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Abstract. We consider the complexity of the Shortest Common Supersequence (SCS) problem, 
i.e. the problem of finding for finite strings S1, $2, . . . , S,, a shortest string S such that every Si can 
be obtained 3y deleting zero or more elements from S. The SCS problem is shown to be 
NP-complete fur strings over an alphabet of size 22. 

Given a string S over an alpha.bet 2, we define a sapersequerzce S’ of S to be any 

string S’ = Wo~1~1~2~2 l l l xkwk over C such that S =. x1x2 9 l .xck and each wi E X*. 
A common supersequence of a set of strings R = {&, $2, . . . , S,) is a string S over 2 
such that S is a super-sequence of each Si. The Shortest Common Supersequence (SCSl 
problem can now be stated as follows: Given an alphabet 2, a finite set R of strings 
from X*, and a positive Integer k, is there a common supersequence of R of length 
s/9 If S’ is a supersequence of S, then S is a subsequence of S’. The Longest Common 
Subsequence (LCS) problem can be defined in an obvious way. 

The complexity of the SCS and LCS problems for an arbitrary set J? has been 
studied by Maier [5]. He is mainly interested in the LCS problem which <he shows 
to be NP-complete when the size of the alphabet X is a2. The LCS problem is, of 
course, trivially solvable in polynomial time when C is of size one. For a fixed k cr 
for a fixed size of R, the problem is also known to be solvable in polynomial time, 
see e.g. [ 1,7], Furthermore, it was &own in [S] that the SCS problem is NP-r:omplete 
when the size of C is ~5. 

In this paper we improve the result of [S] on the SCS problem by showing that 
the problem is NP-complete already for alphabet size 32:, i.e. for the binary 
alphabet. The SCS problem is therefore in this respect similar to the LCS problem. 
Again, the SCS problem is trivially solvable in polynomial time ,when the size of the 
set 1’Q is 2 (by first com.puting the longest common subsequence), or if all Si E R are 
of length ~2 131, or if the size of 2 is 1. 

* The work of this author l ,vas supported b-y the Academy of Finland. 
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our proof technique.and notations are developitd from those of [5]. We use the 
convenient concept of threading schemes, introduced in Section 2. The result is 
proved in Section 3. 

Our result has found applications in the field of evaluation of attril ;ntr, grammar-a. 
In fact, the NP-completeness of the SCS problem over binary alphabet leads to the 
result that the problem of finding an optimal multi-pass evaluator for an attribute 
grammar is NP-complete, too [6]. The SCS problem may atso have applications to 
data compression techniques. 

2. Threading slchemee 

Following [5] we analyze the SCS problem in terms of so-calied threading 
schemes. We think of a string in R as a row of beads with labels from C. The process 
of constructing a common super-sequence is then equivalent ta threading the beads 
in a certain manner. -4s an example we consider a set R having three strings over 
2 = (0, l}: St = 10100, sz = 001101, s3 = 10110. The strings are represented as rows 
of beads: 

To construct a common supersequence all the beads are threaded so that 
(i) each thread contains at most one bead from each row, 

(ii) all beads on a thread must have the same label from Z, called the type of the 
thread, and 

(iii) threads may not cross. 
For the SCS problem, we want to find if k threads are sufficient to thread all the 

beads. In {he example we ha. e, among others, the following threading with 8 
threads; in fact, in this case k must always be 38: 

e3 ‘4 85 ‘6 37 e8 

It is convenient to refer to a thread by its type or by the terms of the strings it 
threads. Thus in the example 612 is a l-thread threading strings Sr and SJ. 
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A thwatling scheme for the SCS problem is a list (from left to right) sf threads 

6, 92, 0 * . , BP which fulfill the rules and thread ali the beads. Given a threading 
schelwc @ = (&, 82, . . . , ep) for a set of strings R, we can oktain d common super- 
sequence of R by concatenating the types of 81, 62, . . . , &,. Xn our example, 
01011001 is a common supersequence. Clearly, for a given threading scheme the 
implied supersequence is urique, but the same supersequence may have several 
threading schemes. 

3. The result 

The purpose of this section is to prove the following result. 

Theorem. The SC’S yroMem is NP-complete for an alphabet C of size a2. 

PM&. The SCS problem is clearly in class NP. To prove the completeness we must 
therefore give a polynomial time transformation from some known NP-complete 
problem to the SCS problem over binary alphabet. The transformation we give will 
be, as in [S], from the node coxw problem [2,4]. Given a graph G = (N, E) and an 
integer k, the node cover problem is to determine if there is a subset N’c N such 
that N’ has at most k elements and, for each edge (x, y); E, at least one off x and y 
belongs to N’. 

Let G = (N, E) and k constitute an instance of th!? node cover problem where 
-*r Z CY (211, Q, l ’ l 9 VA E = {(xl, Y& (~2, yd, . . . , (x,, y,)}. We construct a set M of r + 1 
strings over the binary alphabet C = (0, 1). %sically, our construction is a simplified 
version of the transformation used in [5] to prove the result of the theorem fog 
alphabet size 25. 

The first string in R is the template T. In addition, R contains a string Si for each 
edge ei = (xi, yi) in E. In these strings, the nodes and edges of G are encoded using 
the alphabet (0, 1). ‘VVe first describe the encoding, shown in Fig. 1. The nude 
rodeplateN is defined as t + 1 blocks of 7c ones, where c = max(r, t). Any vi in N we 
encode with node code fl[i] which ;s &tained by inserting a zero between the ith and 
(i + 1)st blocks of #. The multiple node code fi[i,, iz, . . . , i,3 has a zero in the ilst, 

rznd , . . . , and i,th spots. The special case of R[l, 2, . . . , t] will be denoted by & and 
referred to as the node sink, since it is a supersequence of all the node codes. The 
edge codeplate g, the edge code g[j], and the multiple edge code 8[ jl, j2, . e l , isI 

are defined similarly with blocks of 7c zeros and pairs off ones. (Only the code E[ j] 
is shown in Fig. 1.) The code 8[ 1,2, . . . , r] is called the edge sink and dmoted 
by & 

NOW we can defise the r + 1 strings of R, shown in Fig. 2. The template T consists 
of the following codes in the given order: E; Rs; &; I;j; gs; l;j,; J?. We denote the 
length of T by 4 z 7c(4r -t- 3 t -I- 7) +4r -+ 2t. For each ei = (xi, yi) we define Si ats: 

I!$]; #[j]; #[ml; g[i], where j and m are such that xi = vi, yZ = vm. To distinguish 
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Node codep late N: 

Node 

t+l Mocks 

length = 7cl’t+l) 

r- ~- 

11111 l ** I I ‘I ___,.._____________ __________~___.._________________r___ __.m_ .--1.w 
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7c 7c 1 7c ?c 1 7c 7c i 7c 7c 
I 

il 
st spot 

I 
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iS 
th spot 

Edge code F[ j I: length = 7c (ml) q-2 

IO IO 1 l *a IO Ill0 I l *a IO IO I -----------~-~~--~--~~~~-~~~~~-~~”~~~~~~~~~~~~~“~~~~~~~~~~~~~ 
uu uL+Ju 

7c ?c 
IL-J-J 

?C 2 7c 7t 7r 
I 

.th 
J spot 

Fig. 1. 

between the left and ri@;ht occurrences of the same code in a string we use 
superscripts L and R. 

Template T: length #q = 7c(4r+St+7)+4r+2t 

String si: length = 7c (2r+Zt*4) +6 

i Q-i, ” I RcjJ I EM I BKilR E _-_..-I-,,,,, .m-----~-~---~-m.“~~~- 

Fig 2. 

By proving the following two claims we f;how tha.t the above! transformation from 
the node cover problem to the SCS problem has the desired g/ropcrties. 

M??? e If G has a node cover of size k, then R has a common supersequence of 
length 4 + (2~ + k). 
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Roof. Let IV’ = (t-21, n2, . c . , IZ~} be a node cover of size k. Let W = {ei 1 ei = (xi, yi) 
and xi e N’) and U = E - W. NOW, if ei E U., then yi EN’. Let T’ Je the string T’ = 
8[ Cl];&; ES; #[N’]; ES; I&; 8[ W]. Since U u W = E, the length of T’ = q + (2r + k). 
The siring T’ is a supersequence of T7 since each block of T’ is the same as the 
corresponding block in T with possibly some zeros and ones added. Moteover, T’ 
is a supersequence of each Si. The matching goes as follows: 

Case Q: Si corresponds to an edge in W (see Fig. 3). 

Fig. 3. 

Case b: Si corresponds to an edge in U (see Fig. 4). 

Fig. 4. 

Thus T’ is a common supersequence of R. 

Claim 2. If R has a common supersequence of length q + (2r + k), then G has a 
node cover of size Sk, 

Proof. The set N is trivially a node cover for G. Therefore, if k 2 tB the claim is 
clearly true. 

In the rest of the proof we assuime that k c t. Let TO be a common supersequence 
of R of length q + (2~ -t-k), and !et 60 be a threading scheme for To. The proof is 
now continued with a sequence of lemmas in which we construct, starting from 7’0 
and Bo, a sequence Tl, T2, Ts, ‘T, of supersequences of R and corresponding 
threading schemes 01, 02,693, @4 such that the length of the Ti’s is decreasing. From 
the final result, Ta and @,, we may decide that a node cover of size i<k for G exists. 
Each new T and @i constructed in this process is more and more similar to the 
super-sequence and the threading scheme used in the proof of Claim 1. 

In the sequel we use the following convenient terminology. A thread which 
threads some term in the template T is called a ‘T-thread and the other threads are 
called extra threads. Scheme 00 has y + (2r + k) threads including q T-threads and 
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2r + k c 3~ extra threads. The main argument used in the proofs of the lemmas will 
be the number of extra t&ads which is not allowed to be 23t. An extra thread is 
&ed private if it threads a term iw only one string of R. Other;wise a k;i extra thread 
is called shared, 1 

We also need terminology to refer to the relative ordering of/ terms of the strings 
in R im@ied by a threading schcsme 0 = (01, 8~~. . . . , $). Let a term r~ of a string be 
threaded by & ~nci a term b of (possibly another) string be threadeu by Oj. If i < j, 
then we say that (a is to the left of b (and b is to the right of a): in scheme 69. More 
generally, if A is a block of terms of one string and B a block’of terms of another 
siring in R, then A is said to be to the left of B (and B to the right oi A) if for each 
term a in A and 5 in B, a is to the left of 6. 

T’he length of a string S is deriD,ted by IS]. 

Lemma I. For emh string Si, block Li’[i]” is to the left of g,” or Hock E[ilR is to the 
right of i?F in 06 

Proof. If the lemma is not true, the? the block #[j]; N[m] of Si must be to the right 
of flk and to the left of&?: in 00. So we have the situation given in Fig. 5. Since R[j] 
R[ m] contains 1 Gc (t + 1) ones and there are only 7c (t + l!) + 4r ones between .&!k and 
flp in T, this means that 7c(t + 1) -4r > 3c ones in p[j]; R[m] muss be on extra 
threads, a contradiction. 

T: , EL , i$L , Et , N , E; I/ I 
i  

, ij,” , e , ------____-_-___ ____ ca____w___ 

I 
_-_-__L___c_________--- 

I 
i 
! 

s. : 
1 

Lemlma 2. There is a common supersequence Tl gf R and a thread,!ng scheme 61 for 
Tl such that 1 Tl I* 1 TO[ and for each S:, block .I!@]” is to the left of?q,” and the pair of 
ones in E[ilL is threaded b:y extra threads in 81, or block l?[ilR iJr to the right of fl: 
and the pair OF ones in g[ilR is threaded by extra threads in 81. Moreover, if &?[i]” 
is not to the ie,!It of N,“, then it is not to the left of g’,L, and if d’ il’: is not to the right 
of fl,“, then it is nut to thk? right of@,” in 631. I 

Proof. Suppose that &I” is to the left of E,” in 00. To prove the lamma we show 
that it is possible to transform TO and OO so that in the new threading B[ilL is to 
the left of #k. This trans?ormation (and a symmetric transformation for those I!?[ilR 
that are to the right of g: in ~1~~) can be done successively for ea&h l!?[ilL ta the left 
of A!!?: and each E[iiR to ehe: right of EF in 03. The resulting supersequence Tl and 
threading scheme 01 are als required in the lemma because by Lemma 1, either 
B[ilL or E[ilR satisfies the condition of the transformation for t+very Si. Note that 
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if E[i]” or E[CjR does not satisfy this condition, then it necessarily satisfies the last 
assertion of the lemma,. 

Before modifying & and 00 for i!?[i]’ we show that th>i two ones in E[i-jL are to 
thg left of Nk. In fact, if this is not true, then all zeros of E[i]” to the right of the 
pair of ones must be threaded in 00 to the right of EL but to the left of J!!?,“. This 
means that O0 has at least 7~ - t > 3c extra threads because B[i]” has at least 7c 
zeros to the right of the two ones but fl: contains only d zeros, a contradiction. Hence 
the two ones of g[i]” must be to the left of fl,’ in 00. This clearly implies that these 
ones are threaded by extra1 threads in 00. 

Therefore, if ii’[i]” is tot the left of Nb already in Qo, no modification of 00 is 
needed for E[ilL. Otherwise E[i]’ has zeros that are not to the left of N,” in 00. 
We will move them on suitable threads which already thread EL. In more detail, 
the 7c l i zeros to the left of the pair of ones in Bfi]” are first threaded with the 7c - i 

lertmost zeros of EL. This introduces no extra threads. Then two extra threads are 
added to thread the two ones of ii’[i]” and the original threads of the two ones tire 
removed. If either of the original threads for the ones was not private, some 1 in a 
string Sh, 1’2 f i, may now become unthreaded. Let cyh be a prefix of Sh such that the 
last term of CY~ is the rightmost unthreaded 1 of Sh. Then it is straightforward to see 
from the structure of the strings in R and from the fact that E[i]” is to the left of 
gk in &, that string CY~ must always be of the form 07c’h I.1 or 0”:” 1, where h c i. 
Otherwise the situation would be as in Fig. 6, where h > i and too many extra threads 
are required for the zeros to the left of 8 in St, and between 6 and 8’ in Si. 

, EsL , N , EsR , R; , ? , 
..----e ______D_________~,___~~~~~~~~~~~~~~~ 

I EIhlL I w[i*l 1 Ni’rn’I I B[hlR I __“_______.B_ _________________“U_ 
I 

Fig. 6. 

Thus (Yh is a subsequence of the prefix p = 0 7c’i 11 of Si which we have threaded 
so far. Hence aI, can be threaded by the threads of p, After performing this& process 
for each Sk there are no unthreaded terms in R. The 7c((r c 1) 4) zwos following 
the pair of ones in B[ilL are finally threaded with the 7c((r -t- 1) - i) rightmost zeros 
of EL. In the resulting threading B[ilL is to the left of #,” and the pair of ones is 
threaded by extra threads. Moreover, the corresponding common supersequence is 
of length ~l7’,,j. Repeating tlrts process for each Sj we arrive at T1[ and 01 which are 
as required. 
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Lemma 3. mere is a common suprsequetice T2 of R and bl thretlding scheme O2 for 
Tz such rhat f T216 1 TlI Qnd 632 is as 01 except if for some s;rdng Si block E[i]= is to 
/he left oj$k anti I!?[$ to the right of N% in 81, then no term qf ,I;![ j] 0-e #Em] of Si is 
ithreaded by extrda threads in &. 

Proof. For every such string Si, we may chaage 81 SO that IQ] i$ thr faded with Nk 
and fi[m] with RR. Since N[j] and n[m] are subsequences of Jff’, thts can be done 
without introducing new threads but some tinreads of & may become empty. These 
should be removed. When these changes are success?+e!y made for every possible 
Si, the resulting threading scheme 02 and the correspf:;ncaing superse 
as required. 

Lemma 4. There is a common supersequence T3 of R and Q threading rwheme O3 for 
T3 such that IT31 G IT21 and @s is CIS ?92 except if for some Si block l?[i 1’ is not to that 
lef: of #,” in 02, then B[i]” is to the ri@rt of #t in 03, and symmetric&y, if bloA- 
l?[i]” is not to the right of RF in 02, therz l?[i]” is to the ieft of .#L’ in 0s. 

Sroof. We first define T3 and &_ Suppose that E[i]” is not to thie left of Nk in @z* 
Then by Lemma 2, B[i]” Rust be to the right of -@,” in 632:. @heme @2 is now 
modified such that g[i]= is threaded with Et, R[ j] with fl and H[m] v’( ith fir,” ; the 
threading of B[ilR remains unchanged. In this process the o&y extra thread is 
ncr;eded to thread the zero appearing in N[ j]. This thread 6 cros;+!es n between the 

! 7~ l jth and (7~ *j + 1)st one. However, if there is already an extrd O-thread 8’ at this 
place WC use 8' for threading the zero of _q[ j], and 8 is not introcltiied. The symmetric 
case in which l?[i]” is not to the right of 8?,” but E[;[r]= is to the: left 9f N,” in & is 
handled analogously: g[i]” is threaded with a:, N[m] with fl anil nr v 3 witn Nf-. TY ,- . 
only term which uses an extra thread Es now the zero in N[m]. 

Applied to every possible si the above process yields a schelme 03 which obviously 
threads every b![i]” and B[i]” as required by the lemma. To complete the proof 
we must still show that 1731~ IT& 

The only extra threads appearing in & but possibly not in 02 are the O-threads 
threading the zeros of those n[g] that are threaded with fi in &. In addition, if Si 
and Sin share such an extra thread, then both Si and Si# must coritain the block n[g] 
and the extra thread thread!; the zeros of these blocks. Hence to prove l’s;l s 1 T2) it 
suffices to show that 

(i) if Av[g] ira Si has an extra O-thread in &, then the same #[gy] has an extra 
O-thread in 02, too, and 

(ii) If the extra O-thread of such a block #[g] is shared in 692 with t 
another block #[g’], then it is shared with the same zero in 83, too. 

To prove (i) suppose that fi$[ j] of §i has an extra thread in 693; the case where N[rn] 
h an extra thread can be considered symmetrically. Then, by the construction of 
@39 grilL cannot be to the lt:ft of fl,” in 02 but &_i]” is to z:he right of RF. Lemma 
2 implies that g[i]” is not to the left of E,” in 02. If the O-thread 8 threading the 
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zero of R[j] in 692 is not an extra thread, then it must thread a zero of T either to 
the left or to the right of N because there are no zeros in .#q. If the zero is to the right 
of p the situation in 02 is 3s shown in Fig. 7. We note that there are to the right of 
8 at most 7c(t+ 1) + 2r ones in 7’ but at least 7c(t + 1) +7c ones in Si. Hence O2 
should have at least 7c - 2r > 3c extra l-threads, a contradic:ion. Similarly, if 6 is 
to the left of R, then aga.in a contradiction follows. Thus we have proved (i). 

T: I j$J , Fj,” , EsL Ti , EJ , lq , IF , 
__u__-_---__--..-_. __I_ -_----__-. _-__-__-_w_____ 

si: 
1 

, 

____-__ __-_ __ 
i 1 

_m_____ 

I E[ilL I iQj1 I RImI I B[iIR I _-___o.__ -_-_m___ 

Fig. 7. 

To prove (ii) let $?[j] and 8 be as in the proof of (i) and let 8 be, shared with the 
zero of R[j’] in 02. We prove that j = j’ and that N[ j’] has an extra O-thread in &. 
This proves (ii) because then the zeros of N[ j] and N[ j’] must be threaded by $thil 
same thread in 03. Let N[ j’] be from Sit. Since fl[ j’] has an extra thread, we know 
from Lemmas 2 and 3 that B[i’]” is not to the left of g: or J!?[i’]” is not to the 
right of gp. Assume that g[?]” is not to the right of BF; the other case can be 
considered similarly. Then Si* must be of the form @‘I”; R[m’]; N[ j’]; B[i’]“, that 
is, fi[ j’] is the rightmost N-block of Sip; otherwise the number of extra threads is 
easily seen to become too large. The situation is 3s shown in Fig. 13. I-Iere the threads 
&, &, &, &, are the last threads of &‘I” and &I” and the first threads of E[i’]R 
and &‘I”, respectively. 

5 *2 
8 I83 e4 

Fig. 8. 

The threading 0% Si* is seen to be such that the zero of N[ j’] is threaded by an extra 
thread in @ (, as required. To finally prove that j = j’ suppose that j < j’ or j’ < j. If 
j< j’ there must be 7c((t + l)+ j’) l-threads between @I and 8, ‘and 7c((r + 1 -j) + 
(t + 1)) 1-t,lreads aetween 8 and &, that is, there are 7c(3(t+ l)+ j’-j) 2 
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3 l 7c (t + 1) c 7~ 1 -threads between 81 and 84. But the number of’ ones in T b,etween 
@I and & is 3 9 7~ (t + 1) + 4~ Thus the number of extra threads is 2 3c, a contradiction. 
Similarly, if j’< j, then we see that there must be 7c((t + 1) +j 8-j’) 3 ‘?c(t -+ :) + 7c 
4 -threads between & and 33, but this interval of T contains al: most 7c(t -- 1) - 4r 
or es, which again leads to a contradiction. The possibilities not show: 1 in Fig. 8 can 
be considered similarly. Thus j = 1’ which completes the proof of (i!) and the proof 
of the lemma. 

The following lemma is an immediate consequence of the construct ion of thread- 

ing scheme &. 

Lemma 5. In threading scheme 03, if for some Si block B[i]” is not to the left of Nk 
or I!$]” is nod to the right of Np, then either df the 4 wo zeros in node codes #[jJ, fi*[m] 
is threaded bsl an extra O-thread and a11 the zeros on &is thread belong to node codes 
for the same node. 

Lemma 6. In threading scheme 01, iffor some Si blxk l?[i]” is t/; the left of fl,“, then 
the ,yair L$ ifnes in is’[i]= is threaded *by private threads, and similarly, if I?[i]” is to 
the right of Np, then the pair of ones in g[i]” is threaded by private threads. 

hoof. We consider here only the case where I!?[i]” is to the left elf #,“. F-om Lemma 
2 we know that in & the two ones in l!?[ilL are threaded by ext:“a threads. Suppose 
that one of them, say 8, is shared with Sip. Since 8 is to the leil’t of Rk, Lemma 4 
implies that the part of Si’, to the right of I!?[i’]” must be to the right of EL. 
Co~isequently, 8 must thread with a one in l?[i’]“. Then aIso A$‘]” must be to the 
left of Nk. But this easily implies th:it there must be at least 7e extra O-threads to 
the left of Nt in ti&, a contradiction. Hence such an i’ cannot exist. 

Lemma 7. There is a common supersequence T4 of R and a threading schen; 4 &. for 
T4 such that 

(9 IT41 s lT31, 
(ii) every Si in R has two private l-threads, and 

(iii) for every Sig either of the two zeros in node codes N[ j] and #[m] is threaded by 
an extra O-thread and all the zeros on this thread belong to node code:: for the same 
node. 

Proof, According to Lemmas 2, 5 and 6 sr.heme @s satisfies rzonditions (ii) and (iii) 
except for those strings Si where both I?[@ is to the left of Pit and J!?[ilR is to the 
ght of Np in OS. From Lemmas 3 and 6 we &now that every such Si hz:.s two private 
l-threads in .I?[ilL and no extra threads in #[j]; #[in]. Using the samr: mat&ing as 
in constructing 03 we may now thread B[i]” with .Eb, R[j] with N ar..d &[kJ with 
N,“. A new extra O-thread is possibly needed for thie hero of #[j]. However, the two 
private threa& for the ones in I!?[$ become ern~ty and can be removed. Thus the 
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supersequence determined by the new threading is shorter than lthe original. When 
the changes in 03 are done for all such Si, we finally obtain & and Td which satisfy 
the conditions of the lemma. 

Proof of C11b 2 (contina&). TO conclude the proof we must still show how T4 iand 
O4 indicate that G has a node cover of size <II-. Let 

C = (#[gl)R has a string &+i containing node code i+?[g] and the zero of &?[g] 
is threaded by an extra thread in 04}. 

Lemma ‘7(iii) implies that the nodes having a code in C constitute a node cover of 
G, Let k’ be the size of this cover. Then we have 

k’s number of extra O-threads in O4 
= number of all extra threads in O4 -number of extra l-threads in B4. 

Since the n::mber of all extra threads equals 1 T41 - q, and by Lemma 7(ii), the number 
of extra l-tkeads is 32r, we obtain 

Proof of Theorem (continued). Claims 1 and 2 above suffice to show that R has a 
common supersequence of length zgq + (2r + k) if and only if G has a node cover of 
size sk. Clearly, strings R can be generated in a time which depends polynomially 
on the size of the instance of th\- node cover problem. Thus we have a pcslynomial 
time transformation of ari NP-complete problem to the SCS problem over a binary 
alphabet. This problem is therefore N&complete, too. 

4. Coarctw4ions 

The SCS problem over an ‘alphabet wi*th size 25 has been shown to be NP- 
complete by Maier [SJ, who also conjectured that his techniques could be used to 
prove the result for alphabet size 2 3. In this paper we have used a simplified form 
of the encodings of Maier to prove NP-completeness of the SCS problem over any 
alphabet with size 22. The special case where the size of the alphabet is 2 has found 
an interesting application in the field of evaluation of attribute grammars [6]. 
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