction of
83, E[i]" cannot be to the loft of N* in @, but B[i]® is to the right of N*. L:mma
2 implies that E[i]" is not t> the left of E- in @,. If the 0-thread @ threading the
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zero of N[j]in @, is not an extra thread, then it must thread a zero of T either to
the left or to the right of N because there are no zeros in N. If the zero is to the right
of N the situation in @, is as shown in Fig. 7. We note that there are to the right of
6 at most 7c{t+1)+2r ones in T but at least 7¢(¢+1}+7c¢ ones in S;. Hence 0,
should have at least 7¢ —2r > 3¢ extra 1-threads, a contradiction. Similarly, if @ is
to the left of N, then again a contradiction follows. Thus we have proved (i).

3]
#l sl =L -
Ty BN B N s N
=L\, . . R
s LEGIMN NG Rmd i Et
Fig. 7.

To prove (ii) let N[j] and 6 be as in the proof of (i) and iet 8 be shared with the
zero of N[j']in @,. We prove that j = j' and that N[j'] has an extra O-thread in @s.
This proves (ii) because then the zeros of N[j] and N[;'] must be threaded by th:
same thread in @;. Let N[j'] be from S;. Since N[j'] has an extra thread, we know
from Lemmas 2 and 3 that E[i']" is not to the left of E- or E[i']® is not to the
right of EX. Assume that E[i'T® is not to the right of ES'; the other case can be
considered similarly. Then S must be of the form E[i']"; N[m']; N[j'}; E[i/'T%, that
is, N'[j'] is the rightmost N-block of S;; otherwise the number of extra threads is
easily seen to become too large. The situation is as shown in Fig. 8. Here the threads
01, 85, 95, 8, are the last threads of E[i']- and E[i]" and the first threads of E[i']®
and E[iT%, respectively.

Fig. 8.

The threading of S is seen to be such that the zero of N[ j']is threaded by an extra
thread in @., as required. To finally prove that j = j' suppose that j <j' or j' <j. If
j<j' there must be 7c(( +1)+;") 1-threads between 6, and 6, and 7c({t+1—-/)+
(t+1)) 1-tareads oetween 6 and 6@, that is, there are 7c(3(t+1)+j —j)=
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3-7¢(t+1)+7c 1-threads between 6, and 6. But the number of ones in T bzatween
8, and 8, is 3- 7c(t + 1) + 4r. Thus the number of extra threads is = 3¢, a contradiction.
Similarly, if /' <j, then we see that there must be 7c((s+ D+j-jN=Tc(t+ 1)+7c
1 .threads betwcen 6, and 93, but this interval of T contains at most 7:(z--1)—-4r
o1 s, which again leads to a contradiction. The possibilities not show: in Fig. 8 can
be considered similarly. Thus j = j' which completes the proof of (i‘) and the proof
of the lemma.

The following lemma is an immediate consequence of the construction of thread-
ing scheme @;.

Lemma 5. In threading scheme @s, if for some S; block E[i1" is not to the left of Nt
or E[i]R is not to the right of NX, then either Jf the .wo zeros in node codes N[ j|, N[m]
is threaded by ar: extra O-thread and all the zeros ov. ihis thread belong to node codes
for the same node.

Lemma 6. In threading scheme @;, if for some S; block E[i1" is t- the left of Nv, then
the pzir of ones in E[i]" is threaded by privaie threads, and similarly, if E[iT" is to
the right of N¥, then the pair of ones in E[iT® is threaded by private threads.

Proof. We consider here only the casz where E[i]" is to the left of N+. F-om Lemma
2 we know that in @; the two ones in E[i]" are threaded by extra thieads. Suppose
that one of them, say 6, is shared with S;. Since @ is to the leit of N-, Lemma 4
implies that the part of S;, to the right of E[i']" must be to the right of E".
Ccnisequently, 8 must thread with a one in £[i']". Then aiso £[i']" must be o the
left of Ni. But this easily implies that there must be at least 7¢ extra O-threads to
the left of NT in 93, a contradiction. Hence such an i’ cannot exist.

Lemma 7. There is a common supersequence T4 of R and a threading schem ¢ @, for
T4 such that
(i) |Ta=<|T4),
(ii) every S;in R has two private 1-threads, and
(iii) for every S, either of the two zeros in node codes N[ j] and N[m] is threaded by
an extra O-thread and all the zeros on this thread belong to ncde code:: for the same
node.

Proof. According to Lemmas 2, 5 and 6 scheme @, satisfies «onditions (ii) and (iii)
except for those strings S; where both E[i]" is to the left of NI and E[iT® is to the
ght of N¥ in @;. From Lemmas 3 and 5 we xnow that every such §; hes two private
1-threads in E[i]" 2nd no extra threads in N[j3; N[m]. Using the sam: maiching as
in constructing @ we may now thread E[i]" with E-, N[j] with N ard N[m] with
N A new extra O-thread is possibly ne eded for the zero of N[ i} However, the two
private threads for the ones in E[i " become empty and can be reinoved. Thus the
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supersequence determined by the new threading is shorter than the original. When
the changes in @; are done for all such S;, we finally obtain @, and T, which satisfy
the conditions of the lemma.

Proof of Claim 2 (contin:.>ct). To conclude the proof we must still show how 7', and
0, irdicate that G has a ncde cover of size <k. Let

C ={N[g]IR has astring &; containing node code N[g]and the zero of N (g]
is threaded by an extra thread in O4}.

Lemma 7(iii) implies that the nodes having a code in C constitute a node cover of
G. Let k' be the size of this cover. Then we have

k' <number of extra O-threads in @,
= number of all extra threads in @, —number of extra 1-threads in ©,.

Since the nember of all extra threads equals | T,4| — q, and by Lemma 7(ii), the number
of extra 1-tareads is =2r, we obtain

k'<|Ty|—q—-2r<q+Q2r+k)—q-2r=k.

Proof of Theorem (continued). Claims 1 and 2 above suffice to show that R has a
common supersequence of tength <<q + (2r + k) if and only if G has a node cover of
size =<k. Clearly, strings R can be generated in a time which depends polynomially
on the size of the instance of th-~ node cover problem. Thus we have a polynomial
time transformation of ain NP-complete problem to the SCS problem over a bmary
alphabet. This problem is therefore N>-complete, too.

4. Conclusions

The SCS problem over an alphabet with size =5 has been shown to be NP-
complete by Maier [5], who also conjectured that his technigues could be used to
prove the result for alphabet size =3. In this paper we have used a simplified form
of the encodings of Maier to prove NP-completeness of the SCS problem over any
alphabet with size =2. The special case where the size of the alphabet is 2 has found
an interesting application in the field of evaluation of attribute grammars [6].
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